首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
If organogenesis were a completely deterministic process, then the amount of information required to store the spatial position and fate of every cell in vertebrate organisms would be larger than the total information that could be contained in their genomes. This suggests that the instructions of developmental mechanisms involved in organogenesis, coded in DNA, must be at least in part procedural or algorithmically based. Chimeric mosaic patterns in rat livers have been shown to be isotropic and to have fractal profiles (D approximately 1.3) whereas adrenal gland mosaics show a less irregular radial pattern, with lower fractal dimension (D approximately 1.2) than in the liver. These findings suggested a possible model of parenchyma generation. We propose that during organogenesis in both liver and adrenal cortex, the same basic mechanism is directed to organ mass enlargement, whereas the differences observed in mosaic patterns between the organs could be due to the control of a single parameter, namely, a form of contact inhibition. Computer simulations in two dimensions returned comparable results in both the fractal dimension value of mosaic patches and appearance of the mosaic 'tissues', as observed histologically in chimeras. This suggests that position information and locomotion of cells would not be required to produce the mosaic pattern observed in chimeras.  相似文献   

2.
Partial hepatectomy causes compensatory, nonneoplastic growth and regeneration in mammalian liver. Compensatory liver growth can be used to examine aspects of patterns of cell division in regenerating tissue. Chimeric animals provide markers of cell lineage which are independent of growth and can be used to follow cell division patterns. Previous experimental evidence suggests that compensatory liver growth is uniform, without focal centers of proliferation. In this study we have extended that observation to include genes important in regeneration and cell cycle control in order to establish that nascent growth centers are not present in regenerating liver. There is a uniform spatial distribution of expression of these genes which is not related to mosaic pattern in the chimeras. While these genes may help regulate hepatocyte proliferation they do not appear to regulate patch pattern in the chimeras. With this information confirming uniform growth it was possible to use fractal analysis to test various hypothesized patterns of regenerative growth in the liver. The results of this analysis indicate that mosaic pattern does not change substantially during the regenerative process. Patch area and perimeter (the area occupied by or perimeter around cells of like lineage) increase during compensatory liver growth in chimeric rats without alteration of the geometric complexity of patch boundaries (boundaries around cells of like lineage). These tissue findings are consistent with previously reported computer models of growth in which repetitive application of simple decisions assuming uniform growth created complex mosaic patterns. They support the notion that an iterating (repeating), self-similar (a pattern in which parts are representative of, but not identical to the whole) cell division program is sufficient for the regeneration of liver tissue following partial hepatectomy. Iterating, self-similar cell division programs are important because they suggest a way in which complex patterns (or morphogenesis) can be efficiently created from a small amount of stored information.  相似文献   

3.
In many developing tissues, neighboring cells enter different developmental pathways, resulting in a fine-grained pattern of different cell states. The most common mechanism that generates such patterns is lateral inhibition, for example through Delta-Notch coupling. In this work, we simulate growth of tissues consisting of a hexagonal arrangement of cells laterally inhibiting their neighbors. We find that tissue growth by cell division and cell migration tends to produce ordered patterns, whereas lateral growth leads to disordered, patchy patterns. Ordered patterns are very robust to mutations (gene silencing or activation) in single cells. In contrast, mutation in a cell of a disordered tissue can produce a larger and more widespread perturbation of the pattern. In tissues where ordered and disordered patches coexist, the perturbations spread mostly at boundaries between patches. If cell division occurs on time scales faster than the degradation time, disordered patches will appear. Our work suggests that careful experimental characterization of the disorder in tissues could pinpoint where and how the tissue is susceptible to large-scale damage even from single cell mutations.  相似文献   

4.
The analysis of pattern development in mosaic and chimaeric animals has provided insight into a number of developmental problems. In order to aid the understanding of the dynamics of the development of mosaic tissues, a computer simulation of the generation of a mosaic tissue was created using simple probabilistic decisions. Results of quantitative analysis of the simulated mosaicism were compared with chimaeric liver. Chimaeric animals were produced by morula aggregation between histologically distinguishable strains of congenic rats. The livers of these animals revealed a pattern of patchy mosaicism unrelated to either acinar or lobular architecture of the organ. Independent quantifiable parameters were correlated and compared between the simulation and chimaeric liver tissue. This analysis showed that extensive cell migration is not required to develop finely variegated mosaic tissue and that the patterns of mosaicism observed could have resulted from tissue development in which as few as three reiterated decisions were required. First, the simulation established anlagen of two cell types of various specified proportions with randomly chosen placement. Second, in each generation of the simulation the order in which the cells divided was established randomly. Third, there was a random choice of the direction of placement of the daughter cell. The quantitative relationships between the proportion of cell types, the area of patches and the number of patches per unit area was consistent between the simulation and the chimaeric tissue.  相似文献   

5.
The explanation of mosaic pattern in chimeric organs analyzed by in situ methods requires modeling of specific hypotheses. The use of computer simulations to achieve this has led to the conclusion that finely variegated mixtures of cell lineage within chimeric tissues does not require extensive cell movement. Cell division models were used to determine the distribution of patch size as mosaic fields are generated. The results establish that these distributions are sensitive to the proportion of the two cell types which comprise the mosaic.  相似文献   

6.
Mammalian chimeras have been used in a number of developmental studies over the years. A major limitation in these studies has been the lack of in situ procedures for establishing mosaic pattern in the tissues of these animals. Recently, a number of procedures have become available for the histochemical demonstration of mosaicism in chimeras. These include the elucidation of various enzymes, receptors, or surface antigens, which have variant expression between strains. The observation of pattern in organs of mosaic animals can suggest possible modes of organogenesis and organ maintenance. Experimentation with such animals can be used to establish some mechanisms of pathogenesis as well.  相似文献   

7.
A cyclin cDNA clone (Pethy;CycB1;1) was isolated from a Petunia hybrida ovary specific cDNA library. Sequence comparison revealed that Pethy;CYCB1;1 protein is highly homologous to mitotic B1 cyclins. Northern analysis and in situ hybridisation experiments showed that its expression is developmentally regulated and restricted to flower organs. We have attempted to define some of the cell division patterns which contribute to shaping each floral organ by analysing Pethy;CycB1;1 expression on Petunia flower sections. While in sepals, epidermis and parenchyma cell division patterns were comparable, there were two distinct cell division patterns in petals. In the epidermis, Pethy;CYCB1;1 expression was found both at the petal tip and along epidermis, whereas in the parenchyma only at the petal tips. In reproductive organs cell divisions were detected only in sporophytic tissues. No signals were detected inside meiotic cells.  相似文献   

8.
Mice showing mosaic expression of an appropriate marker gene that is activated during development provide simple tools for investigating cell lineages. We used the mosaic β-galactosidase staining patterns in adrenal cortices of 21OH/ LacZ transgenic mice to study both organogenesis and maintenance of the adult tissue. Randomly orientated mosaic patterns present in embryonic day 14.5 (E14.5) adrenals changed progressively during the perinatal period from discrete spots, via patches and radial arrays, to radial stripes, which first emerged between postnatal days 0 and 7 (P0 and P7). The mosaic radial stripe pattern was fully established by P21 and remained unchanged throughout the adult period (8-52 weeks). The mouse adrenal gland grew continuously between E14.5 and P21, including the period during which stripes emerge. Ki67-positive, proliferative cells in the adrenal cortex were mainly localized to the outer cell layers between E18.5 and P3. By P10, cell proliferation had increased, and the proliferative region had expanded but was still mainly confined to the outer cortex. Correlation of changes in mosaic patterns in 21OH/LacZ adrenal cortices with the locations of adrenocortical cell proliferation suggest that the radial stripes arise by edge-biased growth during the perinatal period, even if they are maintained by stem cells in adults. The stability of the adult stripe pattern suggests that stem cell function is unchanged between 8 and 52 weeks.  相似文献   

9.
Analysis of experimental mouse chimeras (chimaeras) and mosaics provides a means of investigating patterning and differentiation within the developing mammalian eye. Chimeric and mosaic mice carry two or more genetically distinct cell populations and extend the repertoire of analytical tools available to the geneticist. Here we review the impact these techniques have had on our understanding of eye organogenesis. Chimeras and mosaics are routinely used to investigate cell lineages, patterns of growth and gene function, and provide a means to clear analytical hurdles that otherwise limit standard genetic approaches. In particular, chimeras are used to investigate the roles of genes in tissues that do not develop in conventional mutant or knock-out mice, to test whether genes act cell autonomously or non-autonomously in different tissues and to dissect tissue-tissue interactions in less tractable, complex systems. Chimeras, in which cells of different genetic composition are mixed at a fine-scale cellular level, may provide qualitatively different data from mosaic mice with conditional knockouts. The uses of chimeras, Cre-loxP mosaics and in vitro tissue recombination for study of ocular organogenesis are compared. Wider use of mosaics and chimeras should provide further insights into eye development.  相似文献   

10.
《Organogenesis》2013,9(4):267-280
Mice showing mosaic expression of an appropriate marker gene that is activated during development provide simple tools for investigating cell lineages. We used the mosaic β-galactosidase staining patterns in adrenal cortices of 21OH/ LacZ transgenic mice to study both organogenesis and maintenance of the adult tissue. Randomly orientated mosaic patterns present in embryonic day 14.5 (E14.5) adrenals changed progressively during the perinatal period from discrete spots, via patches and radial arrays, to radial stripes, which first emerged between postnatal days 0 and 7 (P0 and P7). The mosaic radial stripe pattern was fully established by P21 and remained unchanged throughout the adult period (8–52 weeks). The mouse adrenal gland grew continuously between E14.5 and P21, including the period during which stripes emerge. Ki67-positive, proliferative cells in the adrenal cortex were mainly localized to the outer cell layers between E18.5 and P3. By P10, cell proliferation had increased, and the proliferative region had expanded but was still mainly confined to the outer cortex. Correlation of changes in mosaic patterns in 21OH/LacZ adrenal cortices with the locations of adrenocortical cell proliferation suggest that the radial stripes arise by edge-biased growth during the perinatal period, even if they are maintained by stem cells in adults. The stability of the adult stripe pattern suggests that stem cell function is unchanged between 8 and 52 weeks.  相似文献   

11.
Lateral organs in plants arise from the meristem in a stereotypical pattern known as phyllotaxy. Spiral patterns result from initiation of successive organs at a fixed angle of divergence but variable patterns of physical contact. Such patterns ultimately give rise to individual leaves and flowers at positions related to each other by consecutive terms in the mathematical series first described by Leonardo Fibonacci. We demonstrate that a BELL1 related homeodomain protein in Arabidopsis, BELLRINGER, maintains the spiral phyllotactic pattern. In the absence of BELLRINGER, the regular pattern of organ initiation is disturbed and lateral organs are initiated more frequently. BELLRINGER is also required for maintenance of stem cell fate in the absence of the regulatory genes SHOOT MERISTEMLESS and ASYMMETRIC LEAVES1. We propose a model whereby BELLRINGER coordinates the maintenance of stem cells with differentiation of daughter cells in stem cell lineages.  相似文献   

12.
The pigment cells of the skin are derived from melanoblasts which originate in the neural crest. The dorsoventral migration of melanoblasts has been visualized in pigment stripes seen in aggregation chimeras, and the width of these bands has suggested that the entire pigmentation of the coat is derived from a small number of founder cells. We have generated mosaic mice by marking single melanoblasts in utero to gain information on the clonal history of pigment-forming cells. A retroviral vector carrying the human tyrosinase gene was constructed and microinjected into neurulating albino mouse embryos. Albino mice are devoid of pigmentation due to deficiency of tyrosinase. Thus, transduction of the wild-type gene into the otherwise normal melanoblasts should rescue the mutant phenotype, giving rise to patches of pigmentation, which correspond to the area colonized by the mitotic progeny of a marked clone. Mosaic animals derived from the injected embryos indeed showed pigmented bands with a width strikingly similar to the 'standard' stripes seen in aggregation chimeras. These results are consistent with the notion that the unit width bands seen in aggregation chimeras represent the clonal progeny of a single melanoblast and verify Mintz's (1967) conclusion that a few founder melanoblasts give rise to coat pigmentation. The pigment cells of the eye are of dual origin: the melanocytes in choroid and outer layer of the iris are derived from the neural crest and those in the pigment layer of the retina from the neuroepithelium of the optic cup. Marked clones in both lineages were observed in the eyes of many mosaic animals.  相似文献   

13.
A method is described which allows the size of patches of like cells in mosaic tissues to be estimated from the frequency with which small samples taken from the tissue contain both of the mosaic cell types. The mosaic patches are represented as close-packed geometric figures arranged in twoor three-dimensional tissues. Small samples drawn at random from these tissues will include portions of one or more patches; only those samples which include portions of two or more dissimilar patches (mixed samples) will contain both cell types. The expected frequency of mixed samples is calculated as a function of the shape of the mosaic patches, the frequency of the two mosaic cell types and the sample to patch size ratio. This expected frequency is not strongly dependent on patch shape for triangular, square and hexagonal patches in two dimensions or for cubic and orthotetrakaidekahedral patches in three dimensions. Elongation of square patches along one axis or of cubic patches along one or two axes results in slight increases in the expected frequency of mixed samples for given sample to patch size ratio.  相似文献   

14.
Embryonic stem cells (ESCs) comprise at least two populations of cells with divergent states of pluripotency. Here, we show that epiblast stem cells (EpiSCs) also comprise two distinct cell populations that can be distinguished by the expression of a specific Oct4-GFP marker. These two subpopulations, Oct4-GFP positive and negative EpiSCs, are capable of converting into each other in?vitro. Oct4-GFP positive and negative EpiSCs are distinct from ESCs with respect to global gene expression pattern, epigenetic profile, and Oct4 enhancer utilization. Oct4-GFP negative cells share features with cells of the late mouse epiblast and cannot form chimeras. However, Oct4-GFP positive EpiSCs, which only represent a minor EpiSC fraction, resemble cells of the early epiblast and can readily contribute to chimeras. Our findings suggest that the rare ability of EpiSCs to contribute to chimeras is due to the presence of the minor EpiSC fraction representing the early epiblast.  相似文献   

15.
New, improved media and procedures for making rat chimeric embryos and culturing them in vitro have been developed. We have produced 27 rat chimeras: 20 males and 7 females. This ratio of males to females is consistent with that seen in mouse chimeras, suggesting that rat sex chimeras develop as phenotypic males. By aggregating embryos containing appropriate genetic markers for pigment cell differentiation, it is possible to produce chimeras that elucidate the site of action of the hooded gene. The coat color patterns of black ? black hooded chimeras display a white belly spot. In black ? albino hooded chimeras, small patches of white hair appear on the head and a large white spot occurs on the belly. Black ? agouti hooded chimeras display both agouti and nonagouti pigmentation over the entire surface of the chimera. These animals are fully pigmented with no white spots. In black ? albino non-hooded chimeras, rather small irregular patches of black and white hairs are distributed throughout the pelage. Histological examination of sections of hair follicles obtained from the white areas in the head of black ? albino hooded chimeras revealed amelanotic melanocytes. On the other hand, hair bulbs from the white belly spots do not contain any such melanocytes. Thus the white hairs of the head are due to the presence of albino melanocytes, but the white hairs of the belly are due to the total absence of melanocytes. All these observations are consistent with the conclusion that the hooded gene acts within melanoblasts, probably to retard their migration from the neural crest and/or to prevent their entrance into the hair follicles of the white areas of hooded rats.  相似文献   

16.
Homozygous mdg/mdg mice die at birth and express a syndrome of abnormalities, the most striking of which is a gross failure of skeletal muscle development. Recently, additional abnormalities in the development of nerve-muscle relationships have been recognized; in particular, on muscle fibers within the diaphragm, motor end plates are inappropriately dispersed and, in all muscles, there is a paucity of the 16 S form of acetylcholinesterase (AChE). These abnormalities could result entirely as secondary consequences of the primary muscle defect or from expression of the mdg defect in additional cell types, e.g., motor neurons. To determine if the muscle genotype alone is responsible for these defects in dysgenic mice, chimeras composed of both dysgenic and normal cells have been investigated. Different glucosephosphate isomerase variants existed in the mdg/mdg and normal cells comprising these chimeras and the mutant, normal, or mosaic genotypes of chimera diaphragm and skeletal muscle was estimated by measuring the relative proportions of each isozyme. In two chimeras, the diaphragm innervation pattern was revealed by AChE cytochemistry and in both, discrete regions of abnormally dispersed and normally restricted motor end-plate zones were observed. No correlation between these patterns of innervation and the assessed genotype of the muscle fibers existing in each area was observed. The relative 16 S AChE content in the limbs of four chimeras was found to range from 2.5 to 42.0%. Here also, no correlation between 16 S AChE content and the muscle genotype was observed. The results of these investigations are not consistent with a model of mdg/mdg pathogenesis in which only the skeletal muscle is primarily affected; an extramuscular deficiency responsible for at least part of the full mdg/mdg syndrome is therefore suggested.  相似文献   

17.
In the marine crop Pyropia yezoensis (Ueda) M. S. Hwang et H. G. Choi, it is known that conchospores from heterozygous conchocelis develop into sectored gametophytic blades (chimeras), but archeospores asexually released from haploid blades do not usually grow into chimeric blades. In this study, chimeras with mosaic pattern consisting of the green and wildtype colors were developed from archeospores that were released from a blade piece containing a cell cluster of green color induced by heavy‐ion beam irradiation. To make clear whether these archeospores were produced from the green‐colored cells or the wildtype‐colored cells, cell clusters of the green mutant, wildtype, and mosaic pattern were cut out from the grown chimera, and archeospores were released from each of the three blade pieces. Archeospores from the green‐mutant blade piece and from the wildtype blade piece developed into only green‐mutant blades and wildtype blades, respectively. In contrast, archeospores from the blade piece with mosaic pattern developed into green‐mutant blades, wildtype blades, and chimeric blades with mosaic pattern of the two colors, although the frequency of the chimeras was low. Because each gametophytic cell possesses a single plastid, it is difficult to explain the occurrence of the new chimeras as a mutation of the plastid DNA. Thus, the new chimeras are considered to be due to transposable elements in Pyropia.  相似文献   

18.
The colonial ascidian Botryllus schlosseri undergoes a histocompatibility reaction that can result in vascular fusion of distinct genotypes, creating a chimera. Chimerism has both potential benefits, such as an immediate increase in size that may enhance growth rates, and costs. For the latter, the presence of multiple genotypes in a chimera can lead to competition between genetically distinct stem cell lineages, resulting in complete replacement of somatic and germline tissues by a single genotype. Although fusion can occur at any point after metamorphosis, previous studies have focused on chimeras created from sexually mature adults, where no benefit to chimerism has been documented. Here we focus on the costs and benefits of fusion between juveniles, characterizing growth rates and patterns of somatic and germline chimerism after natural and controlled fusion events. We also compared outcomes between low- and high-density growth conditions, the latter more likely representative of what occurs in natural populations. We found that growth rates were density-dependent, and that only chimeras grew under high-density conditions. We also observed a positional component to a post-fusion event called resorption, indicating that extrinsic factors were important in this process. Patterns of germline and somatic chimerism and dominance in chimeras made from fused juveniles were equivalent to those after fusion of sexually mature adults, and there were no age-related differences in these processes. Finally, by using genetic markers that could retrospectively assign genotypes, we also found that the majority of individual testes in a chimera were clonally derived.  相似文献   

19.
Little is known about the control of leaf size in plants, yet there must be mechanisms by which organ size is measured. Because the control of leaf size extends beyond the action of individual genes or cells, an understanding of the role of leaf cell layers in the determination of leaf size is warranted. Following the construction of graft chimeras composed of small- and large-leaf genotypes of Nicotiana, bilateral leaf blade asymmetry was observed on leaves possessing either a genetically larger or smaller epidermis on one side of the midrib. Although cell size was unaffected by the genotype of the epidermis, the rate and extent of cell division in leaf epidermis altered the rate and extent of cell division in mesophyll and affected leaf size. The data presented neither prove nor disprove whether the mesophyll impacts epidermal cell division but provide the first unequivocal evidence that the extent of cell division in the leaf epidermis alters the extent of cell division in the mesophyll and is a factor regulating blade expansion and ultimate leaf size.  相似文献   

20.
The study of mammalian organogenesis by mosaic pattern analysis   总被引:2,自引:0,他引:2  
Chimeras are animals derived from more than one zygote and composed of two cell lineages which are distinguishable in some way at the cellular level. Spontaneous mosaic animals are also composed of distinguishable cell lineages but are monozygotic. The tissues of both mono- and multizygotic animals of this type are mosaic arrays in which aggregates of like cells form patches, the size and distribution of which can be useful in the analysis of diverse problems in developmental biology. Both biochemical and in situ methods have been applied to the elucidation of mosaic pattern. Both forms of mosaicism have proven useful in establishing theoretic constructs of the formation and maintenance of mammalian organs. A number of these constructs are discussed: cell fusion as related to myotube formation; mechanisms of coat pigmentation and the cellular origin of melanocytes; and pattern analyses of the retinal pigmented epithelium, the intestine, liver, adrenal cortex and thymus. Pathologic alterations in such animals have also been studied utilizing mosaic pattern analysis. In particular, neoplastic tumors and their associated preneoplastic lesions have been shown to be clonal.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号