首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We hypothesize that the evolution of an ecologically important character, the host associations of specialized phytophagous insects, has been influenced by limitations on genetic variation. Using as a historical framework a phylogenetic reconstruction of the history of host associations in the beetle genus Ophraella (Chrysomelidae), we have employed quantitative-genetic methods to screen four species for genetic variation in larval survival, oviposition (in one species only), and feeding responses to their congeners' host plants, in the Asteraceae. We here report results of studies of one species and evaluate the results from all four. Analysis of half-sib/full-sib families and of progenies of wild females of O. notulata, a specialist on Iva (Ambrosiinae), provided evidence of genetic variation in larval consumption of five of six test plants and in adult consumption of four of six. Larval mortality was complete on five plants; only on Ambrosia, a close relative of the natural host, was there appreciable, and genetically variable, survival. Oviposition on Ambrosia showed marginally significant evidence of genetic variation; a more distantly related plant elicited no oviposition at all. In compiling results from four Ophraella species, reported in this and two other papers, we found no evidence of genetic variation in 18 of 39 tests of feeding responses and 14 of 16 tests of larval survival on congeners' hosts. This result is consistent with the hypothesis that absence or paucity of genetic variation may constrain or at least bias the evolution of host associations. The lower incidence of genetic variation in survival than in feeding behavior may imply, according to recent models, that avoidance is a more common evolutionary response to novel plants than adaptation. The usually great disparity between mean performance on congeners' hosts and the species' natural hosts, and an almost complete lack of evidence for negative genetic correlations, argue against the likelihood that speciation has occurred by sympatric host shift. The presence versus apparent absence of genetic variation in consumption was correlated with the propinquity of relationship between the beetle species tested and the species that normally feeds on the test plant, suggesting that the history of host shifts in Ophraella has been guided in part by restrictions on genetic variation. It was also correlated with the propinquity of relationship between a test plant and the beetle's natural host. The contributions of plant relationships and insect relationships, themselves correlated in part, to the pattern of genetic variation, are not readily distinguishable, but together accord with phylogenetic evidence that these and other phytophagous insects adapt most readily to related plants. In this instance, therefore, the macroevolution of an ecologically important character appears to have been influenced by genetic constraints. We hypothesize that absence of the structural prerequisites for genetic variation in complex characters may affect genetic variation and the trajectory of evolution.  相似文献   

2.
We ask whether patterns of genetic variation in a phytophagous insect's responses to potential host plants shed light on the phylogenetic history of host association. Ophraella communa feeds chiefly, and in eastern North America exclusively, on Ambrosia (Asteraceae: Ambrosiinae). Using mostly half-sib breeding designs, we screened for genetic variation in feeding responses to and larval survival on its own host and on seven other plants that are hosts (or, on one case, closely related to the host) of other species of Ophraella. We found evidence for genetic variation in feeding responses to five of the seven test plants, other than the natural host. We found no evidence of genetic variation in feeding responses to two plant species, nor in capacity for larval survival on six. These results imply constraints on the availability of genetic variation; however, little evidence for constraints in the form of negative genetic correlations was found. These results are interpreted in the context of a provisional phylogeny of, and a history of host shifts within, the genus. Ophraella communa does not present evidence of genetic variation in its ability to feed and/or survive on Solidago, even though it is probably descended from a lineage that fed on Solidago or related plants, possibly as recently as 1.9 million years ago. Genetic variation in performance on this plant may have been lost. Based on evidence for genetic variation and on mean performance, by far the greatest potentiality for adaptation to a congener's host was evinced in responses to Iva frutescens, which not only is related and chemically similar to Ambrosia, but also is the host of a closely related species of Ophraella that may have been derived from an Ambrosia-associated ancestor. Genetic variation in O. communa's capacity to feed and/or survive on its congeners' hosts is less evident for plants that do not represent historically realized host shifts (with one exception) than for those that may (but see Note Added in Proof). The results offer some support for the hypothesis that the evolution of host shifts has been guided in part by constrained genetic variation.  相似文献   

3.
Species of Ophraella, a North American genus of leaf beetles (Chrysomelidae), feed variously on eight genera in four tribes of Asteraceae. A phylogenetic analysis, based on morphological features and allozymes, was undertaken to deduce the history of host affiliation within the genus. The two data sets are combined to arrive at a provisional phylogeny of the species, onto which host associations are parsimoniously mapped. Among and within the 12 species studied, at least two shifts are postulated to have occurred among congeneric plant species, five between genera in the same tribe, and four between different tribes of Asteraceae. The phylogeny of Ophraella appears not to be congruent with that of its hosts. This and other evidence indicates that many host shifts in Ophraella postdate the divergence of the host plants, a conclusion that may apply commonly to phytophagous insects. A phenetic analysis of the plants' secondary compounds provides modest support for the hypothesis that host shifts are facilitated by commonalities in plant chemistry. A possible trend in host shifts is evident, from chemically simpler to chemically more forbidding plants. The chemical barriers to host shifts in Ophraella appear to require adaptation in both behavior and in physiological attributes. There is no evidence that the host associations of these insects or the divergence in secondary chemistry of their hosts can be attributed to coevolution.  相似文献   

4.
Although inbreeding, on average, decreases additive genetic variance, some inbred populations may show an increase in phenotypic variance for some characters. In those populations with increased phenotypic variance, character changes by peak shifts may occur because of the effects of the higher variance on the adaptive landscape. A population's increased phenotypic variance may place it in the domain of attraction of a new adaptive peak or increase the likelihood of a selection-driven peak shift as the landscape of mean fitness flattens. The focus of this study was to test for increased variance, in inbred populations, in a behavioral character involved in adaptive diversification and probably speciation. We examined the effect of inbreeding on feeding responses of the leaf beetle Ophraella communa in a series of inbred lineages across a range of levels of inbreeding (f = 0.25, 0.375, 0.5). We measured the feeding response of inbred lineages of O. communa on its normal host, Ambrosia artemisiifolia, and on two novel plants, Chrysopsis villosa and Iva frutescens, that are the hosts of other Ophraella species. The results show that feeding responses on the different plants are not correlated, indicating that the feeding responses to the different plants are to some degree genetically independent. Despite apparent genetic variation in lineage feeding responses, we could not statistically demonstrate increases in phenotypic variance within the lineages. Thus, the experimental results do not support the idea that host shifts in this beetle evolved by peak shifts in bottlenecked populations.  相似文献   

5.
There has been much recent debate on whether physiological tradeoffs in performance across hosts or ecological factors such as predation are the primary determinants of host plant specialization in plant-herbivore interactions. This paper examines the relative role of intrinsic behavioral and physiological factors in host specialization of two species of leaf-feeding beetles (Coleoptera: Chrysomelidae). Ophraella notulata and Ophraella slobodkini are sister taxa that feed exclusively on the asteraceous plants Iva frutescens and Ambrosia artemisiifolia, respectively. Ambrosia is the ancestral host plant for this pair of beetles. I performed full-sib breeding experiments in both the laboratory and the field to assess mean responses of each species to both its native host and the host of its congener, genetic variation within each species for traits associated with using each host, and tradeoffs in performance across hosts. I reared each beetle species on each host plant and measured larval consumption, survival, development time and growth. I measured only survival and growth in the field. Genetic correlations were calculated to assess tradeoffs in performance across hosts. In the laboratory experiment, larval survival of O. slobodkini on I. frutescens was lower and development time longer than on A. artemisiifolia. Survival of O. notulata on A. artemisiifolia was marginally lower than on I. frutescens while development time did not differ. There was little genetic variation among families in host use traits for either species. None of the estimates of genetic correlations were negative. The results of the field experiment support the results of the laboratory experiment. I conclude that O. notulata, the species with the derived host association, retains considerable ability to utilize the ancestral host plant, while O. slobodkini, the species witht he ancestral host association, does not show a similar ability to ut ilize the derived host. Tradeoffs in performance across hosts were not documented for either species of Ophraella. That notulata performs so well on A. artemissifolia suggests that intrinsic factors may not provide a sufficient explanation for the host specialization of this species on I. frutescens.  相似文献   

6.
Published quantitative genetic studies of larval performance on different host plants have always compared performance on one host species or genotype vs. performance on another species or genotype. The fact that some insects may feed on more than one plant species during their development has been neglected. We executed a quantitative genetic analysis of performance with larvae of the leaf beetle Oreinaelongata, raised on each of two sympatric host plants or on a mixture of them. Growth rate was higher for larvae feeding on Adenostylesalliariae, intermediate on the mixed diet and lowest on Cirsium spinosissimum. Development time was shortest on A. alliariae, intermediate on mixed diet and longest on C. spinosissimum. Survival was higher on the mixed diet than on both pure hosts. Genetic variation was present for all three performance traits but a genotype by host interaction was found only for growth rate. However, the reaction norms for growth rate are unlikely to evolve towards an optimal shape because of a lack of heritability of growth rate in each single environment. We found no negative genetic correlations for performance traits among hosts. Therefore, our results do not support a hypothesis predicting the existence of between‐host trade‐offs in performance when both hosts are sympatric with an insect population. We conclude that the evolution of host specialized genotypes is unlikely in the study population.  相似文献   

7.
The genetic basis of host plant use by phytophagous insects can provide insight into the evolution of ecological niches, especially phenomena such as specialization and phylogenetic conservatism. We carried out a quantitative genetic analysis of multiple host use traits, estimated on five species of host plants, in the Colorado potato beetle, Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). Mean values of all characters varied among host plants, providing evidence that adaptation to plants may require evolution of both behavioral (preference) and post-ingestive physiological (performance) characteristics. Significant additive genetic variation was detected for several characters on several hosts, but not in the capacity to use the two major hosts, a pattern that might be caused by directional selection. No negative genetic correlations across hosts were detected for any 'performance' traits, i.e. we found no evidence of trade-offs in fitness on different plants. Larval consumption was positively genetically correlated across host plants, suggesting that diet generalization might evolve as a distinct trait, rather than by independent evolution of feeding responses to each plant species, but several other traits did not show this pattern. We explored genetic correlations among traits expressed on a given plant species, in a first effort to shed light on the number of independent traits that may evolve in response to selection for host-plant utilization. Most traits were not correlated with each other, implying that adaptation to a novel potential host could be a complex, multidimensional 'character' that might constrain adaptation and contribute to the pronounced ecological specialization and the phylogenetic niche conservatism that characterize many clades of phytophagous insects.  相似文献   

8.
The cotton bollworm (Helicoverpa armigera) prefers the common sowthistle (Sonchus oleraceus L.) to cotton (Gossypium hirsutum L.), sorghum (Sorghum bicolor L.) and maize (Zea mays L.) for oviposition in the field in Australia. Using the common sowthistle and cotton as host plants, we carried out this study to evaluate genetic variation in both oviposition preference and larval growth and genetic correlation between maternal preference and larval performance. There was a significant genetic component of phenotypic variation in both characters, and the heritability of oviposition preference was estimated as 0.602. Helicoverpa armigera larvae survived slightly better and grew significantly faster on common sowthistle than on cotton, but genetic correlation between maternal preference and larval growth performance was not detectable. Instead, larval growth performance on the two hosts changed with families, which renders the interaction between family and host plant significant. As a result, the genetic correlation between mean values of larval growth across the two host species was not different from zero. These results are discussed in the context of the relationship between H. armigera and the common sowthistle and the polyphagous behaviour of this insect in general.  相似文献   

9.
Plant feeding insects and the plants they feed upon represent an ecological association that is thought to be a key factor for the diversification of many plant feeding insects, through differential adaptation to different plant selective pressures. While a number of studies have investigated diversification of plant feeding insects above the species level, relatively less attention has been given to patterns of diversification within species, particularly those that also require plants for oviposition and subsequent larval development. In the case of plant feeding insects that also require plant tissues for the completion of their reproductive cycle through larval development, the divergent selective pressure not only acts on adults, but on the full life history of the insect. Here we focus attention on Rhinusa antirrhini (Curculionidae), a species of weevil broadly distributed across Europe that both feeds on, and oviposits and develops within, species of the plant genus Linaria (Plantaginaceae). Using a combination of mtDNA (COII) and nuclear DNA (EF1‐α) sequencing and copulation experiments we assess evidence for host associated genetic differentiation within R. antirrhini. We find substantial genetic variation within this species that is best explained by ecological specialisation on different host plant taxa. This genetic differentiation is most pronounced in the mtDNA marker, with patterns of genetic variation at the nuclear marker suggesting incomplete lineage sorting and/or gene flow between different host plant forms of R. antirrhini, whose origin is estimated to date to the mid‐Pliocene (3.77 Mya; 2.91–4.80 Mya).  相似文献   

10.
11.
This paper reports on an investigation of two populations of Junonia coenia, the buckeye butterfly, one that feeds on the species' typical host plant (Plantago lanceolata) and one that utilizes a novel host plant (Kickxia elatine). I examined these populations for local adaptive responses in terms of oviposition behavior, growth, and chemical defense, on both P. lanceolata and K. elatine. In addition, I examined the genetic architecture underlying these traits using a full-sib quantitative genetic analysis. I found that a significant majority of females prefer the host plant species found at their collection sites in oviposition tests, but that there is no evidence that they are locally adapted in growth performance, as measured by fifth-instar and pupal weights and development times. Neither are there correlations between oviposition preferences of females and the growth performance or levels of chemical defense of their offspring. The two populations studied do, however, show specialization in terms of the levels of chemical defense they sequester from their host plants. I argue that these results indicate that natural enemies are the normal barriers to host range expansion in this oligophagous herbivore because a breakdown in those barriers results in genetic changes that enhance resistance to predation. This is despite the fact that adaptive responses in physiology are unlikely to be limited by a lack of genetic variability; the genetic architecture among traits would be conducive to specialization in growth performance; and there are costs to chemical defense in this species. All these conditions would tend to argue that J. coenia harbors considerable potential for coevolutionary interactions with its chemically defended hosts, but this potential is not realized, probably because natural selection on diet breadth by natural enemies is much stronger than selection from host plants in this system.  相似文献   

12.
We present a field test of the genetically based performance trade‐off hypothesis for resource specialization in a population of the moth Rothschildia lebeau whose larvae primarily feed on three host plant species. Pairwise correlations between growth vs. growth, survival vs. survival and growth vs. survival across the different hosts were calculated, using families (sibships) as the units of analysis. Of 15 pairwise correlations, 14 were positive, 5 significantly so and none were negative. The same pattern was found using complementary growth and survival data from the laboratory. Overall, we found no evidence of negative genetic correlations in cross‐host performance that would be indicative of performance trade‐offs in this population. Rather, variation among families in performance appears to reflect ‘general vigour’ whereby families that perform well on one host perform well across multiple hosts. We discuss the implications of positive genetic correlations in cross‐host performance in terms of the ecology and evolution of host range. We argue that this genetic architecture facilitates colonization of novel hosts and recolonization of historical hosts, therefore contributing to host shifts, host range expansions, biological invasions and introductions, and host ranges that are regionally broad but locally narrow.  相似文献   

13.
Mate signaling systems, because of their role in assortative mating, have often been implicated in the origins of evolutionary independence between lineages. We investigated three sources of phenotypic plasticity in mating signals with potential relevance to assortative mating in a species in the Enchenopa binotata complex of treehoppers. This group has been a model for speciation in sympatry through shifts to novel host plants. Host shifts result in partial reproductive isolation in Enchenopa binotata because of their effects on life history timing, but interbreeding is still possible if there is dispersal and some overlap of mating periods. Courtship in these plant‐feeding insects is mediated by plant‐borne vibrational signals. We asked whether variation in male mate signaling behavior is influenced by plant substrate, age, or size, each of which may play a role in interactions among host‐shifted populations. Males produced fewer, shorter signals when on non‐hosts than when on hosts. However, there were no effects of age or size on signal variation. Significant repeatability of some signal features (carrier frequency and the number of signals produced in a signaling bout) is consistent with the presence of genetic variation and thus the potential to respond to selection. Our results suggest that plasticity in mate signaling systems, and in particular in male mate searching behavior on hosts and non‐hosts, may have the potential to reduce interbreeding between populations that use different species of host plant.  相似文献   

14.
Evolutionary constraints on the ability of herbivores to efficiently use a set of phytochemically similar hosts, while maintaining a high performance on phytochemically different hosts, are central in explaining the predominance of host specialization in phytophagous insects. Such feeding trade-offs could be manifested within insect populations as negative genetic correlations in fitness on different host species. We tested the hypothesis that feeding trade-offs were present within a population of the obliquebanded leafroller,Choristoneura rosaceana (Harris). Components of fitness were measured in families originating from an apple orchard that were fed on four host-plant species in the laboratory. Under the conditions of this experiment, all across-host genetic correlations were strongly positive, suggesting that this population comprised true generalists. With the exception of diapausing propensity, the heritability of the fitness components tended to be lower in caterpillars fed on apple leaves than in insects fed other hosts. This suggests a constraint on the selective response of the fitness components in the orchard environment.  相似文献   

15.
Trade-offs in larval performance on normal and novel hosts   总被引:3,自引:0,他引:3  
The evolution of host specialization in phytophagous insects is generally thought to involve genetic trade-offs that prevent individuals from maximizing fitness simultaneously on two or more hosts. Several hypotheses, however, have suggested that trade-offs may not be evident in experiments comparing larval performance on normal and novel hosts. Tests on survivorship, growth rate, and pupal mass among families of the swallowtail butterfly Papilio oregonius on its normal host and on a novel host provide support for these hypotheses, although they do not discriminate among them. Families differed in their relative performance on the hosts, but there was no evidence of a negative genetic correlation between hosts for any of the measures of performance. In addition, there were no correlations among the different measures, corroborating an earlier result suggesting that these different components of performance in the P. machaon species group are under at least partially separate genetic control. These results and similar results published for other insects have now produced a body of studies indicating that genetic trade-offs in individual components of larval performance may not be a major factor preventing shifts onto novel host plants. Trade-offs leading to the evolution of host specialization are more likely to involve coordination among the various components of performance together with ecological factors that allow higher fitness on one host than on others.  相似文献   

16.
The distribution and proportion of the sexual species Rana lessonae to the hemiclonal hybrid R. esculenta among natural habitats suggests that these anurans may differ in adaptive abilities. I used a half-sib design to partition phenotypic and quantitative genetic variation in tadpole responses at two food levels into causal variance components. Rana lessonae displays strong phenotypic variation across food levels. Growth rate is strictly determined by environmental factors and includes weak maternal effects. Larval period and body size at metamorphosis both contain moderate levels of additive genetic variance. The sire x food interactions and the lack of environmental correlations indicate that adaptive phenotypic plasticity is present in both of these traits. In contrast, R. esculenta displays less phenotypic variation across food levels, especially for larval period. Variation in body size at metamorphosis is underlain by genetic variation as shown by high levels of additive genetic variance, yet growth rate and larval period are not. Significant environmental correlations between larval period at high food level and growth, larval period, and body size at low food, indicate phenotypic plasticity is absent. A positive phenotypic correlation between body size at metamorphosis and larval period for R. lessonae at both food levels suggests a trade-off between growing large and metamorphosing quickly to escape predation or pond drying. The lack of a similar correlation for R. esculenta at the high food level suggests it may be less constrained. Different levels of adaptive genetic variation among larval traits suggest that the sexual species and the hybridogenetic hemiclone differ in their abilities to cope with temporally and spatially heterogeneous environments.  相似文献   

17.
In many organisms, a female's environment provides a reliable indicator of the environmental conditions that her progeny will encounter. In such cases, maternal effects may evolve as mechanisms for transgenerational phenotypic plasticity whereby, in response to a predictive environmental cue, a mother can change the type of eggs that she makes or can program a developmental switch in her offspring, which produces offspring prepared for the environmental conditions predicted by the cue. One potentially common mechanism by which females manipulate the phenotype of their progeny is egg size plasticity, in which females vary egg size in response to environmental cues. We describe an experiment in which we quantify genetic variation in egg size and egg size plasticity in a seed beetle, Stator limbatus, and measure the genetic constraints on the evolution of egg size plasticity, quantified as the genetic correlation between the size of eggs laid across host plants. We found that genetic variation is present within populations for the size of eggs laid on seeds of two host plants (Acacia greggii and Cercidium floridum; h2 ranged between 0.217 and 0.908), and that the heritability of egg size differed between populations and hosts (higher on A. greggii than on C. floridum). We also found that the evolution of egg size plasticity (the maternal effect) is in part constrained by a high genetic correlation across host plants (rG > 0.6). However, the cross-environment genetic correlation is less than 1.0, which indicates that the size of eggs laid on these two hosts can diverge in response to natural selection and that egg size plasticity is thus capable of evolving in response to natural selection.  相似文献   

18.
Although variation in oviposition preference and specificity for host plants has been demonstrated within populations of a variety of oligophagous insect species, it is unknown whether genetic variation in host choice is lost within populations of monophagous species. Analysis of a locally monophagous butterfly species, Papilio oregonius, and a locally oligophagous species, P. zelicaon, showed significant variation in oviposition preference within populations of both species. Females of both species chose primarily their native hosts. Nonetheless, the percentages of eggs laid by individual females among the plant species and the number of plant species on which individual females laid eggs differed significantly among isofemale strains within populations. Moreover, some females within all isofemale strains of both species laid a few eggs on Foeniculum vulgare, an umbelliferous species that does not occur in the native habitats of these populations but is a host for Papilio species in other geographic areas. The results suggest that local monophagy and oligophagy in these species reflect the relative ranking among potential plant species. Both populations harbor variation in oviposition choice that could allow for host shifts if these populations invaded new habitats.  相似文献   

19.
Summary Experiments were conducted with the sexually reproducing seed beetle Stator limbatus and its hosts in north-central Arizona to determine if it was substructured into units, each specialized for higher fitness on a specific host species. Unlike many studies, we incorporated scale, i.e., conducting experiments between and within beetle populations on seeds from within and between plant species. Of particular interest was whether intraspecific plant variability prevented beetle specialization within beetle populations. Results suggest that S. limbatus is specialized to certain hosts. On the palo verde Cercidium floridum, beetles originally reared from this host had significantly higher emergence compared to beetles transferred from other hosts. We did not test directly for a genetic basis for this. Alternative hypotheses of variation in symbiotic microorganisms in larval guts and maternal effects were assessed. Essentially no bacteria, yeast or protozoa were found, and maternal effects as expressed by varying egg weights were not detected; however, other microorganisms might have been present and maternal effects through inducible enzymes was possible. Caution, then, is needed in any genetic interpretations of our results. The differences on C. floridum were detected from tests between and within beetle populations. Evidence for specialization was not detected on the other hosts, Cercidium microphyllum and Acacia greggii. On the other hosts, beetles performed well regardless of their source. Significant differences were detected among individual plants of C. floridum as to the suitability of their seeds for deveoopment of S. limbatus. No such differences were detected among the other host plants. These patterns of conspecific plant variability are opposite of what is expected if plant variability prevents specialization of beetles to particular species of hosts. Thus, the data suggest seed variability among plants does not prevent specialization to host species in this system. We discuss how the patterns of host use in this study relate to the hypothesis of sympatric host race formation.  相似文献   

20.
Abstract 1 The relationship between reproductive performance and preference for potential host plants of the vine weevil is investigated, as shown in tests on contact (or feeding) preference, presented herein, and tests on olfactory preference, published elsewhere. 2 Assessment of reproductive performance shows that the host‐plant range of the adult vine weevil Otiorhynchus sulcatus in Europe is limited to one gymnosperm genus (Taxus sp.) and a broad range of angiosperm plants in two subclasses of the Dicotyledonae, namely Dilleniidae and Rosidae. The successful reproduction on very distantly related plant taxa suggests that the original weevil‐ and plant‐habitat has mediated the current host‐plant range of the vine weevil. 3 Contact‐preference tests with equally suitable hosts, such as Aronia, Fragaria, Euonymus and Taxus, and one less suitable host, Humulus, indicate a mismatch between contact preference and performance and, as far as olfactory preferences are known, these match neither the contact preferences nor the performance. This mismatch may arise because (i) host plant species offered do not occur in weevil habitat in Europe (e.g. Aronia and the cultivated Fragaria come from North America) and (ii) predation (or disease) risks differ among host plants, thereby altering effective reproductive performance. 4 With respect to performance on novel hosts (Thuja, Prunus) and bad hosts (Rhododendron), some between‐individual variation is found within a single population, suggesting that local populations harbour (possibly genetic) variation for adaptation to new hosts. How this variation is maintained in the face of strong selection pressures on local populations of flightless and thelytokous weevils, is an important question for understanding the broad host plant range in the vine weevil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号