首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Bumblebee venom contains serine proteases and serine protease inhibitors. In this study, we characterized whether the bumblebee (Bombus ignitus) venom serine protease inhibitor (Bi-KTI) inhibits B. ignitus venom serine protease (Bi-VSP) or phospholipase A2 (Bi-PLA2). Bi-KTI did not inhibit Bi-VSP activity at pH 5.4 or 7.4, whereas Bi-KTI slightly inhibited Bi-VSP activity at pH 7.4 after a 30 min preincubation. The Bi-VSP activity that converts prothrombin into thrombin and fibrin into fibrin degradation products was not significantly affected by Bi-KTI. Additionally, Bi-KTI or Bi-VSP did not inhibit Bi-PLA2 activity. These findings indicate that each bee venom component appears to a play a toxic role via a unique function.  相似文献   

2.
We previously reported that bumblebee (Bombus ignitus) venom serine protease (Bi-VSP) acts as a prophenoloxidase-activating factor in arthropods and a fibrin(ogen)olytic enzyme in mammals. In the present study, we characterized the enzymatic properties of Bi-VSP purified from B. ignitus venom. The 34-kDa active form of Bi-VSP was purified from the venom of B. ignitus worker bees. Glycoprotein staining showed that approximately 20% of the total molecular mass of Bi-VSP is due to carbohydrate moieties. Bi-VSP had an optimal pH and temperature of pH 9.0 and 40 °C, respectively, and was stable at 50 °C for at least 10 min. Bi-VSP activity decreased abruptly below pH 6.0, indicating that Bi-VSP activity is almost completely inhibited at pH 5.4 of B. ignitus venom. The protease activity of Bi-VSP was strongly inhibited by typical serine protease inhibitors such as phenylmethanesulfonyl fluoride, leupeptin, and soybean trypsin inhibitor.  相似文献   

3.
Although several bee venom serine protease genes have been previously described, fibrin(ogen)olytic activity of these serine proteases has been reported for only two bumblebees to date, Bombus ignitus and B. terrestris. Here, we cloned venom serine proteases from the other bumblebee species, B. hypocrita sapporoensis and B. ardens ardens. The venom serine protease genes of B. h. sapporoensis and B. a. ardens consist of 358 amino acids and 357 amino acids, respectively. We compared the predicted mature protein sequences of these serine protease genes to those previously reported for other bees. A phylogenetic analysis shows that B. h. sapporoensis venom serine protease is further immediately close to B. ignitus and B. terrestris venom serine proteases, excluding the venom serine protease of B. a. ardens. Using B. h. sapporoensis venom serine protease (Bs-VSP), we identified that Bs-VSP acts as a fibrin(ogen)olytic enzyme. We also found that Bs-VSP activates prothrombin and directly degrades fibrinogen into fibrin degradation products. Our results further define roles for bumblebee venom serine proteases as fibrin(ogen)olytic agents.  相似文献   

4.
Snake venom proteases affecting hemostasis and thrombosis   总被引:24,自引:0,他引:24  
The structure and function of snake venom proteases are briefly reviewed by putting the focus on their effects on hemostasis and thrombosis and comparing with their mammalian counterparts. Up to date, more than 150 different proteases have been isolated and about one third of them structurally characterized. Those proteases are classified into serine proteases and metalloproteinases. A number of the serine proteases show fibrin(ogen)olytic (thrombin-like) activities, which are not susceptible to hirudin or heparin and perhaps to most endogenous serine protease inhibitors, and form abnormal fibrin clots. Some of them have kininogenase (kallikrein-like) activity releasing hypotensive bradykinin. A few venom serine proteases specifically activate coagulation factor V, protein C, plasminogen or platelets. The venom metalloproteinases, belonging to the metzincin family, generally show fibrin(ogen)olytic and extracellular matrix-degrading (hemorrhagic) activities. A few venom metalloproteinases show a unique substrate specificity toward coagulation factor X, platelet membrane receptors or von Willebrand factor. A number of the metalloproteinases have chimeric structures composed of several domains such as proteinase, disintegrin-like, Cys-rich and lectin-like domains. The disintegrin-like domain seems to facilitate the action of those metalloproteinases by interacting with platelet receptors. A more detailed analysis of snake venom proteases should find their usefulness for the medical and pharmacological applications in the field of thrombosis and hemostasis.  相似文献   

5.
Yang H  Wang Y  Xiao Y  Wang Y  Wu J  Liu C  Ye H  Li F  Yu H  Lai R 《PloS one》2011,6(3):e17519
Direct-acting fibrin(ogen)olytic agents such as plasmin have been proved to contain effective and safety thrombolytic potential. Unfortunately, plasmin is ineffective when administered by the intravenous route because it was neutralized by plasma antiplasmin. Direct-acting fibrin(ogen)olytic agents with resistance against antiplasmin will brighten the prospect of anti-thrombosis. As reported in ‘Compendium of Materia Medica’, the insect of Eupolyphaga sinensis Walker has been used as traditional anti-thrombosis medicine without bleeding risk for several hundreds years. Currently, we have identified a fibrin(ogen)olytic protein (Eupolytin1) containing both fibrin(ogen)olytic and plasminogen-activating (PA) activities from the beetle, E. sinensis. Objectives: To investigate the role of native and recombinant eupolytin1 in fibrin(ogen)olytic and plasminogen-activating processes. Methods and Results: Using thrombus animal model, eupolytin1 was proved to contain strong and rapid thrombolytic ability and safety in vivo, which are better than that of urokinase. Most importantly, no bleeding complications were appeared even the intravenous dose up to 0.12 µmol/kg body weight (3 times of tested dose which could completely lyse experimental thrombi) in rabbits. It is the first report of thrombolytic agents containing both direct-acting fibrin(ogen)olytic and plasminogen-activating activities. Conclusions: The study identified novel thrombolytic agent with prospecting clinical potential because of its bi-functional merits containing both plasmin- and PA-like activities and unique pharmacological kinetics in vivo.  相似文献   

6.

Background

Snake venoms are rich in Kunitz-type protease inhibitors that may have therapeutic applications. However, apart from trypsin or chymotrypsin inhibition, the functions of most of these inhibitors have not been elucidated. A detailed functional characterization of these inhibitors may lead to valuable drug candidates.

Methods

A Kunitz-type protease inhibitor, named DrKIn-II, was tested for its ability to inhibit plasmin using various approaches such as far western blotting, kinetic analyses, fibrin plate assay and euglobulin clot lysis assay. In addition, the antifibrinolytic activity of DrKIn-II was demonstrated in vivo.

Results

DrKIn-II potently decreased the amidolytic activity of plasmin in a dose-dependent manner, with a global inhibition constant of 0.2 nM. Inhibition kinetics demonstrated that the initial binding of DrKIn-II causes the enzyme to isomerize, leading to the formation of a much tighter enzyme-inhibitor complex. DrKIn-II also demonstrated antifibrinolytic activity in fibrin plate assay and significantly prolonged the lysis of the euglobulin clot. Screening of DrKIn-II against a panel of serine proteases indicated that plasmin is the preferential target of DrKIn-II. Furthermore, DrKIn-II treatment prevented the increase of FDP in coagulation-stimulated mice and significantly reduced the bleeding time in a murine tail bleeding model.

Conclusion

DrKIn-II is a potent, slow and tight-binding plasmin inhibitor that demonstrates antifibrinolytic activity both in vitro and in vivo.

General significance

This is the first in-depth functional characterization of a plasmin inhibitor from a viperid snake. The potent antifibrinolytic activity of DrKIn-II makes it a potential candidate for the development of novel antifibrinolytic agents.  相似文献   

7.
The first low-molecular-mass metalloprotease presenting prothrombin activating activity was purified from Bothrops insularis venom and named insularinase A. It is a single-chain protease with a molecular mass of 22 639 Da. cDNA sequence analysis revealed that the disintegrin domain of the precursor protein is post-translationally processed, producing the mature insularinase A. Analysis of its deduced amino acid sequence showed a high similarity with several fibrin(ogen)olytic metalloproteases and only a moderate similarity with prothrombin activators. However, SDS-PAGE of prothrombin after activation by insularinase A showed fragment patterns similar to those generated by group A prothrombin activators, which convert prothrombin into meizothrombin independently of the prothrombinase complex. In addition, insularinase A activates factor X and hydrolyses fibrinogen and fibrin. Chelating agents fully inhibit all insularinase A activities. Insularinase A induced neither detachment nor apoptosis of human endothelial cells and was also not able to trigger an endothelial proinflammatory cell response. Nitric oxide and prostacyclin levels released by endothelial cells were significantly increased after treatment with insularinase A. Our results show that, although its primary structure is related to class P-I fibrin(ogen)olytic metalloproteases, insularinase A is functionally similar to group A prothrombin activators.  相似文献   

8.
Expression and characterization of pro alpha 2-plasmin inhibitor   总被引:1,自引:0,他引:1  
alpha s-Plasmin inhibitor (alpha 2PI), one of the serine protease inhibitors in plasma, was expressed in baby hamster kidney (BHK) cell line. The expression vector was constructed with its genomic DNA and cDNA, and was transfected into BHK cells by the calcium phosphate method. The recombinant alpha 2PI which was secreted from the cells was estimated by SDS-PAGE to have a molecular mass of 67 kDa, which is indistinguishable from that of normal plasma alpha 2PI. The leader peptide of 12 amino acids was retained at the amino terminus of the recombinant alpha 2PI. This finding suggests that alpha 2PI has pre-pro type processing and the propeptide of 12 amino acids is not removed in BHK cells. This pro-alpha 2PI shows essentially the same inhibitory activity on plasmin and the same affinity for plasmin(ogen) as those of normal alpha 2PI. However, the cross-linking ability to fibrin is reduced to less than one-third of that of normal alpha 2PI. The cross-linking site is the glutamine residue located at the second position from the amino terminus of normal alpha 2PI. The conformational change of this region caused by the addition of the propeptide may have affected the cross-linking capacity of the inhibitor.  相似文献   

9.
This work describes classification, functions, location, inhibition, activation, and therapeutic applications of proteases from snake venoms and vegetables. Snake venoms and vegetables can present toxins that unchain necrosis or proteolysis due to the direct cytotoxic action of venom proteases. These proteases are potential tools in the development of drugs for the prevention and treatment of several illnesses. We report herein mainly fibrinogenolytic metallo proteases and serine proteases (“thrombin-like”). These enzymes are extensively used in the treatment and prevention of thrombotic disorders, since they serve as defibrinogenating agents. The therapeutic uses of fibrin(ogen)olytic metallo proteases hold promise for clinical application due to potential in reversing the effects of thrombosis; this has been shown to be an alternative approach to the prevention and treatment of cardiovascular disorders, which are among the most prominent causes of mortality around the world. Plant proteases can be utilized for many cellular and molecular activities, in antibacterial and anticancer therapies, and in the treatment of snakebites, inhibiting snake venom activities such as blood-clotting, defibrinogenation, and fibrin(ogen)olytic and hemorrhagic actions. These toxins also display potential for clinical use in the treatment of hemostatic disorders.  相似文献   

10.
A novel fibrin(ogen)olytic protease from Antheraea pernyi (important economically insect), named cocoonase, was isolated by a combination of ion-exchange chromatography and gel filtration. Furthermore, the characterization of cocoonase was investigated using fibrin(ogen)olytic, thrombolysis, and hemorrhagic assays. The NH2-terminal sequence (IVGGY SVTID KAPYQ) was established by Edman degradation. Based on the N-terminal sequencing, cocoonase cDNA has been cloned by means of RT-PCR and 5′RACE. It is composed of 261 amino acid residues and possesses the structural features of trypsin-like serine protease. The purified cocoonase showed specific esterase activity on N-β-benzoyl-l-arginine ethyl (BAEE), and the kinetic constants, Km and Vmax were 2.577 × 10−3 mol/L and 4.09 × 10−3 μmol/L/s, respectively. Cocoonase showed strong activities on both fibrin and fibrinogen, preferentially hydrolyzed Aα and Bβ chains followed by γ-chains of fibrinogen. Cocoonase exhibited a thrombolysis activity both in vitro (blood-clot lysis activity assay) and in vivo (carrageenan-induced thrombosis model). These findings indicate that A. pernyi cocoonase ia a novel fibrin(ogen)olytic enzyme and may have a potential clinical application as an antithrombotic agent.  相似文献   

11.
The extracellular serine protease, plasmin, is activated from its precursor, plasminogen (Plg), by the urokinase-type and tissue-type Plg activators (uPA and tPA respectively). One of the main plasmin substrates, fibrin, is formed from fibrinogen via thrombin activity. We have previously shown that mice deficient for Plg are strikingly less able to support a litter during lactation compared to wild type mice. Here we suggest a mechanism responsible for this lactation defect. Reduced epithelial content and increased apoptosis are observed in Plg-deficient mammary glands at lactation day 7. Immunofluorescence analysis reveals the presence of fibrin(ogen) in the stroma surrounding mammary alveoli and adipocytes and identifies fibrin(ogen) as a component of breast milk in both wild type and Plg-deficient mice. Furthermore, a large accumulation of fibrin(ogen) together with apoptotic epithelial cells is observed in the lactating mammary alveoli and ducts of some Plg-deficient mice. This suggests that fibrin plays a key role in the malfunction of mammary glands in the absence of Plg, possibly through blockade of mammary ducts inducing milk stasis, inhibiting milk expulsion and thereby inducing premature apoptosis and involution.  相似文献   

12.
The effect of fragment D, the end product of fibrinogen degradation, on the course of fibrinolytic reactions and fibrinogenolysis induced by plasmin was studied. It was shown that fragment D beside a high antipolymerizing activity also exerts antifibrinolytic and antifibrinogenolytic action. It was demonstrated electrophoretically that exogenous fragment D can inhibit plasmin degradation of fibrin and fibrinogen at all stages of proteolysis without having direct influence on plasmin. It is assumed that the nature of the antipolymerizing and antifibrinolytic activities of fragment D is determined by dissociating fibrin monomer-fragment D complexes.  相似文献   

13.
Plasminogen is a 92-kDa single chain glycoprotein that circulates in plasma as a zymogen and when converted to proteolytically active plasmin dissolves preformed fibrin clots and extracellular matrix components. Here, we characterize the role of plasmin(ogen) in the complement cascade. Plasminogen binds the central complement protein C3, the C3 cleavage products C3b and C3d, and C5. Plasminogen binds to C3, C3b, C3d, and C5 via lysine residues, and the interaction is ionic strength-dependent. Plasminogen and Factor H bind C3b; however, the two proteins bind to different sites and do not compete for binding. Plasminogen affects complement action in multiple ways. Plasminogen enhanced Factor I-mediated C3b degradation in the presence of the cofactor Factor H. Plasminogen when activated to plasmin inhibited complement as demonstrated by hemolytic assays using either rabbit or sheep erythrocytes. Similarly, plasmin either in the fluid phase or attached to surfaces inhibited complement that was activated via the alternative and classical pathways and cleaved C3b to fragments of 68, 40, 30, and 17 kDa. The C3b fragments generated by plasmin differ in size from those generated by the complement protease Factor I, suggesting that plasmin-mediated C3b cleavage fragments lack effector function. Plasmin also cleaved C5 to products of 65, 50, 30, and 25 kDa. Thus, plasmin(ogen) regulates both complement and coagulation, the two central cascade systems of a vertebrate organism. This complement-inhibitory activity of plasmin provides a new explanation why pathogenic microbes utilize plasmin(ogen) for immune evasion and tissue penetration.  相似文献   

14.
Invasive bacterial pathogens intervene at various stages and by various mechanisms with the mammalian plasminogen/plasmin system. A vast number of pathogens express plasmin(ogen) receptors that immobilize plasmin(ogen) on the bacterial surface, an event that enhances activation of plasminogen by mammalian plasminogen activators. Bacteria also influence secretion of plasminogen activators and their inhibitors from mammalian cells. The prokaryotic plasminogen activators streptokinase and staphylokinase form a complex with plasmin(ogen) and thus enhance plasminogen activation. The Pla surface protease of Yersinia pestis resembles mammalian activators in function and converts plasminogen to plasmin by limited proteolysis. In essence, plasminogen receptors and activators turn bacteria into proteolytic organisms using a host-derived system. In Gram-negative bacteria, the filamentous surface appendages fimbriae and flagella form a major group of plasminogen receptors. In Gram-positive bacteria, surface-bound enzyme molecules as well as M-protein-related structures have been identified as plasminogen receptors, the former receptor type also occurs on mammalian cells. Plasmin is a broad-spectrum serine protease that degrades fibrin and noncollagenous proteins of extracellular matrices and activates latent procollagenases. Consequently, plasmin generated on or activated by Haemophilus influenzae, Salmonella typhimurium, Streptococcus pneumoniae, Y. pestis, and Borrelia burgdorferi has been shown to degrade mammalian extracellular matrices. In a few instances plasminogen activation has been shown to enhance bacterial metastasis in vitro through reconstituted basement membrane or epithelial cell monolayers. In vivo evidence for a role of plasminogen activation in pathogenesis is limited to Y. pestis, Borrelia, and group A streptococci. Bacterial proteases may also directly activate latent procollagenases or inactivate protease inhibitors of human plasma, and thus contribute to tissue damage and bacterial spread across tissue barriers.  相似文献   

15.
The plasma protein alpha 2-antiplasmin is the main physiological inhibitor of the serine protease plasmin, which is responsible for the dissolution of fibrin clots. We have determined the primary structure of mature human alpha 2-antiplasmin by DNA sequencing of overlapping cDNA fragments prepared from human liver mRNA. cDNA clones were identified by hybridization with a 48-base pair deoxyoligonucleotide probe deduced from the sequence of a 16-amino acid peptide of alpha 2-antiplasmin. Mature human alpha 2-antiplasmin contains 452 amino acids. It is homologous (23-28%) with five other proteins belonging to the serine protease inhibitor (serpin) superfamily. Its reactive site, i.e. the peptide bond cleaved by reaction with its primary target enzyme, plasmin, consists of Arg364-Met365. This dipeptide corresponds to the reactive site Met358-Ser359 of the archetypal serpin, alpha 1-antitrypsin.  相似文献   

16.
Insect-killing (entomopathogenic) fungi have high potential for controlling agriculturally harmful pests. However, their pathogenicity is slow, and this is one reason for their poor acceptance as a fungal insecticide. The expression of bumblebee, Bombus ignitus, venom serine protease (VSP) by Beauveria bassiana (ERL1170) induced melanization of yellow spotted longicorn beetles (Psacothea hilaris) as an over-reactive immune response, and caused substantially earlier mortality in beet armyworm (Spodopetra exigua) larvae when compared to the wild type. No fungal outgrowth or sporulation was observed on the melanized insects, thus suggesting a self-restriction of the dispersal of the genetically modified fungus in the environment. The research is the first use of a multi-functional bumblebee VSP to significantly increase the speed of fungal pathogenicity, while minimizing the dispersal of the fungal transformant in the environment.  相似文献   

17.
18.
He YY  Liu SB  Lee WH  Qian JQ  Zhang Y 《Peptides》2008,29(10):1692-1699
Snake venom Kunitz/BPTI members are good tools for understanding of structure-functional relationship between serine proteases and their inhibitors. A novel dual Kunitz/BPTI serine proteinase inhibitor named OH-TCI (trypsin- and chymotrypsin-dual inhibitor from Ophiophagus hannah) was isolated from king cobra venom by three chromatographic steps of gel filtration, trypsin affinity and reverse phase HPLC. OH-TCI is composed of 58 amino acid residues with a molecular mass of 6339Da. Successful expression of OH-TCI was performed as the maltose-binding fusion protein in E. coli DH5alpha. Much different from Oh11-1, the purified native and recombinant OH-TCI both had strong inhibitory activities against trypsin and chymotrypsin although the sequence identity (74.1%) between them is very high. The inhibitor constants (K(i)) of recombinant OH-TCI were 3.91 x 10(-7) and 8.46 x10(-8)M for trypsin and chymotrypsin, respectively. To our knowledge, it was the first report of Kunitz/BPTI serine proteinase inhibitor from snake venom that had equivalent trypsin and chymotrypsin inhibitory activities.  相似文献   

19.
Coughlin PB 《The FEBS journal》2005,272(19):4852-4857
Much of the basic biochemistry of antiplasmin was described more than 20 years ago and yet it remains an enigmatic member of the serine protease inhibitor (serpin) family. It possesses all of the characteristics of other inhibitory serpins but in addition it has unique N- and C-terminal extensions which significantly modify its activities. The N-terminus serves as a substrate for Factor XIIIa leading to crosslinking and incorporation of antiplasmin into a clot as it is formed. Although free antiplasmin is an excellent inhibitor of plasmin, the fibrin bound form of the serpin appears to be the major regulator of clot lysis. The C-terminal portion of antiplasmin is highly conserved between species and contains several charged amino acids including four lysines with one of these at the C-terminus. This portion of the molecule mediates the initial interaction with plasmin and is a key component of antiplasmin's rapid and efficient inhibitory mechanism. Studies of mice with targeted deletion of antiplasmin have confirmed its importance as a major regulator of fibrinolysis and re-emphasized its value as a potential therapeutic target.  相似文献   

20.
A proteinase inhibitor (designated as TMI) was isolated and purified from the snake serum of Taiwan habu (Trimeresurus mucrosquamatus) by using successive chromatographies which included Sephadex G-100, DEAE-Sephacel chromatographies, and C(4) reverse-phase HPLC. The purified inhibitor was shown to be a homogeneous protein with a molecular mass of about 47 or 36 kDa in the presence or absence of a reducing agent, beta-mercaptoethanol. The inhibitor decreases in molecular mass by about 23% with N-linked neuraminidase treatment, suggesting that it is a glycoprotein. Further enzymatic analyses indicated that this inhibitor possesses strong inhibitory activities toward three zinc-dependent metalloproteinases and not fibrinogenolytic serine proteases previously isolated from the venom of the same snake species with an IC(50) of about 0.2-1.1 microM. Its IC(50) value was approximately three orders of magnitude more effective than those of the tripeptide inhibitors we previously purified from the crude venom of the same snake (Biochem. Biophys. Res. Commun. 248, 562-568 (1998)). The purified inhibitor showed stronger inhibitory action against caseinolytic activities of crude venoms from closely related species of Taiwan habu than those from unrelated species. N-terminal sequence analysis showed that its sequence is distinctly different from sequences of those serum inhibitors reported for other snake species in the literature. Based on inhibition susceptibility and primary structures of various snake protease inhibitors, it is suggested that this novel inhibitor isolated from the serum of Taiwan habu may be a unique self-defense protein factor mainly for protection against envenomation from snakes of the same genus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号