首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Regulation of cell attachment and cell number by fibronectin and laminin   总被引:1,自引:0,他引:1  
We have examined the effect of laminin and fibronectin on the attachment and growth on type IV collagen of a line of mouse epithelial cells and a strain of adult human fibroblasts. Laminin stimulated attachment of the epidermal cells and fibronectin stimulated fibroblast attachment. At high concentrations (100 micrograms/ml), the attachment proteins altered the growth of cells in culture. The epidermal cells grew better in media containing fibronectin-free serum supplemented with laminin. Fibroblasts, on the other hand, grew best in media containing serum supplemented with fibronectin. These data suggest that laminin promotes epithelial cell growth whereas fibronectin promotes fibroblast growth. This observation was confirmed when these cells were cocultured in the presence of the attachment proteins or of their respective antibodies. The mouse epidermal cells grew best when laminin was added to cocultures of fibroblasts and epithelial cells. Fibroblasts grew best in the presence of antibody to laminin and poorly in the presence of antibody to fibronectin. Thus, fibronectin and laminin may participate in the regulation of cell populations in vivo and may be involved in epithelial-mesenchymal interactions.  相似文献   

2.
We have examined the molecular interactions of avian neural crest cells with fibronectin and laminin in vitro during their initial migration from the neural tube. A 105-kDa proteolytic fragment of fibronectin encompassing the defined cell-binding domain (65 kDa) promoted migration of neural crest cells to the same extent as the intact molecule. Neural crest cell migration on both intact fibronectin and the 105-kDa fragment was reversibly inhibited by RGD-containing peptides. The 11.5-kDa fragment containing the RGDS cell attachment site was also able to support migration, whereas a 50-kDa fragment corresponding to the adjacent N-terminal portion of the defined cell-binding domain was unfavorable for neural crest cell movement. In addition to the putative "cell-binding domain," neural crest cells were able to migrate on a 31-kDa fragment corresponding to the C-terminal heparin-binding (II) region of fibronectin, and were inhibited in their migration by exogenous heparin, but not by RGDS peptides. Heparin potentiated the inhibitory effect of RGDS peptides on intact fibronectin, but not on the 105-kDa fragment. On substrates of purified laminin, the extent of avian neural crest cell migration was maximal at relatively low substrate concentrations and was reduced at higher concentrations. The efficiency of laminin as a migratory substrate was enhanced when the glycoprotein occurred complexed with nidogen. Moreover, coupling of the laminin-nidogen complex to collagen type IV or the low density heparan sulfate proteoglycan further increased cell dispersion, whereas isolated nidogen or the proteoglycan alone were unable to stimulate migration and collagen type IV was a significantly less efficient migratory substrate than laminin-nidogen. Neural crest cell migration on laminin-nidogen was not affected by RGDS nor by YIGSR-containing peptides, but was reduced by 35% after addition of heparin. The predominant motility-promoting activity of laminin was localized to the E8 domain, possessing heparin-binding activity distinct from that of the N-terminal E3 domain. Migration on the E8 fragment was reduced by greater than 70% after addition of heparin. The E1' fragment supported a minimal degree of migration that was RGD-sensitive and heparin-insensitive, whereas the primary heparin-binding E3 fragment and the cell-adhesive P1 fragment were entirely nonpermissive for cell movement.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

3.
We investigated the effect of interleukin 6 (IL-6) on the migration of rabbit corneal epithelium in vitro and on the attachment of dissociated corneal epithelial cells to a fibronectin matrix. When corneal blocks were cultured with IL-6 for 24 hours, the length of the path of epithelial migration over exposed corneal stroma increased significantly (p less than 0.005 at the concentration of 10 ng/ml) in proportion to the concentrations of IL-6 (0.1-10.0 ng/ml). The addition of antiserum against fibronectin or of GRGDSP abolished the stimulatory effect of IL-6 on epithelial migration. When corneal epithelial cells were cultured with various concentrations of IL-6, suspended, and plated on wells coated with fibronectin (10 micrograms/ml), the number of cells attached to the wells increased in a dose-dependent manner. The presence of antibody against fibronectin or of GRGDSP during the attachment assay decreased the number of cells attached to the fibronectin matrix, regardless of the fact that the cells had been cultured with IL-6 or not. IL-6 stimulated the attachment of corneal epithelial cells to collagen type IV and to laminin matrices. However, the presence of GRGDSP did not affect the cell attachment to collagen type IV and to laminin. These findings strongly indicate that IL-6 stimulates epithelial migration in the cornea by a fibronectin-dependent mechanism, presumably the increased expression of fibronectin receptors.  相似文献   

4.
A cell-binding peptide (Mr = 85,000) which lacks the gelatin- and heparin-binding domains, was purified from trypsin-digested fibronectin. Preincubation of rat hepatocytes in suspension with the peptide, inhibited initial attachment of the cells to immobilized fibronectin while attachment to immobilized laminin and collagen was unaffected. 125I-labeled 85-kDa peptide bound to the cells in suspension at 4 degrees C in a time-dependent, saturable, and partially reversible reaction. Scatchard analysis of the binding data indicated a single class of receptors with a Kd of 1.7 X 10(-8) M. The number of binding-sites was approximately 2.8 X 10(5)/cell. Unlabeled 85-kDa peptide inhibited the binding of 125I-labeled 85-kDa peptide 30-fold more effectively than intact fibronectin. These results provide direct evidence for the presence of a domain in the fibronectin molecule which has or may acquire a high affinity for receptors involved in adhesion of hepatocytes to immobilized fibronectin.  相似文献   

5.
Smooth muscle cell migration, proliferation, and deposition of extracellular matrix are key events in atherogenesis and restenosis development. To explore the mechanisms that regulate smooth muscle cell function, we have investigated whether perlecan, a basement membrane heparan sulfate proteoglycan, modulates interaction between smooth muscle cells and other matrix components. A combined substrate of fibronectin and perlecan showed a reduced adhesion of rat aortic smooth muscle cells by 70-90% in comparison to fibronectin alone. In contrast, perlecan did not interfere with cell adhesion to laminin. Heparinase treated perlecan lost 60% of its anti-adhesive effect. Furthermore, heparan sulfate as well as heparin reduced smooth muscle cell adhesion when combined with fibronectin whereas neither hyaluronan nor chondroitin sulfate had any anti-adhesive effects. Addition of heparin as a second coating to a preformed fibronectin matrix did not affect cell adhesion. Cell adhesion to the 105- and 120 kDa cell-binding fragments of fibronectin, lacking the main heparin-binding domains, was also inhibited by heparin. In addition, co-coating of fibronectin and (3)H-heparin showed that heparin was not even incorporated in the substrate. Morphologically, smooth muscle cells adhering to a substrate prepared by co-coating of fibronectin and perlecan or heparin were small, rounded, lacked focal contacts, and showed poorly developed stress fibers of actin. The results show that the heparan sulfate chains of perlecan lead to altered interactions between smooth muscle cells and fibronectin, possibly due to conformational changes in the fibronectin molecule. Such interactions may influence smooth muscle cell function in atherogenesis and vascular repair processes.  相似文献   

6.
Interaction of exogenous fibronectin with the basement membrane-like PYS-2 cell matrix, lacking fibronectin and hyaluronic acid but containing heparan sulfate proteoglycan, was studied in vitro. Both human plasma fibronectin and fibronectin in fetal calf serum bound to PYS-2 matrix; also, fragments of fibronectin containing heparin-binding domains but lacking the collagen-binding domain bound to the matrix. In immunoelectron microscopy the bound fibronectin was found as 20-40 nm globules or patches. Distribution of fibronectin differed from that of laminin and correlated best with that of heparan sulfate proteoglycan. The results suggest that the binding of fibronectin to basement membrane matrices is not due to random adherence but involves specific interactions with other components.  相似文献   

7.
Two distinct cell types from the amphibian gastrula were compared with regard to their interactions in vitro with fibronectin (FN). Xenopus embryonic endoderm cells attach to FN substrates in a way characteristic of most cell types studied so far; that is, adhesion increases abruptly at a certain threshold concentration of FN, and maximal binding of cells already occurs at low FN concentrations (10 micrograms/ml). In contrast, embryonic ectodermal cells bind maximally to FN substrates only at unusually high concentrations of FN (200 micrograms/ml). This peculiar mode of attachment to FN has been characterized more closely. It is shown that the adhesion of ectodermal cells is modified by their interaction with a heparin-binding domain of the FN molecule. Furthermore, ectodermal cell adhesion increases very slowly with increasing FN concentrations. Despite these characteristic differences, both ectodermal and endodermal cells attach to the normal RGD cell-binding site of FN, as can be shown by competitive inhibition of adhesion by a hexapeptide containing the RGD sequence of amino acids.  相似文献   

8.
In previous studies rat hepatocytes have been shown to adhere to substrates composed of collagen or fibronectin. In the present communication, the basement membrane protein laminin is reported to mediated the attachment and spreading of hepatocytes. The cell attachment-mediating activity of laminin was compared with that of fibronectin. The activity of fibronectin was heat sensitive, whereas laminin retained its activity after boiling. On the other hand, reduction and alkylation or periodate oxidation of the proteins affected only the cell attachment activity of laminin. Preincubation of cells with soluble fibronectin inhibited initial cell attachment to fibronectin but not to laminin substrates, and, reversely, soluble laminin selectively inhibited cell attachment to laminin. These results suggest that attachment of cells to substrates of the two proteins involves different cellular receptors recognizing distinct and nonidentical structures in the proteins.  相似文献   

9.
The binding of fibronectin to Staphylococci exhibits the properties of a ligand-receptor interaction and has been proposed to mediate bacterial adherence to host tissues. To localize staphylococcal-binding sites in fibronectin, the protein was subjected to limited proteolysis and, of the generated fragments, Staphylococci appeared to preferentially bind to the N-terminal fragment. Different fibronectin fragments were isolated and tested for their ability to inhibit 125I-fibronectin binding to Staphylococci. The results indicate that only the N-terminal region effectively competed for fibronectin binding. However, when isolated fragments were adsorbed to microtiter wells, we found that two distinct domains, corresponding to the N-terminal fragment and to the heparin-binding peptide mapping close to the C-terminal end of fibronectin, promoted the attachment of both Staphylococcus aureus Newman and coagulase-negative strain of Staphylococcus capitis 651. These same domains were recognized by purified 125I-labeled staphylococcal receptor, either when immobilized on microtiter wells or probed after adsorption onto nitrocellulose membrane. The heparin-binding domain is comprised of type-III-homology repeats 14, 15 and 16. To determine which repeats participate in this interaction, we isolated and tested repeats type III14 and type III16. We found that the major staphylococcal binding site is located in repeat type III14. The staphylococcal receptor bound the N-terminal domain of fibronectin with a KD of 1.8 nM, whereas the dissociation constant of the receptor molecule for the internal heparin-binding domain was 10 nM. Since the fusion protein ZZ-FR, which contains the active sequences of fibronectin receptor (D1-D3) bound only to the N-terminus, it is reasonable to assume that the bacterial receptor may have additional binding sites outside the D domains, capable of interacting with the internal heparin-binding domain of fibronectin.  相似文献   

10.
The proteoglycan (PG) on the surface of NMuMG mouse mammary epithelial cells consists of at least two functional domains, a membrane- intercalated domain which anchors the PG to the plasma membrane, and a trypsin-releasable ectodomain which bears both heparan and chondroitin sulfate chains. The ectodomain binds cells to collagen types I, III, and V, but not IV, and has been proposed to be a matrix receptor. Because heparin binds to the adhesive glycoproteins fibronectin, an interstitial matrix component, and laminin, a basal lamina component, we asked whether the cell surface PG also binds these molecules. Cells harvested with either trypsin or EDTA bound to fibronectin; binding of trypsin-released cells was inhibited by the peptide GRGDS but not by heparin, whereas binding of EDTA-released cells was inhibited only by a combination of GRDS and heparin, suggesting two distinct cell binding mechanisms. In the presence of GRGDS, the EDTA-released cells bound to fibronectin via the cell surface PG. Binding via the cell surface PG was to the COOH-terminal heparin binding domain of fibronectin. In contrast with the binding to fibronectin, EDTA-released cells did not bind to laminin under identical assay conditions. Liposomes containing the isolated intact cell surface PG mimic the binding of whole cells. These results indicate that the mammary epithelial cells have at least two distinct cell surface receptors for fibronectin: a trypsin- resistant molecule that binds cells to the sequence RGD and a trypsin- labile, heparan sulfate-rich PG that binds cells to the COOH-terminal heparin binding domain. Because the cell surface PG binds cells to the interstitial collagens (types I, III, and V) and to fibronectin, but not to basal lamina collagen (type IV) or laminin, we conclude that the cell surface PG is a receptor on epithelial cells specific for interstitial matrix components.  相似文献   

11.
Rabbit intestinal epithelial cells, obtained after a limited hyaluronidase digestion, were incubated in medium with or without calf serum, on bacteriological plastic dishes. The dishes, either plain or coated with an air-dried type I collagen film, were pretreated with medium alone or with medium containing purified laminin or purified fibronectin. Cells did not attach in significant numbers to untreated bacteriological plastic, even in the presence of serum. Cells did attach to collagen-coated dishes, and were judged viable on the basis of their incorporation of radiolabeled leucine into cell protein. Cell adhesion to the collagen substrate increased in proportion to the concentration of serum in the medium, with maximal attachment at 5% serum or greater. Pretreatment of plain or collagen-coated dishes with increasing amounts of fibronectin enhanced cell adhesion in a concentration-dependent manner. Either serum, or fibronectin-free serum in the medium enhanced cell attachment to substrates pretreated with cither fibronectin or laminin. Thus, intestinal epithelial cells appear to possess surface receptors for both laminin and fibronectin. The evidence further suggests that calf serum may contain factors, other than fibronectin, capable of enhancing intestinal epithelial cell attachment to collagen substrates.  相似文献   

12.
Cell adhesion to extracellular matrix molecules such as fibronectin involves complex transmembrane signaling processes. Attachment and spreading of primary fibroblasts can be promoted by interactions of cell surface integrins with RGD-containing fragments of fibronectin, but the further process of focal adhesion and stress fiber formation requires additional interactions. Heparin-binding fragments of fibronectin can provide this signal. The COOH-terminal heparin-binding domain of fibronectin contains five separate heparin-binding amino acid sequences. We show here that all five sequences, as synthetic peptides coupled to ovalbumin, can support cell attachment. Only three of these sequences can promote focal adhesion formation when presented as multicopy complexes, and only one of these (WQPPRARI) retains this activity as free peptide. The major activity of this peptide resides in the sequence PRARI. The biological response to this peptide and to the COOH-terminal fragment may be mediated through cell surface heparan sulfate proteoglycans because treatment of cells with heparinase II and III, or competition with heparin, reduces the response. Treatment with chondroitinase ABC or competition with chondroitin sulfate does not.  相似文献   

13.
The 49-residue functional upstream domain (FUD) of Streptococcus pyogenes F1 adhesin interacts with fibronectin (FN) in a heretofore unknown manner that prevents assembly of a FN matrix. Biotinylated FUD (b-FUD) bound to adsorbed FN or its recombinant N-terminal 70-kDa fibrin- and gelatin-binding fragment (70K). Binding was blocked by FN or 70K, but not by fibrin- or gelatin-binding subfragments of 70K. Isothermal titration calorimetry showed that FUD binds with K(d) values of 5.2 and 59 nM to soluble 70K and FN, respectively. We tested sets of FUD mutants and epitope-mapped monoclonal antibodies (mAbs) for ability to compete with b-FUD for binding to FN or to block FN assembly by cultured fibroblasts. Deletions or alanine substitutions throughout FUD caused loss of both activities. mAb 4D1 to the (2)FNI module had little effect, whereas mAb 7D5 to the (4)FNI module in the fibrin-binding region, 5C3 to the (9)FNI module in the gelatin-binding region, or L8 to the G-strand of (1)FNIII module adjacent to (9)FNI caused loss of binding of b-FUD to FN and decreased FN assembly. Conversely, FUD blocked binding of 7D5, 5C3, or L8, but not of 4D1, to FN. Circular dichroism indicated that FUD binds to 70K by β-strand addition, a possibility supported by modeling based on crystal structures of peptides bound to (2)FNI-(5)FNI of the fibrin-binding domain and (8)FNI-(9)FNI of the gelatin-binding domain. Thus, the interaction likely involves an extensive anti-parallel β-zipper in which FUD interacts with the E-strands of (2)FNI-(5)FNI and (8)FNI-(9)FNI.  相似文献   

14.
Cell attachment and neurite outgrowth by embryonic neural retinal cells were measured in separate quantitative assays to define differences in substrate preference and to demonstrate developmentally regulated changes in cellular response to different extracellular matrix glycoproteins. Cells attached to laminin, fibronectin, and collagen IV in a concentration-dependent fashion, though fibronectin was less effective for attachment than the other two substrates. Neurite outgrowth was much more extensive on laminin than on fibronectin or collagen IV. These results suggest that different substrates have distinct effects on neuronal differentiation. Neural retinal cell attachment and neurite outgrowth were inhibited on all three substrates by two antibodies, cell substratum attachment antibody (CSAT) and JG22, which recognize a cell surface glycoprotein complex required for cell interactions with several extracellular matrix constituents. In addition, retinal cells grew neurites on substrates coated with the CSAT antibodies. These results suggest that cell surface molecules recognized by this antibody are directly involved in cell attachment and neurite extension. Neural retinal cells from embryos of different ages varied in their capacity to interact with extracellular matrix substrates. Cells of all ages, embryonic day 6 (E6) to E12, attached to collagen IV and CSAT antibody substrates. In contrast, cell attachment to laminin and fibronectin diminished with increasing embryonic age. Age-dependent differences were found in the profile of proteins precipitated by the CSAT antibody, raising the possibility that modifications of these proteins are responsible for the dramatic changes in substrate preference of retinal cells between E6 and E12.  相似文献   

15.
The interaction of migrating newt epidermal cells with the extracellular matrix protein, fibronectin, was studied. Pieces of nitrocellulose coated with intact human plasma fibronectin or proteolytically derived fragments were implanted into wounded limbs so that the coated nitrocellulose served as wound bed for migrating epidermal cells as they attempted to form a wound epithelium. Epidermal cells migrated very poorly on nitrocellulose pieces coated with (a) a 27-kD amino-terminal heparin-binding fragment, (b) a 46-kD gelatin-binding fragment, (c) a combined 33- and 66-kD carboxy-terminal heparin-binding preparation representing peptide sequences in the A and B chains, respectively, or (d) a 31-kD carboxy-terminal fragment from the A chain, containing a free sulfhydryl group. In contrast, epidermal cells readily migrated onto nitrocellulose coated with a mixture of fragments from the middle of the molecule (80-125kD) that bind neither heparin nor gelatin. Attempts to block migration on fibronectin-coated nitrocellulose using IB10, a monoclonal antibody that blocks Chinese hamster ovary cell attachment to fibronectin, were unsuccessful despite saturation of the epitope against which IB10 is directed. In contrast, a polyclonal anti-fibronectin antibody did inhibit migration. These results show that the ability of fibronectin to support newt epidermal cell migration is not shared equally by all regions of the molecule, but is restricted to a domain in the middle third. They also suggest that the site supporting migration is separate and distinct from the site mediating Chinese hamster ovary cell attachment.  相似文献   

16.
The extracellular matrix of cultured human lung fibroblasts contains one major heparan sulfate proteoglycan. This proteoglycan contains a 400-kDa core protein and is structurally and immunochemically identical or closely related to the heparan sulfate proteoglycans that occur in basement membranes. Because heparitinase does not release the core protein from the matrix of cultured cells, we investigated the binding interactions of this heparan sulfate proteoglycan with other components of the fibroblast extracellular matrix. Both the intact proteoglycan and the heparitinase-resistant core protein were found to bind to fibronectin. The binding of 125I-labeled core protein to immobilized fibronectin was inhibited by soluble fibronectin and by soluble cold core protein but not by albumin or gelatin. A Scatchard plot indicates a Kd of about 2 x 10(-9) M. Binding of the core protein was also inhibited by high concentrations of heparin, heparan sulfate, or chrondroitin sulfate and was sensitive to high salt concentrations. Thermolysin fragmentation of the 125I-labeled proteoglycan yielded glycosamino-glycan-free core protein fragments of approximately 110 and 62 kDa which bound to both fibronectin and heparin columns. The core protein-binding capacity of fibronectin was very sensitive to proteolysis. Analysis of thermolytic and alpha-chymotryptic fragments of fibronectin showed binding of the intact proteoglycan and of its isolated core protein to a protease-sensitive fragment of 56 kDa which carried the gelatin-binding domain of fibronectin and to a protease-sensitive heparin-binding fragment of 140 kDa. Based on the NH2-terminal amino acid sequence analyses of the 56- and 140-kDa fragments, the core protein-binding domain in fibronectin was tentatively mapped in the area of overlap of the two fragments, carboxyl-terminally from the gelatin-binding domain, possibly in the second type III repeat of fibronectin. These data document a specific and high affinity interaction between fibronectin and the core protein of the matrix heparan sulfate proteoglycan which may anchor the proteoglycan in the matrix.  相似文献   

17.
Vascular endothelial cells synthesize an extracellular matrix or basal lamina composed of collagens, proteoglycans and glycoproteins such as fibronectin (FN). Using affinity-purified anti-FN, we have examined the role of FN in adherence of metastatic B16 melanoma cells to endothelial cell monolayers which lack FN on apical cell surfaces and to their basal lamina which contains FN. B16 melanoma cells, which do not contain significant amounts of FN, attached at much higher rates to endothelial basal lamina and polyvinyl-immobilized FN compared with intact endothelial cell monolayers. Anti-FN failed to inhibit attachment of melanoma sublines of low (B16-F1) or high (B16-F10) metastatic potential to intact endothelial cell monolayers, inhibited slightly B16 cell attachment to basal lamina and completely abolished attachment of B16 cells to polyvinyl-immobilized FN. The antibiotic tunicamycin which inhibits glycosylation of B16 cell surface glycoproteins and blocks experimental metastasis [18] inhibited B16 attachment to endothelial cells, basal lamina and immobilized FN. The results suggest that FN mediates, only in part, the adhesion of B16 melanoma cells to basal lamina through glycoprotein receptors on B16 cells.  相似文献   

18.
Fragments of fibronectin (FN) corresponding to the N-terminal heparin-binding domain have been observed to promote catabolic chondrocytic gene expression and chondrolysis. We therefore characterized FN species that include sequences from this domain in samples of arthritic synovial fluid using one-and two-dimensional (1D and 2D) Western blot analysis. We detected similar assortments of species, ranging from ~47 to greater than 200 kDa, in samples obtained from patients with osteoarthritis (n = 9) versus rheumatoid arthritis (n = 10). One of the predominant forms, with an apparent molecular weight of ~170 kDa, typically resolved in 2D electrophoresis into a cluster of subspecies. These exhibited reduced binding to gelatin in comparison with a more prevalent species of ~200+ kDa and were also recognized by a monoclonal antibody to the central cell-binding domain (CBD). When considered together with our previous analyses of synovial fluid FN species containing the alternatively spliced EIIIA segment, these observations indicate that the ~170-kDa species includes sequences from four FN domains that have previously, in isolation, been observed to promote catabolic responses by chondrocytes in vitro: the N-terminal heparin-binding domain, the gelatin-binding domain, the central CBD, and the EIIIA segment. The ~170-kDa N-terminal species of FN may therefore be both a participant in joint destructive processes and a biomarker with which to gauge activity of the arthritic process.  相似文献   

19.
《The Journal of cell biology》1987,105(6):2511-2521
The ability of purified extracellular matrix components to promote the initial migration of amphibian neural crest (NC) cells was quantitatively investigated in vitro. NC cells migrated avidly on fibronectin (FN), displaying progressively more extensive dispersion at increasing amounts of material incorporated in the substrate. In contrast, dispersion on laminin substrates was optimal at low protein concentrations but strongly reduced at high concentrations. NC cells were unable to migrate on substrates containing a high molecular mass chondroitin sulfate proteoglycan (ChSP). When proteolytic peptides, representing isolated functional domains of the FN molecule, were tested as potential migration substrates, the cell binding region of the molecule (105 kD) was found to be as active as the intact FN. A 31- kD heparin-binding fragment also stimulated NC cell migration, whereas NC cells dispersed to a markedly lower extent on the isolated collagen- binding domain (40 kD), or the latter domain linked to the NH2-terminal part of the FN molecule. Migration on the intact FN was partially inhibited by antibodies directed against the 105- and 31-kD fragments, respectively; dispersion was further decreased when the antibodies were used in combination. Addition of the ChSP to the culture medium dramatically perturbed NC cell migration on substrates of FN, as well as of 105- or 31-kD fragments. However, preincubation of isolated cells or substrates with ChSP followed by washing did not affect NC cell movement. The use of substrates consisting of different relative amounts of ChSP and the 105-kD peptide revealed that ChSP counteracted the motility-promoting activity of the 105-kD FN fragment in a concentration-dependent manner also when bound to the substrate. Our results indicate that NC cell migration on FN involves two separate domains of the molecule, and that ChSP can modulate the migratory behavior of NC cells moving along FN-rich pathways and may therefore influence directionally and subsequent localization of NC cells in the embryo.  相似文献   

20.
Fibronectin is a major cell surface and extracellular matrix glycoprotein. It binds to a variety of substrata and supports the attachment and spreading of a number of cell types. We have found that purified human plasma fibronectin can also support blood granulocyte adhesion to cultured human umbilical vein endothelial cells. This activity is protected by treatment of the fibronectin with a sulphhydryl-containing agent. The effect of granulocyte attachment was observed at fibronectin concentration of 100 ng/ml with maximum effect at a concentration of 10 μg/ml. The attached granulocytes retained a rounded appearance, compared with the flattening that occurs on attachment to plastic. Granulocytes attached poorly to cultured human vascular smooth muscle cells and no enhancement occurred when fibronectin was added. Immunofluorescence microscopy using monospecific rabbit anti-human fibronectin demonstrated that the sulphhydryl-treated fibronectin accumulated on the endothelial cell surface, forming aggregates on the apical surface by 3 h of continued incubation. Washed, cultured endothelial cells not exposed to fibronectin or exposed to untreated purified plasma fibronectin did not demonstrate an aggregation of cell-surface fibronectin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号