首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The effect of polyanion, poly(vinylsulfate), used as a model of negatively charged surface, on ferric cytochrome c (ferricyt c) structure in acidic pH has been studied by absorbance spectroscopy, circular dichroism (CD), tryptophan (Trp) fluorescence and microcalorimetry. The polyanion induced only small changes in the native structure of the protein at neutral pH, but it profoundly shifted the acid induced high spin state of the heme in the active center of cyt c to a more neutral pH region. Cooperativity of the acidic transition of ferricyt c in the presence of the polyanion was disturbed, in comparison with uncomplexed protein, as followed from different apparent pK(a) values observed in a distinct regions of the ferricyt c electronic absorbance spectrum (4.55+/-0.08 in the 620 nm band region and 5.47+/-0.15 in the Soret region). The ferricyt c structure in the complex with the polyanion at acidic pH (below pH 5.0) has properties of a molten globule-like state. Its tertiary structure is strongly disturbed according to CD and microcalorimetry measurements; however, its secondary structure, from CD, is still native-like and ferricyt c is in a compact state as evidenced by quenched Trp fluorescence. These findings are discussed in the context of the molten globule state of proteins induced on a negatively charged membrane surface under physiological conditions.  相似文献   

2.
The acid-induced unfolding of bovine liver glutamate dehydrogenase (GDH) was studied using various spectroscopic methods such as far- and near-UV circular dichroism (CD), intrinsic and 1-anilino naphthalene-8-sulphonate (ANS) extrinsic fluorescence spectroscopy, light scattering and fluorescence quenching in 20 mM mixed buffer at various pHs. CD spectra show that at pH 3.5, GDH retains its secondary structure substantially, whereas its tertiary structure content is reduced considerably. Intrinsic fluorescence of GDH and ANS binding suggest that, at pH 3.5, the hydrophobic surface of enzyme is more exposed in comparison to the native form. Acrylamide quenching indicates more exposure of tryptophan residues of enzyme at pH 3.5 in comparison to pH 7.5. Another partially unfolded intermediate was detected at pH 5.0, which with its ANS binding capacity lies between the pH 3.5 intermediate and the native form of the enzyme. Gel filtration results revealed that the enzyme at pH 3.5 is dissociated into trimeric species whereas it exists as hexamer at pH 7.5 and 5.0. All the data taken together suggest the existence of two partially unfolded states of GDH at moderate acidic pHs which may be considered as molten and pre-molten globule-like states.  相似文献   

3.
Hemopexin alters conformation upon binding heme as shown by circular dichroism (CD), but hemopexin binds the heme analog, iron-meso-tetra-(4-sulfonatophenyl)-porphine (FeTPPS), without undergoing concomitant changes in its CD spectrum. Moreover, FeTPPS, unlike heme, does not increase the compactness of the heme-binding domain (I) of hemopexin shown by an increased sedimentation rate in sucrose gradients. On the other hand, like heme, FeTPPS forms a bishistidyl coordination complex with hemopexin and upon binding protects hemopexin from cleavage by plasmin. Competitive inhibition and saturation studies demonstrate that FeTPPS-hemopexin binds to the hemopexin receptor on mouse hepatoma cells but with a lower affinity (Kd 125 nM) more characteristic of apo-hemopexin than heme-hemopexin (Kd 65 nM). This provides evidence that conformational changes produced in hemopexin upon binding heme, but not upon binding FeTPPS, are important for increasing the affinity of hemopexin for its receptor. The amount of cell-associated radiolabel from 55FeTPPS-hemopexin increases linearly for up to 90 min but at a rate only about a third of that of the mesoheme-complex. As expected from the recycling of hemopexin, more iron-tetrapyrrole than protein is associated with the Hepa cells, but the ratio of 55Fe-ligand to 125I-hemopexin is only 2:1 for FeTPPS-hemopexin compared to 4:1 for mesoheme complexes. [55Fe]Mesoheme was associated at 5 min with lower density fractions containing plasma membranes and at 30 min with fractions containing higher density intracellular compartments. In contrast, 55FeTPPS was found associated with plasma membrane fractions at both times and was not transported into the cell. Although FeTPPS-hemopexin binds to the receptor, subsequent events of heme transport are impaired. The results indicate that upon binding heme at least three types of conformational changes occur in hemopexin which have important roles in receptor recognition and that the nature of the ligand influences subsequent heme transport.  相似文献   

4.
Hemopexin has two homologous domains (N- and C-terminal domains), binds 1 mole of heme per mole with high affinity (Kd < 1 pM) in a low-spin bis-histidyl complex, and acts as a transporter for the heme. Transport is accomplished via endocytosis without degradation of the protein. Factors that affect stability of the heme coordination complex and potentially heme release in vivo were examined. The effects of temperature on hemopexin, its N-terminal domain, and their respective ferri-, ferro-, and CO-ferro-heme complexes were studied using absorbance and circular dichroism (CD) spectroscopy. As monitored with second-derivative absorbance spectra, the higher order structure of apo-hemopexin unfolds with a Tm of 52°C in 50 mM sodium phosphate buffer and is stabilized by 150 mM NaCl (Tm 63°C). Bis-histidyl heme coordination by hemopexin, observed by Soret absorbance, is substantially weakened by reduction of ferri-heme-hemopexin (Tm 55.5°C) to the ferro-heme form (Tm 48°C), and NaCl stabilizes both complexes by 10-15°C. CO binding to ferro-heme-hemopexin restores complex stability (Tm 67°C). Upon cooling, unfolded apo- and ferri-heme-hemopexin extensively refold and recover substantial heme-binding activity, but the characteristic ellipticity of the native protein (UV region) and heme complex (Soret region) are not regained, indicating that altered refolded forms are produced. Lowering the pH from 7.4 to 6.5 has little effect on the stability of the apo-protein but increases the Tm of heme complexes by 5-12°C. The stability of the apo-N-terminal domain (Tm 53°C) is similar to that of intact hemopexin, and the ferri-, ferro-, and CO-ferro-heme complexes of the N-terminal domain have Tm values of 53°C, 33°C, and 75°C, respectively.  相似文献   

5.
The cell-surface lipoprotein SiaA, a component of the SiaABC transporter, acts as the primary receptor for heme in the infamous human pathogen Streptococcus pyogenes. However, little is known about the molecular mechanism of heme binding and release as well as the role of heme-binding ligands that contribute to the uptake of heme into the pathogenic bacteria. The present report aims to clarify the coordination properties of heme iron in SiaA. By substitution of either Met79 or His229 with alanine, the mutant M79A and H229A proteins display significantly decreased heme-binding affinity and substantially increased heme-release rates, as compared with wild-type SiaA protein. Both fluorescence and circular dichroism spectra indicated that heme binding results in alterations in the secondary structure of the protein. Heme release from SiaA is a stepwise process in which heme disassociates firstly from Met79 and then from His229 with distinct conformational changes. His229 may serve as an anchor for heme binding in SiaA and thus may play a major role in the stability of the coordination between heme and the protein.  相似文献   

6.
Dissociation of bovine odorant binding protein (bOBP) dimers to monomers at pH 2.5 has been confirmed through size exclusion chromatography experiments. Moreover, structural and binding properties of the acidic monomer and neutral dimer have been compared using a combination of experimental (circular dichroism and fluorescence) and computational (molecular dynamics) techniques. The secondary and tertiary structures of bOBP are largely maintained at acidic pH, but molecular dynamics simulations suggest the loop regions (N-terminal residues, Omega-loop and C-terminal segments) are more relaxed and Phe36 and Tyr83 residues are involved in the regulation of the binding cavity entrance. The formation of a molten globule state at acidic pH, suggested by the strong enhancement of fluorescence of 8-anilino-1-naphtalenesulphonic acid (ANS), is not confirmed by any significant change in the near UV circular dichroism spectrum. Functionality measurements, deduced from the interaction of bOBP with 1-amino-anthracene (AMA), show that the binding capacity of the protein at acidic pH is preserved, though slightly looser than at neutral pH. Unfolding of acidic bOBP, induced by guanidinium chloride (GdnHCl), was investigated by means of CD spectroscopy, steady state fluorescence, fluorescence anisotropy and light scattering. The stability of the acidic monomer is lower than that of the neutral dimer, owing to the loss of the swapping interactions, but renaturation is completely reversible. Finally, in contrast with the neutral dimer, at low denaturant concentration some aggregation of the acidic monomer, which vanishes before the unfolding transition, has been observed.  相似文献   

7.
The heme iron coordination of unfolded ferric and ferrous cytochrome c in the presence of 7-9 M urea at different pH values has been probed by several spectroscopic techniques including magnetic and natural circular dichroism (CD), electrochemistry, UV-visible (UV-vis) absorption and resonance Raman (RR). In 7-9 M urea at neutral pH, ferric cytochrome c is found to be predominantly a low spin bis-His-ligated heme center. In acidic 9 M urea solutions the UV-vis and near-infrared (NIR) magnetic circular dichroism (MCD) measurements have for the first time revealed the formation of a high spin His/H(2)O complex. The pK(a) for the neutral to acidic conversion is 5.2. In 9 M urea, ferrous cytochrome c is shown to retain its native ligation structure at pH 7. Formation of a five-coordinate high spin complex in equilibrium with the native form of ferrous cytochrome c takes place below the pK(a) 4.8. The formal redox potential of the His/H(2)O complex of cytochrome c in 9 M urea at pH 3 was estimated to be -0.13 V, ca. 100 mV more positive than E degrees ' estimated for the bis-His complex of cytochrome c in urea solution at pH 7.  相似文献   

8.
Equilibrium studies on the acid included denaturation of stem bromelain (EC 3.4.22.32) were performed by CD spectroscopy, fluorescence emission spectroscopy and binding of the hydrophobic dye, 1-anilino 8-naphthalene sulfonic acid (ANS). At pH 2.0, stem bromelain lacks a well defined tertiary structure as seen by fluorescence and near-UV CD spectra. Far-UV CD spectra show retention of some native like secondary structure at pH 2.0. The mean residue ellipticities at 208 nm plotted against pH showed a transition around pH 4.5 with loss of secondary structure leading to the formation of an acid-unfolded state. With further decrease in pH, this unfolded state regains most of its secondary structure. At pH 2.0, stem bromelain exists as a partially folded intermediate containing about 42.2% of the native state secondary structure Enhanced binding of ANS was observed in this state compared to the native folded state at neutral pH or completely unfolded state in the presence of 6 m GdnHCl indicating the exposure of hydrophobic regions on the protein molecule. Acrylamide quenching of the intrinsic tryptophan residues in the protein molecule showed that at pH 2.0 the protein is in an unfolded conformation with more tryptophan residues exposed to the solvent as compared to the native conformation at neutral pH. Interestingly, stem bromelain at pH 0.8 exhibits some characteristics of a molten globule, such as an enhanced ability to bind the fluorescent probe as well as considerable retention of secondary structure. All the above data taken together suggest the existence of a partially folded intermediate state under low pH conditions.  相似文献   

9.
The unusual salt-dependent behavior of the homodimeric flavoenzyme NADH oxidase from Thermus thermophilus in acidic pH has been studied using circular dichroism (CD) and sedimentation velocity. The native-like secondary and quaternary structures in acidic low ionic strength conditions were significantly perturbed by the addition of salts. The peptide region of the CD spectra showed a major salt-induced conformational change in the protein secondary structure. Sedimentation velocity experiments showed dissociation of the homodimeric structure of NADH oxidase in the presence of salt (>1 M). The new acidic conformation of the protein was stabilized by high ionic strength as indicated by a salt-induced increase in the melting temperature of the protein, and by a shift in the apparent pK(a) values of the conformational transition to a less acidic pH. Distortion of the dominant alpha-helical signal was expressed as the disappearance of the parallel polarized Moffitt exciton band at 208 nm without an accompanying loss of amplitude of n-->pi* electronic transitions at 222 nm. The unusual CD spectra correlated qualitatively with the theoretically calculated CD spectra of short alpha-helical structures and/or twisted beta-sheets. Differences between the experimentally obtained CD spectra and theoretical calculations (AGADIR) of the alpha-helical content of NADH oxidase indicate a role for non-local interactions in the protein conformation at high ionic strength and low pH. These findings indicate the importance of the homodimeric interface and electrostatic interactions for maintaining the structural integrity of this thermophilic protein.  相似文献   

10.
The low density liporpotein from human serum, and derivitives prepared free of neutral lipids and total lipids, have been studied by fluorescence and circular dichorism methods. Removal of the neutral lipids had little effect on the tryptophan fluorescence at neutral pH. However, by the criteria of circular dichroism, over the range of 200 nm to 250 nm, there was a reduction in secondary structure of over 75%. Removal of the remaining phospholipids resulted in a qualitatively different structure by both fluorescence and circular dichroism criteria. Neutral lipids were removed from LDL in a step-wise fashion in order to determine the exact amount of neutral lipid required for the native circular dichroism spectrum. The circular dichroism band intensity was constant until approximately 10% of the total cholesterol (as cholesterol ester) remained. The intensity then abruptly dropped as more cholesterol was removed. We concluded that the two spectroscopic methods report on two distinct aspects of LDL structure. The tryptophan fluorescence appears to be sensitive to the presence of phospholipids. The circular dichroism, however, appears to be sensitive to the binding of a small amount of neutral lipid. These findings suggest that a functional and geometric separation of binding sites may exist for these two classes of lipids. Such a distinction is predicted by the icosohedral model of the quaternary structure of LDL. In this model, the phospholipids are located on the surface of the particle, in the holes of an icosohedrally symmetric surface network of protein subunits; the neutral lipids are located in the particle core. Finally, we suggest that functional significance may be attached to our finding that relatively few cholesterol ester molecles are needed to maintain the native secondary structure of LDL. This provides a mechanism whereby the amount of bound neutral lipid could be raised or lowered (for transport and transfer to cells) without affecting the protein in any structurally significant manner.  相似文献   

11.
In our earlier communications, we reported the effect of salts and alcohols on alpha-chymotrypsinogen [1] and the existence of stable intermediates at low pH in bromelain [2] and glucose oxidase [3]. In the present study, the role of metal ions and EGTA on the conformation of concanavalin A at alkaline pH was studied by near- and far-UV circular dichroism, fluorescence emission spectroscopy and binding of a hydrophobic dye, 1-anilino-8-naphthalene sulfonate (ANS). Far-UV CD spectra showed the transition from an ordered secondary structure at pH 7 with a trough at 223 nm to a relatively unordered state at pH 12. Near-UV CD spectra showed the loss of signal at 290 nm, thereby indicating the disruption of native three dimensional structure. Maximum ANS binding occurred at pH 12 suggesting the presence of an intermediate or molten globule-like state at alkaline pH.  相似文献   

12.
To gain insight into the conformational conversion of ovine prion protein (OvPrP(C)) at different pH values and/or in the presence of CuCl(2), the secondary structure of OvPrP(C) was analysed by circular dichroism (CD) spectroscopy. Copper treatment of OvPrP(C) under moderately acidic conditions (pH approximately 5.0-6.0) as well as physiological conditions (pH 7.4) also makes OvPrP(C) adopt protease-resistant and beta-sheet-rich conformation. However, under lower pH conditions (2.0-4.5) with copper treatment, OvPrP(C) gained higher alpha-helix structure. This study demonstrated that Cu(2+) can significantly modulate conformational conversion triggered by acidic pH, and this will provide therapeutic intervention approaches for prion diseases.  相似文献   

13.
W W Ward  S H Bokman 《Biochemistry》1982,21(19):4535-4540
The green-fluorescent protein (GFP) that functions as a bioluminescence energy transfer acceptor in the jellyfish Aequorea has been renatured with up to 90% yield following acid, base, or guanidine denaturation. Renaturation, following pH neutralization or simple dilution of guanidine, proceeds with a half-recovery time of less than 5 min as measured by the return of visible fluorescence. Residual unrenatured protein has been quantitatively removed by chromatography on Sephadex G-75. The chromatographed, renatured GFP has corrected fluorescence excitation and emission spectra identical with those of the native protein at pH 7.0 (excitation lambda max = 398 nm; emission lambda max = 508 nm) and also at pH 12.2 (excitation lambda max = 476 nm; emission lambda max = 505 nm). With its peak position red-shifted 78 nm at pH 12.2, the Aequorea GFP excitation spectrum more closely resembles the excitation spectra of Renilla (sea pansy) and Phialidium (hydromedusan) GFPs at neutral pH. Visible absorption spectra of the native and renatured Aequorea green-fluorescent proteins at pH 7.0 are also identical, suggesting that the chromophore binding site has returned to its native state. Small differences in far-UV absorption and circular dichroism spectra, however, indicate that the renatured protein has not fully regained its native secondary structure.  相似文献   

14.
Lactoperoxidase (LPO), a mammalian secretory heme peroxidase, catalyzes the oxidation of thiocyanate by hydrogen peroxide to produce hypothiocyanate, an antibacterial agent. Although LPO is known to be activated at acidic pH and in the presence of iodide, the structural basis of the activation is not well understood. We have examined the effects of pH and iodide concentration on the catalytic activity and the structure of LPO. Electrochemical and colorimetric assays have shown that the catalytic activity is maximized at pH 4.5. The heme Soret absorption band exhibits a small red‐shift at pH 5.0 upon acidification, which is ascribable to a structural transition from a neutral to an acidic form. Resonance Raman spectra suggest that the heme porphyrin core is slightly contracted and the Fe‐His bond is strengthened in the acidic form compared to the neutral form. The structural change of LPO upon activation at acidic pH is similar to that observed for myeloperoxidase, another mammalian heme peroxidase, upon activation at neutral pH. Binding of iodide enhances the catalytic activity of LPO without affecting either the optimum pH of activity or the heme structure, implying that the iodide binding occurs at a protein site away from the heme‐linked protonation site. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 113–120, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

15.
Spolaore B  De Filippis V  Fontana A 《Biochemistry》2005,44(49):16079-16089
Fragment 1-44 of human growth hormone (hGH), prepared in vitro by limited proteolysis of the hormone with pepsin at low pH, encompasses in full the N-terminal helix of this four-helix bundle protein [Spolaore, B., Polverino de Laureto, P., Zambonin, M., and Fontana, A. (2004) Biochemistry 40, 9460-9468]. Here, we report the new and interesting observation that fragment 1-44 can bind heme. The binding property is specific for the N-terminal helix of hGH, since heme binding does not occur with fragment 45-191 or the entire protein. The spectral characteristics of Fe-protoporphyrin IX are those of a low-spin, hexacoordinated iron ligated by two imidazole rings of His residues or His and Met residues. Far-UV circular dichroism (CD) measurements revealed that fragment 1-44 acquires a helical secondary structure upon heme binding. Heme appears to be bound to the fragment in a stereospecific way, since an induced dichroic signal is observed in the Soret region of the CD spectrum. The heme-fragment complex occurs in a 1:1 molar ratio, as determined by spectrophotometric titration, as well as by electrospray-ionization mass spectrometric analysis of the complex. The fragment alone is much more susceptible to tryptic digestion than the heme complex, implying a more folded and rigid structure of this last species. It is proposed that the molecular features of fragment 1-44 determining its heme-binding property reside in the amphipathic character of the helix adopted by the fragment, as well as in the presence in its polypeptide chain of His18, His21, and Met14. These residues can act as specific ligands for the heme-iron, as observed with cytochromes.  相似文献   

16.
UV-visible absorption and magnetic circular dichroism (MCD) data are reported for the cavity mutants of sperm whale H93G myoglobin and human H25A heme oxygenase in their ferric states at 4 degreesC. Detailed spectral analyses of H93G myoglobin reveal that its heme coordination structure has a single water ligand at pH 5.0, a single hydroxide ligand at pH 10.0, and a mixture of species at pH 7.0 including five-coordinate hydroxide-bound, and six-coordinate structures. The five-coordinate aquo structure at pH 5 is supported by spectral similarity to acidic horseradish peroxidase (pH 3.1), whose MCD data are reported herein for the first time, and acidic myoglobin (pH 3.4), whose structures have been previously assigned by resonance Raman spectroscopy. The five-coordinate hydroxide structure at pH 10.0 is supported by MCD and resonance Raman data obtained here and by comparison with those of other known five-coordinate oxygen donor complexes. In particular, the MCD spectrum of alkaline ferric H93G myoglobin is strikingly similar to that of ferric tyrosinate-ligated human H93Y myoglobin, whose MCD data are reported herein for the first time, and that of the methoxide adduct of ferric protoporphyrin IX dimethyl ester (FeIIIPPIXDME). Analysis of the spectral data for ferric H25A heme oxygenase at neutral pH in the context of the spectra of other five-coordinate ferric heme complexes with proximal oxygen donor ligands, in particular the p-nitrophenolate and acetate adducts of FeIIIPPIXDME, is most consistent with ligation by a carboxylate group of a nearby glutamyl (or aspartic) acid residue.  相似文献   

17.
Plasma membranes isolated from rabbit liver retain the ability to interact specifically with heme-hemopexin. In this system, apohemopexin does not compete effectively with heme-hemopexin for binding. The membranes bind heme-hemopexin complexes with high affinity (KD = 6.8 X 10(-7) M) and with an apparent capacity of 2.3 pmol/mg of membrane protein. These membranes also retain the ability to remove heme from heme-hemopexin. The release of heme reaches a plateau after 15-30 min at 30 degrees C and does not involve metabolic energy, proteolysis of hemopexin or pH gradients. The apohemopexin formed is rapidly released from the membranes. The accumulation of heme is saturable and is affected by pH and temperature with maximum uptake occurring between pH 5.5 and 6.5 and at 30 degrees C. Interestingly, much more heme (approximately 25 pmol/mg of membrane protein) is accumulated than hemopexin at saturation, implying that the receptor can turn over several times and that a heme-binding component exists in the rabbit liver plasma membrane.  相似文献   

18.
The adsorption of a recombinant cutinase from Fusarium solani pisi onto the surface of 100 nm diameter poly(methyl methacrylate) (PMMA) latex particles was evaluated. Adsorption of cutinase is a fast process since more than 70% of protein molecules are adsorbed onto PMMA at time zero of experiment, irrespective of the tested conditions. A Langmuir-type model fitted both protein and enzyme activity isotherms at 25 degrees C. Gamma(max) increased from 1.1 to 1.7 mg m(-2) and U(max) increased from 365 to 982 U m(-2) as the pH was raised from 4.5 to 9.2, respectively. A decrease (up to 50%) in specific activity retention was observed at acidic pH values (pH 4.5 and 5.2) while almost no inactivation (eta(act) congruent with 87-94%) was detected upon adsorption at pH 7.0 and 9.2. Concomitantly, far-UV circular dichroism (CD) spectra evidenced a reduction in the alpha-helical content of adsorbed protein at acidic pH values while at neutral and alkaline pH the secondary structure of adsorbed cutinase was similar to that of native protein. Fluorescence anisotropy decays showed the release of some constraints to the local motion of the Trp69 upon protein adsorption at pH 8.0, probably due to the disruption of the tryptophan-alanine hydrogen bond when the tryptophan interacts with the PMMA surface. Structural data associated with activity measurements at pH 7.0 and 9.2 showed that cutinase adsorbs onto PMMA particles in an end-on orientation with active site exposed to solvent and full integrity of cutinase secondary structure. Hydrophobic interactions are likely the major contribution to the adsorption mechanism at neutral and alkaline pH values, and a higher amount of protein is adsorbed to PMMA particles with increasing temperature at pH 9.2. The maximum adsorption increased from 88 to 140 mg cutinase per g PMMA with temperature raising from 25 to 50 degrees C, at pH 9.2.  相似文献   

19.
The kinetics of absorbance and fluorescence changes of cytochrome c as induced by an aqueous solution of the anionic surfactant sodium dodecyl sulfate (SDS) or sodium bis(2-ethylhexyl)sulfosuccinate (AOT) are studied. The results are compared with far-UV circular dichroism (CD) spectra. Both surfactants cause similar alterations in the secondary structure of cytochrome c, while their influence on the heme environment of cytochrome c is different. In the presence of AOT below and above critical micellar concentration a conversion of the low-spin native cytochrome c to a denatured low-spin protein not having methionine ligand takes place. In the presence of SDS micelles conversion of the native protein to a denatured mixed-spin form occurs. The changes in the heme group induced by both surfactants occur independently of the alterations in tertiary structure.  相似文献   

20.
A systematic investigation of the acid-induced unfolding of glucose oxidase (beta-D-glucose: oxygen 1-oxidoreductase) (GOD) from Aspergillus niger was made using steady-state tryptophan fluorescence, circular dichroism (CD), and ANS (1-anilino 8-naphthalene sulfonic acid) binding. Intrinsic tryptophan fluorescence studies showed a maximally unfolded state at pH 2.6 and the presence of a non-native intermediate in the vicinity of pH 1.4. Flavin adenine dinucleotide (FAD) fluorescence measurements indicate that the bound cofactors are released at low pH. In the pH range studied, near- and far-UV CD spectra show maximal loss of tertiary as well as secondary structure (40%) at pH 2.6 although glucose oxidase at this pH is relatively less denatured as compared to the conformation in 6M GdnHCl. Interestingly, in the vicinity of pH 1.4, glucose oxidase shows a refolded conformation (A-state) with approximately 90% of native secondary structure and native-like near-UV CD spectral features. ANS fluorescence studies, however, show maximal binding of the dye to the protein at pH 1.4, indicating a "molten-globule"-like conformation with enhanced exposure of hydrophobic surface area. Acrylamide quenching data exhibit reduced accessibility of quencher to tryptophan, suggesting a more compact conformation at low pH. Thermal stability of this state was assessed by ellipticity changes at 222 nm relative to native protein. While native glucose oxidase showed a completely reversible thermal denaturation profile, the state at pH 1.4 showed approximately 50% structural loss and the denatured state appeared to be in a different conformation exhibiting prominent beta-sheet structure (around 85 degrees C) that was not reversible. To summarize; the A-state of GOD exists as a compact folded intermediate with "molten-globule"-like characteristics, viz., native-like secondary structure but with non-native cofactor environment, enhanced hydrophobic surface area and non-cooperative thermal unfolding. That the A-state also possesses significant tertiary structure is an interesting observation made in this study.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号