首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
5'-AMP-activated protein kinase (AMPK) has been implicated in glycogen metabolism in skeletal muscle. However, the physiological relevance of increased AMPK activity during exercise has not been fully clarified. This study was performed to determine the direct effects of acute AMPK activation on muscle glycogen regulation. For this purpose, we used an isolated rat muscle preparation and pharmacologically activated AMPK with 5-aminoimidazole-4-carboxamide-1-beta-D-ribonucleoside (AICAR). Tetanic contraction in vitro markedly activated the alpha(1)- and alpha(2)-isoforms of AMPK, with a corresponding increase in the rate of 3-O-methylglucose uptake. Incubation with AICAR elicited similar enhancement of AMPK activity and 3-O-methylglucose uptake in rat epitrochlearis muscle. In contrast, whereas contraction stimulated glycogen synthase (GS), AICAR treatment decreased GS activity. Insulin-stimulated GS activity also decreased after AICAR treatment. Whereas contraction activated glycogen phosphorylase (GP), AICAR did not alter GP activity. The muscle glycogen content decreased in response to contraction but was unchanged by AICAR. Lactate release was markedly increased when muscles were stimulated with AICAR in buffer containing glucose, indicating that the glucose taken up into the muscle was catabolized via glycolysis. Our results suggest that AMPK does not mediate contraction-stimulated glycogen synthesis or glycogenolysis in skeletal muscle and also that acute AMPK activation leads to an increased glycolytic flux by antagonizing contraction-stimulated glycogen synthesis.  相似文献   

2.
Glycogen-targeting PP1 (protein phosphatase 1) subunit G(L) (coded for by the PPP1R3B gene) is expressed in human, but not rodent, skeletal muscle. Its effects on muscle glycogen metabolism are unknown. We show that G(L) mRNA levels in primary cultured human myotubes are similar to those in freshly excised muscle, unlike subunits G(M) (gene PPP1R3A) or PTG (protein targeting to glycogen; gene PPP1R3C), which decrease strikingly. In cultured myotubes, expression of the genes coding for G(L), G(M) and PTG is not regulated by glucose or insulin. Overexpression of G(L) activates myotube GS (glycogen synthase), glycogenesis in glucose-replete and -depleted cells and glycogen accumulation. Compared with overexpressed G(M), G(L) has a more potent activating effect on glycogenesis, while marked enhancement of their combined action is only observed in glucose-replete cells. G(L) does not affect GP (glycogen phosphorylase) activity, while co-overexpression with muscle GP impairs G(L) activation of GS in glucose-replete cells. G(L) enhances long-term glycogenesis additively to glucose depletion and insulin, although G(L) does not change the phosphorylation of GSK3 (GS kinase 3) on Ser9 or its upstream regulator kinase Akt/protein kinase B on Ser473, nor its response to insulin. In conclusion, in cultured human myotubes, the G(L) gene is expressed as in muscle tissue and is unresponsive to glucose or insulin, as are G(M) and PTG genes. G(L) activates GS regardless of glucose, does not regulate GP and stimulates glycogenesis in combination with insulin and glucose depletion.  相似文献   

3.

Background

Mutations in the PYGM gene encoding skeletal muscle glycogen phosphorylase (GP) cause a metabolic disorder known as McArdle''s disease. Previous studies in muscle biopsies and cultured muscle cells from McArdle patients have shown that PYGM mutations abolish GP activity in skeletal muscle, but that the enzyme activity reappears when muscle cells are in culture. The identification of the GP isoenzyme that accounts for this activity remains controversial.

Methodology/Principal Findings

In this study we present two related patients harbouring a novel PYGM mutation, p.R771PfsX33. In the patients'' skeletal muscle biopsies, PYGM mRNA levels were ∼60% lower than those observed in two matched healthy controls; biochemical analysis of a patient muscle biopsy resulted in undetectable GP protein and GP activity. A strong reduction of the PYGM mRNA was observed in cultured muscle cells from patients and controls, as compared to the levels observed in muscle tissue. In cultured cells, PYGM mRNA levels were negligible regardless of the differentiation stage. After a 12 day period of differentiation similar expression of the brain and liver isoforms were observed at the mRNA level in cells from patients and controls. Total GP activity (measured with AMP) was not different either; however, the active GP activity and immunoreactive GP protein levels were lower in patients'' cell cultures. GP immunoreactivity was mainly due to brain and liver GP but muscle GP seemed to be responsible for the differences.

Conclusions/Significance

These results indicate that in both patients'' and controls'' cell cultures, unlike in skeletal muscle tissue, most of the protein and GP activities result from the expression of brain GP and liver GP genes, although there is still some activity resulting from the expression of the muscle GP gene. More research is necessary to clarify the differential mechanisms of metabolic adaptations that McArdle cultures undergo in vitro.  相似文献   

4.
Insulin action is decreased by high muscle glycogen concentrations in skeletal muscle. Patients with McArdle's disease have chronic high muscle glycogen levels and might therefore be at risk of developing insulin resistance. In this study, six patients with McArdle's disease and six matched control subjects were subjected to an oral glucose tolerance test and a euglycemic-hyperinsulinemic clamp. The muscle glycogen concentration was 103 +/- 45% higher in McArdle patients than in controls. Four of six McArdle patients, but none of the controls, had impaired glucose tolerance. The insulin-stimulated glucose utilization and the insulin-stimulated increase in glycogen synthase activity during the clamp were significantly lower in the patients than in controls (51.3 +/- 6.0 vs. 72.6 +/- 13.1 micromol x min(-1) x kg lean body mass(-1), P < 0.05, and 53 +/- 15 vs. 79 +/- 9%, P < 0.05, n = 6, respectively). The difference in insulin-stimulated glycogen synthase activity between the pairs was significantly correlated (r = 0.96, P < 0.002) with the difference in muscle glycogen level. The insulin-stimulated increase in Akt phosphorylation was smaller in the McArdle patients than in controls (45 +/- 13 vs. 76 +/- 13%, P < 0.05, respectively), whereas basal and insulin-stimulated glycogen synthase kinase 3alpha and protein phosphatase-1 activities were similar in the two groups. Furthermore, the ability of insulin to decrease and increase fat and carbohydrate oxidation, respectively, was blunted in the patients. In conclusion, these data show that patients with McArdle's glycogen storage disease are insulin resistant in terms of glucose uptake, glycogen synthase activation, and alterations in fuel oxidation. The data further suggest that skeletal muscle glycogen levels play an important role in the regulation of insulin-stimulated glycogen synthase activity.  相似文献   

5.
Muscle phosphorylase deficiency (McArdle's disease) has conventionally been considered a disorder of glycogenolysis, and the associated impairment in oxidative metabolism has been largely overlooked. Muscle glycogen normally is the primary oxidative fuel at exercise work loads requiring more than 75-80% of maximal O2 uptake (VO2max). Evidence is presented to support the hypothesis that a limited flux through the Embden-Myerhof pathway in McArdle's disease reduces the capacity to generate NADH required to support a normal VO2max. The extent of the oxidative defect is substrate dependent; i.e., it can be partially corrected by increasing the availability of alternative oxidative substrates (e.g., glucose, free fatty acids) to working muscle. Experiments employing modification of substrate availability closely link the hyperkinetic circulatory response to exercise (i.e., an abnormally large increase in O2 transport to skeletal muscle) and the premature muscle fatigue and cramping of McArdle patients with their oxidative impairment and suggest that a metabolic common denominator in these abnormal responses may be a pronounced decline in the muscle phosphorylation potential ([ATP]/[ADP][Pi]). The hyperkinetic circulation likely is mediated by the local effects on metabolically sensitive skeletal muscle afferents and vascular smooth muscle of K+, Pi, or adenosine or a combination of these substances released excessively from working skeletal muscle. The premature muscle fatigue and cramping of McArdle patients does not appear to be due to depletion of ATP but is associated with an increased accumulation of Pi and probably ADP in skeletal muscle. Accumulations of Pi and ADP are known to inhibit the myofibrillar, Ca2+, and Na+-K+-ATPase reactions.  相似文献   

6.
目的: 观察针刺对大鼠运动性骨骼肌损伤内质网功能酶SERCA、PDI、内质网应激标志蛋白GRP78和PERK通路的影响,探讨针刺防治运动性骨骼肌损伤的内质网途径作用机制。方法: 8周龄雄性SD大鼠随机分为空白对照组(C组,n=6)、单纯运动组(E组,n=30)、针刺对照组(A组,n=30)和运动针刺组(EA组,n=30)。其中,E组和EA组通过一次离心运动建立运动性骨骼肌损伤模型,EA组在运动后即刻于大鼠小腿跟腱上0.5 cm施以针刺干预,A组在同期施以针刺干预。各组根据运动和针刺干预后不同取材时间点分为0 h/12 h/24 h/48 h/72 h亚组(n=6),在对应时相取比目鱼肌进行指标测试。透射电镜观察肌纤维超微机构;ELISA法测定Ca2+-ATP酶(SERCA)和蛋白二硫键异构酶(PDI)含量;Western blot检测内质网应激标志蛋白GRP78及p-PERK、p-eIF2α表达。结果: 与C组比较,A组指标各时相均无显著差异(P>0.05),E组肌纤维超微结构出现不同损伤,SERCA含量0 h至48 h均显著降低(P<0.05),PDI含量0 h显著升高(P<0.05),GRP78表达0 h至72 h均显著升高(P< 0.05),p-PERK表达0 h至24 h显著升高(P<0.05), p-eIF2α表达与p-PERK一致;与E组对应时相比较,EA组肌纤维超微结构明显改善,SERCA含量48 h和72 h显著升高(P<0.05),PDI含量0 h至72 h均显著升高(P<0.05),GRP78表达0 h至72 h均显著降低(P<0.05),p-PERK和p-eIF2α表达12 h和24 h显著降低(P<0.05)。结论: 针刺可有效改善一次大负荷离心运动后导致的运动性骨骼肌损伤并缓解内质网应激,其机制可能与上调蛋白二硫键异构酶PDI以及抑制内质网应激PERK通路有关。  相似文献   

7.
Stimulation of glycogen-targeted protein phosphatase 1 (PP1) activity by insulin contributes to the dephosphorylation and activation of hepatic glycogen synthase (GS) leading to an increase in glycogen synthesis. The glycogen-targeting subunits of PP1, GL and R5/PTG, are downregulated in the livers of diabetic rodents and restored by insulin treatment. We show here that the mammalian gene PPP1R3E encodes a novel glycogen-targeting subunit of PP1 that is expressed in rodent liver. The phosphatase activity associated with R3E is slightly higher than that associated with R5/PTG and it is downregulated in streptozotocin-induced diabetes by 60-70% and restored by insulin treatment. Surprisingly, although mRNA for R3E is most highly expressed in rat liver and heart muscle, with only low levels in skeletal muscle, R3E mRNA is most abundant in human skeletal muscle and heart tissues with barely detectable levels in human liver. This species-specific difference in R3E mRNA expression has similarities to the high level of expression of GL mRNA in human but not rodent skeletal muscle. The observations imply that the mechanisms by which insulin regulates glycogen synthesis in liver and skeletal muscle are different in rodents and humans.  相似文献   

8.
After a single bout of exercise, insulin action is increased in the muscles that were active during exercise. The increased insulin action has been shown to involve glucose transport, glycogen synthesis, and glycogen synthase (GS) activation as well as amino acid transport. A major mechanism involved in increased insulin stimulation of glucose uptake after exercise seems to be the exercise-associated decrease in muscle glycogen content. Muscle glycogen content also plays a pivotal role for the activity of GS and for the ability of insulin to increase GS activity. Insulin signaling in human skeletal muscle is activated by physiological insulin concentrations, but the increase in insulin action after exercise does not seem to be related to increased insulin signaling [insulin receptor tyrosine kinase activity, insulin receptor substrate-1 (IRS-1) tyrosine phosphorylation (RS1), IRS-1-associated phosphatidylinositol 3-kinase activity, Akt phosphorylation (Ser(473)), glycogen synthase kinase 3 (GSK3) phosphorylation (Ser(21)), and GSK3alpha activity], as measured in muscle lysates. Furthermore, insulin signaling is also largely unaffected by exercise itself. This, however, does not preclude that exercise influences insulin signaling through changes in the spatial arrangement of the signaling compounds or by affecting unidentified signaling intermediates. Finally, 5'-AMP-activated protein kinase has recently entered the stage as a promising player in explaining at least a part of the mechanism by which exercise enhances insulin action.  相似文献   

9.
The time course of insulin sensitivity, skeletal muscle glycogen and GLUT4 content, and glycogen synthase (GS) activity after a single bout of intense exercise was examined in eight horses. On separate days, a euglycemic-hyperinsulinemic clamp (EHC) was undertaken at 0.5, 4, or 24 h after exercise or after 48 h of rest [control (Con)]. There was no increase in mean glucose infusion rate (GIR) with exercise (0.5-, 4-, and 24-h trials), and GIR was significantly decreased at 0.5 h postexercise (GIR: 8.6 +/- 2.7, 6.7 +/- 2.0, 9.0 +/- 2.0, and 10.6 +/- 2.2 mg.kg(-1).min(-1) for Con and at 0.5, 4, and 24 h, respectively). Before each EHC, muscle glycogen content (mmol glucosyl units/kg dry muscle) was higher (P < 0.05) for Con (565 +/- 102) than for other treatments (317 +/- 84, 362 +/- 79, and 382 +/- 74 for 0.5, 4, and 24 h, respectively) and muscle GLUT4 content was unchanged. Pre-EHC active-to-total GS activity ratio was higher (P < 0.05) at 0.5, 4, and 24 h after exercise than in Con. Post-EHC active GS and GS activity ratio were higher (P < 0.05) in Con and at 24 h. There was a significant inverse correlation (r = -0.43, P = 0.02) between glycogen content and GS activity ratio but no relationship between GS activity and GIR. The lack of increase in insulin sensitivity, determined by EHC, after exercise that resulted in a significant reduction in muscle glycogen content is consistent with the slow rate of muscle glycogen resynthesis observed in equine studies.  相似文献   

10.
The regulatory-targeting subunit (RGL), also called GM) of the muscle-specific glycogen-associated protein phosphatase PP1G targets the enzyme to glycogen where it modulates the activity of glycogen-metabolizing enzymes. PP1G/RGL has been postulated to play a central role in epinephrine and insulin control of glycogen metabolism via phosphorylation of RGL. To investigate the function of the phosphatase, RGL knockout mice were generated. Animals lacking RGL show no obvious defects. The RGL protein is absent from the skeletal and cardiac muscle of null mutants and present at approximately 50% of the wild-type level in heterozygotes. Both the level and activity of C1 protein are also decreased by approximately 50% in the RGL-deficient mice. In skeletal muscle, the glycogen synthase (GS) activity ratio in the absence and presence of glucose-6-phosphate is reduced from 0.3 in the wild type to 0.1 in the null mutant RGL mice, whereas the phosphorylase activity ratio in the absence and presence of AMP is increased from 0.4 to 0.7. Glycogen accumulation is decreased by approximately 90%. Despite impaired glycogen accumulation in muscle, the animals remain normoglycemic. Glucose tolerance and insulin responsiveness are identical in wild-type and knockout mice, as are basal and insulin-stimulated glucose uptakes in skeletal muscle. Most importantly, insulin activated GS in both wild-type and RGL null mutant mice and stimulated a GS-specific protein phosphatase in both groups. These results demonstrate that RGL is genetically linked to glycogen metabolism, since its loss decreases PP1 and basal GS activities and glycogen accumulation. However, PP1G/RGL is not required for insulin activation of GS in skeletal muscle, and rather another GS-specific phosphatase appears to be involved.  相似文献   

11.
Insulin stimulates glycogen synthase (GS) through dephosphorylation of serine residues, and this effect is impaired in skeletal muscle from insulin-resistant [obese and type 2 diabetic (T2DM)] subjects. Exercise also increases GS activity, yet it is not known whether the ability of exercise to affect GS is impaired in insulin-resistant subjects. The objective of this study was to examine the effect of acute exercise on GS phosphorylation and enzyme kinetic properties in muscle from insulin-resistant individuals. Lean normal glucose-tolerant (NGT), obese NGT, and obese T2DM subjects performed 40 min of moderate-intensity cycle exercise (70% of Vo(2max)). GS kinetic properties and phosphorylation were measured in vastus lateralis muscle before exercise, immediately after exercise, and 3.5 h postexercise. In lean subjects, GS fractional activity increased twofold after 40 min of exercise, and it remained elevated after the 3.5-h rest period. Importantly, exercise also decreased GS K(m) for UDP-glucose from ≈0.5 to ≈0.2 mM. In lean subjects, exercise caused significant dephosphorylation of GS by 50-70% (Ser(641), Ser(645), and Ser(645,649,653,657)), and phosphorylation of these sites remained decreased after 3.5 h; Ser? phosphorylation was not regulated by exercise. In obese NGT and T2DM subjects, exercise increased GS fractional activity, decreased K(m) for UDP-glucose, and decreased GS phosphorylation as effectively as in lean NGT subjects. We conclude that the molecular regulatory process by which exercise promotes glycogen synthesis in muscle is preserved in insulin-resistant subjects.  相似文献   

12.
The enzymes Akt, mTOR, p70(S6K), rpS6, GSK3, and glycogen synthase interact in the control of protein and/or glycogen synthesis in skeletal muscle, and each has been found to respond to exercise and nutrient supplementation. In the present study, we tested the hypothesis that nutrient supplementation post exercise, in the form of a carbohydrate-protein (CHO-PRO) supplement, would alter the phosphorylation state of these enzymes in a manner that should increase muscle protein and glycogen synthesis above that produced by exercise alone. After a 45 min cycling session followed by sprints and again 15 min later, the subjects (n = 8) ingested 400 ml of a CHO-PRO drink (7.8% dextrose and 1.8% protein-electrolyte) or a placebo drink, as assigned using a randomized, counter-balanced design with repeated measures. Biopsies of the vastus lateralis were taken before exercise and at 45 min of recovery. At 45 min after supplementation, CHO-PRO treatment yielded greater phosphorylation of Akt (65%), mTOR (86%), rpS6 (85-fold), and GSK3alpha/beta (57%) than pre-exercise levels (p < 0.05). Although p70(S6k) showed an exercise response after 45 min, there were no differences between treatments. Glycogen synthase (GS) phosphorylation was significantly reduced 45 min after exercise for both treatments, but the reduction in phosphorylation was greatest during the CHO-PRO treatment (3-fold decrease; p < 0.05), indicating greater activation of GS following supplementation. No difference between treatments was detected prior to exercise for any of the enzymes. These results suggest that a post exercise CHO-PRO supplement alters the phosporylation levels of the enzymes tested in a manner that should accelerate muscle glycogen synthesis and protein initiation during recovery from cycling exercise.  相似文献   

13.

Background

The increase in cytosolic free Mg2+ occurring during exercise and initial recovery in human skeletal muscle is matched by a decrease in cytosolic pH as shown by in vivo phosphorus magnetic resonance spectroscopy (31P MRS). To investigate in vivo to what extent the homeostasis of intracellular free Mg2+ is linked to pH in human skeletal muscle, we studied patients with metabolic myopathies due to different disorders of glycogen metabolism that share a lack of intracellular acidification during muscle exercise.

Methods

We assessed by 31P MRS the cytosolic pH and free magnesium concentration ([Mg2+]) in calf muscle during exercise and post-exercise recovery in two patients with McArdle's disease with muscle glycogen phosphorylase deficiency (McArdle), and two brothers both affected by Tarui's disease with muscle phosphofructokinase deficiency (PFK).

Results

All patients displayed a lack of intracellular acidosis during muscle exercise. At rest only one PFK patient showed a [Mg2+] higher than the value found in control subjects. During exercise and recovery the McArdle patients did not show any significant change in free [Mg2+], while both PFK patients showed decreased free [Mg2+] and a remarkable accumulation of phosphomonoesters (PME). During initial recovery both McArdle patients showed a small increase in free [Mg2+] while in PFK patients the pattern of free [Mg2+] was related to the rate of PME recovery.

Conclusion

i) homeostasis of free [Mg2+] in human skeletal muscle is strongly linked to pH as shown by patients' [Mg2+] pattern during exercise;ii) the pattern of [Mg2+] during exercise and post-exercise recovery in both PFK patients suggests that [Mg2+] is influenced by the accumulation of the phosphorylated monosaccharide intermediates of glycogenolysis, as shown by the increased PME peak signal.iii) 31P MRS is a suitable tool for the in vivo assessment of free cytosolic [Mg2+] in human skeletal muscle in different metabolic conditions;
  相似文献   

14.
The purpose of the present study was to investigate the effects of fatiguing muscular activity on glycogen, glycogen phosphorylase (GP), and Ca(2+) uptake associated with the sarcoplasmic reticulum (SR). Tetanic contractions (100 ms, 75 Hz) of the gastrocnemius and plantaris muscles, elicited once per second for 15 min, significantly reduced force to 26.5 +/- 4.0% and whole muscle glycogen to 23% of rested levels. SR glycogen levels were 415.4 +/- 76.6 and 20.4 +/- 2.1 microg/mg SR protein in rested and fatigued samples, respectively. The optical density of GP from SDS-PAGE was reduced to 21% of control, whereas pyridoxal 5'-phosphate concentration, a quantitative indicator of GP content, was significantly reduced to 3% of control. GP activity after exercise, in the direction of glycogen breakdown, was reduced to 4% of control. Maximum SR Ca(2+) uptake rate was also significantly reduced to 81% of control. These data demonstrate that glycogen and GP associated with skeletal muscle SR are reduced after fatiguing activity.  相似文献   

15.
Multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaMKII) is a Ser/Thr protein kinase uniformly distributed within the sarcoplasmic reticulum (SR) of skeletal muscle. In fast twitch muscle, no specific substrates of CaMKII have yet been identified in nonjunctional SR. Previous electron microscopy data showed that glycogen particles containing glycogen synthase (GS) associate with SR at the I band level. Furthermore, recent evidence implicates CaMKII in regulation of glucose and glycogen metabolism. Here, we demonstrate that the glycogen- and protein phosphatase 1-targeting subunit, also known as G(M), selectively localizes to the SR membranes of rabbit skeletal muscle and that G(M) and GS co-localize at the level of the I band. We further show that G(M), GS, and PP1c assemble in a structural complex that selectively localizes to nonjunctional SR and that G(M) is phosphorylated by SR-bound CaMKII and dephosphorylated by PP1c. On the other hand, no evidence for a structural interaction between G(M) and CaMKII was obtained. Using His-tagged G(M) recombinant fragments and site-directed mutagenesis, we demonstrate that the target of CaMKII is Ser(48). Taken together, these data suggest that SR-bound CaMKII participates in the regulation of GS activity through changes in the phosphorylation state of G(M). Based on these findings, we propose that SR-bound CaMKII participates in the regulation of glycogen metabolism, under physiological conditions involving repetitive raises elevations of [Ca(2+)](i).  相似文献   

16.
Stimulation of AMPK and decreased glycogen levels in skeletal muscle have a deep involvement in enhanced insulin action and GLUT-4 protein content after exercise training. The present study examined the chronic effects of a continuous low-carbohydrate diet after long-term exercise on GLUT-4 protein content, glycogen content, AMPK, and insulin signaling in skeletal muscle. Rats were divided randomly into four groups: normal chow diet sedentary (N-Sed), low carbohydrate diet sedentary (L-Sed), normal chow diet exercise (N-Ex), and low carbohydrate diet exercise (L-Ex) groups. Rats in the exercise groups (N-Ex and L-Ex) were exercised by swimming for 6 hours/day in two 3-hour bouts separated by 45 minutes of rest. The 10-day exercise training resulted in a significant increase in the GLUT-4 protein content (p<0.01). Additionally, the GLUT-4 protein content in L-Ex rats was increased by 29% above that in N-Ex rats (p<0.01). Finally, the glycogen content in skeletal muscle of L-Ex rats was decreased compared with that of N-Ex rats. Taken together, we suggest that the maintenance of glycogen depletion after exercise by continuous low carbohydrate diet results in the increment of the GLUT-4 protein content in skeletal muscle.  相似文献   

17.
In skeletal muscle both insulin and contractile activity are physiological stimuli for glycogen synthesis, which is thought to result in part from the dephosphorylation and activation of glycogen synthase (GS). PP1G/R(GL)(G(M)) is a glycogen/sarcoplasmic reticulum-associated type 1 phosphatase that was originally postulated to mediate insulin control of glycogen metabolism. However, we recently showed (Suzuki, Y., Lanner, C., Kim, J.-H., Vilardo, P. G., Zhang, H., Jie Yang, J., Cooper, L. D., Steele, M., Kennedy, A., Bock, C., Scrimgeour, A., Lawrence, J. C. Jr., L., and DePaoli-Roach, A. A. (2001) Mol. Cell. Biol. 21, 2683-2694) that insulin activates GS in muscle of R(GL)(G(M)) knockout (KO) mice similarly to the wild type (WT). To determine whether PP1G is involved in glycogen metabolism during muscle contractions, R(GL) KO and overexpressors (OE) were subjected to two models of contraction, in vivo treadmill running and in situ electrical stimulation. Both procedures resulted in a 2-fold increase in the GS -/+ glucose-6-P activity ratio in WT mice, but this response was completely absent in the KO mice. The KO mice, which also have a reduced GS activity associated with significantly reduced basal glycogen levels, exhibited impaired maximal exercise capacity, but contraction-induced activation of glucose transport was unaffected. The R(GL) OE mice are characterized by enhanced GS activity ratio and an approximately 3-4-fold increase in glycogen content in skeletal muscle. These animals were able to tolerate exercise normally. Stimulation of GS and glucose uptake following muscle contraction was not significantly different as compared with WT littermates. These results indicate that although PP1G/R(GL) is not necessary for activation of GS by insulin, it is essential for regulation of glycogen metabolism under basal conditions and in response to contractile activity, and may explain the reduced muscle glycogen content in the R(GL) KO mice, despite the normal insulin activation of GS.  相似文献   

18.
In vivo effects of insulin and vanadium treatment on glycogen synthase (GS), glycogen synthase kinase-3 (GSK-3) and protein phosphatase-1 (PP1) activity were determined in Wistar rats with streptozotocin (STZ)-induced diabetes. The skeletal muscle was freeze-clamped before or following an insulin injection (5 U/kg i.v.). Diabetes, vanadium, and insulin in vivo treatment did not affect muscle GSK-3 activity as compared to controls. Following insulin stimulation in 4-week STZ-diabetic rats muscle GS fractional activity (GSFA) was increased 3 fold (p < 0.05), while in 7-week diabetic rats it remained unchanged, suggesting development of insulin resistance in longer term diabetes. Muscle PP1 activity was increased in diabetic rats and returned to normal after vanadium treatment, while muscle GSFA remained unchanged. Therefore, it is possible that PP1 is involved in the regulation of some other cellular events of vanadium (other than regulation of glycogen synthesis). The lack of effect of vanadium treatment in stimulating glycogen synthesis in skeletal muscle suggests the involvement of other metabolic pathways in the observed glucoregulatory effect of vanadium.  相似文献   

19.
Sarcolipin (SLN) and phospholamban (PLN) inhibit the activity of sarco(endo)plasmic reticulum Ca2+-ATPases (SERCAs) by reducing their apparent affinity for Ca2+. A ternary complex between SLN, PLN, and SERCAs results in super-inhibition of SERCA activity. Analysis of skeletal muscle homogenate has limited our current understanding of whether SLN and PLN regulate SERCA1a, SERCA2a, or both in skeletal muscle and whether SLN and PLN are co-expressed in skeletal muscle fibers. Biopsies from human vastus lateralis were analyzed through single fiber Western blotting and immunohisto/fluorescence staining to circumvent this limitation. With a newly generated SLN antibody, we report for the first time that SLN protein is present in human skeletal muscle. Addition of the SLN antibody (50 µg) to vastus lateralis homogenates increased the apparent Ca2+ affinity of SERCA (K Ca, pCa units) (-Ab, 5.85 ± 0.02 vs. +Ab, 5.95 ± 0.02) and maximal SERCA activity (μmol/g protein/min) (-Ab, 122 ± 6.4 vs. +Ab, 159 ± 11) demonstrating a functional interaction between SLN and SERCAs in human vastus lateralis. Specifically, our results suggest that although SLN and PLN may preferentially regulate SERCA1a, and SERCA2a, respectively, physiologically they both may regulate either SERCA isoform. Furthermore, we show that SLN and PLN co-immunoprecipitate in human vastus lateralis homogenate and are simultaneously expressed in 81% of the fibers analyzed with Western blotting which implies that super-inhibition of SERCA may exist in human skeletal muscle. Finally, we demonstrate unequivocally that mouse soleus contains PLN protein suggesting that super-inhibition of SERCA may also be important physiologically in rodent skeletal muscle.  相似文献   

20.
We investigated the subcellular localization of glycogen synthase (GS) in the adductor muscle of anesthetized rabbits injected intravenously with propranolol. Under these experimental conditions, glycogen content was about 10 mmol/kg of fresh tissue. Immunofluorescent and fractionation studies showed that GS associated with sarcoplasmic reticulum (SR) membranes. Glycogen and GS always co-sedimented, suggesting a predominant role of glycogen in targeting of GS to SR. SR-associated GS was phosphorylated in vitro by SR-bound Ca2+-calmodulin dependent protein kinase (CaMKII) and dephosphorylated by endogenous protein phosphatase 1 (PP1c). Based on measurements of GS activity ratio, in vitro phosphorylation of GS by CaMKII did not significantly affect GS activity per se. However, GS activity ratio was slightly reduced, when SR membranes were further incubated with ATP after prior phosphorylation by CaMKII, suggesting that CaMKII might act sinergistically with other protein kinases. We propose that SR-bound CaMKII plays a role in regulation of glycogen metabolism in skeletal muscle, when intracellular Ca2+ is raised.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号