首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent studies have indicated that various growth factors are involved in synaptic functions; however, the precise mechanisms remain unclear. In order to elucidate the molecular mechanisms of the growth factor-mediated regulation of presynaptic functions, the effects of epidermal growth factor (EGF) and insulin-like growth factor-1 (IGF-1) on neurotransmitter release were studied in rat PC12 cells. Brief treatment with EGF and IGF-1 enhanced Ca2+-dependent dopamine release in a concentration-dependent manner. EGF activated both mitogen-activated protein kinase (MAPK) and phosphatidylinositol 3-kinase (PI3-kinase) pathways, and the EGF-dependent enhancement of DA release was suppressed by a MAPK kinase inhibitor as well as by PI3-kinase inhibitors. In striking contrast, IGF-1 activated the PI3-kinase pathway but not the MAPK pathway, and IGF-1-dependent enhancement was suppressed by a PI3-kinase inhibitor but not by a MAPK kinase inhibitor. The enhanced green fluorescent protein-tagged pleckstrin homology (PH) domain of protein kinase B, which selectively binds to phosphatidylinositol 3,4-bisphosphate and phosphatidylinositol 3,4,5-triphosphate, was translocated to the plasma membrane after treatment with either EGF or NGF. By contrast, no significant redistribution was induced by IGF-1. These results indicate that PI3-kinase participates in the enhancement of neurotransmitter release by two distinct mechanisms: EGF and NGF activate PI3-kinase in the plasma membrane, whereas IGF-1 activates PI3-kinase possibly in the intracellular membrane, leading to enhancement of neurotransmitter release in a MAPK-dependent and -independent manner respectively.  相似文献   

2.
The c-ret gene encodes a receptor tyrosine kinase (RET) essential for the development of the kidney and enteric nervous system. Activation of RET requires the secreted neurotrophin GDNF (glial cell line-derived neurotrophic factor) and its high affinity receptor, a glycosyl phosphatidylinositol-linked cell surface protein GFRalpha1. In the developing kidney, RET, GDNF, and GFRalpha1 are all required for directed outgrowth and branching morphogenesis of the ureteric bud epithelium. Using MDCK renal epithelial cells as a model system, activation of RET induces cell migration, scattering, and formation of filopodia and lamellipodia. RET-expressing MDCK cells are able to migrate toward a localized source of GDNF. In this report, the intracellular signaling mechanisms regulating RET-dependent migration and chemotaxis are examined. Activation of RET resulted in increased levels of phosphatidylinositol 3-kinase (PI3K) activity and Akt/PKB phosphorylation. This increase in PI3K activity is essential for regulating the GDNF response, since the specific inhibitor, LY294002, blocks migration and chemotaxis of MDCK cells. Using an in vitro organ culture assay, inhibition of PI3K completely blocks the GDNF-dependent outgrowth of ectopic ureter buds. PI3K is also essential for branching morphogenesis once the ureteric bud has invaded the kidney mesenchyme. The data suggest that activation of RET in the ureteric bud epithelium signals through PI3K to control outgrowth and branching morphogenesis.  相似文献   

3.
Joo JH  Yoo HJ  Hwang I  Lee JS  Nam KH  Bae YS 《FEBS letters》2005,579(5):1243-1248
We recently reported that production of reactive oxygen species (ROS) is essential for auxin-induced gravitropic signaling. Here, we investigated the role of phosphatidylinositol 3-kinase and its product, PtdIns(3)P, in auxin-mediated ROS production and the root gravitropic response. Pretreatment with LY294002, an inhibitor of PtdIns 3-kinase activity, blocked auxin-mediated ROS generation, and reduced the sensitivity of root tissue to gravistimulation. The amount of PtdIns(3)P increased in response to auxin, and this effect was abolished by pretreatment with LY294002. In addition, sequestration of PtdIns(3)P by transient expression of the endosome binding domain in protoplasts abrogated IAA-induced ROS accumulation. These results indicate that activation of PtdIns 3-kinase and its product PtdIns(3)P are required for auxin-induced production of ROS and root gravitropism.  相似文献   

4.
We describe here a new component of the phosphatidylinositol 3-kinase/Akt signaling pathway that directly impacts mitochondria. Akt (protein kinase B) was shown for the first time to be localized in mitochondria, where it was found to reside in the matrix and the inner and outer membranes, and the level of mitochondrial Akt was very dynamically regulated. Stimulation of a variety of cell types with insulin-like growth factor-1, insulin, or stress (induced by heat shock), induced translocation of Akt to the mitochondria within only several minutes of stimulation, causing increases of nearly eight- to 12-fold, and the mitochondrial Akt was in its phosphorylated, active state. Two mitochondrial proteins were identified to be phosphorylated following stimulation of mitochondrial Akt, the beta-subunit of ATP synthase and glycogen synthase kinase-3beta. The finding that mitochondrial glycogen synthase kinase-3beta was rapidly and substantially modified by Ser9 phosphorylation, which inhibits its activity, following translocation of Akt to the mitochondria is the first evidence for a regulatory mechanism affecting mitochondrial glycogen synthase kinase-3beta. These results demonstrate that signals emanating from plasma membrane receptors or generated by stress rapidly modulate Akt and glycogen synthase kinase-3beta in mitochondria.  相似文献   

5.
Phosphatidylinositol 3-kinase (PI 3-kinase) is a lipid kinase which has been implicated in mitogenesis, protein trafficking, inhibition of apoptosis, and integrin and actin functions. Here we show using a green fluorescent protein-tagged p85 subunit that phosphatidylinositol 3-kinase is distributed throughout the cytoplasm and is localized to focal adhesion complexes in resting NIH-3T3, A431, and MCF-7 cells. Ligand stimulation of an epidermal growth factor receptor/c-erbB-3 chimera expressed in these cells results in a redistribution of p85 to the cell membrane which is independent of the catalytic activity of the enzyme and the integrity of the actin cytoskeleton. The movement is, however, dependent on the phosphorylation status of the erbB-3 chimera. Using rhodamine-labeled epidermal growth factor we show that the phosphatidylinositol 3-kinase and the receptors colocalize in discrete patches on the cell surface. Low concentrations of ligand cause patching only at the periphery of the cells, whereas at high concentrations patches were seen over the whole cell surface. Using green fluorescent protein-tagged fragments of p85 we show that binding to the receptor requires the NH(2)-terminal part of the protein as well as its SH2 domains.  相似文献   

6.
7.
The class 1(A) phosphatidylinositol 3-kinase enzymes consist of a number of heterodimeric complexes of regulatory and catalytic subunits and have been implicated in a number of cellular responses. While platelet-derived growth factor (PDGF)-induced chemotaxis of human vascular smooth muscle cells (HVSMC) is inhibited by both wortmannin and LY294002, DNA synthesis is only inhibited by LY294002. Serum-induced DNA synthesis however is inhibited by LY294002, wortmannin and rapamycin. Similarly PDGF-induced protein kinase B (PKB) activation is inhibited by LY294002 but not by wortmannin or rapamycin. In conclusion PDGF-induced DNA synthesis appears to occur through a phosphatidylinositol 3-kinase (PI3-K)-dependent, but wortmannin-insensitive, PKB/Akt pathway.  相似文献   

8.
Initial studies with the erythropoietin-sensitive human hematopoietic cell line, TF1, demonstrated both multifarious effects of pulsed electromagnetic field (EMF) exposure on lipid signal transduction and antiproliferative effects of EMF. Stimulation of TF1 cells with erythropoietin resulted in increased phosphatidylinositol 3-kinase activity within 2 min. Addition of wortmannin, an inhibitor of phosphatidylinositol 3-kinase, produced a decrease in cell proliferation as measured by accumulation of cells in the G0/G1 phase of the cell cycle and suppression of erythropoietin-induced DNA synthesis. Similar effects on cell proliferation were seen under EMF treatment. Phosphatidylinositol 3-kinase activity in erythropoietin-stimulated TF1 cells, measured in whole-cell extracts, increased 34% within 2 min and remained above basal levels for at least 20 min. EMF decreased erythropoietin-stimulated phosphatidylinositol 3-kinase activity to lower than basal levels. Additionally, translocation of the 85-kDa regulatory subunit (p85) of phosphatidylinositol 3-kinase to the membrane was prevented by EMF. Phosphatidylinositol-specific phospholipase C was activated, as reflected by increases in diacylglycerol and inositol trisphosphate at 15–60 s after EMF treatment. These results provide the first evidence of subtle coordinated changes by EMF associated with loss of phosphatidylinositol 3-kinase activity, inhibition of the translocation of p85 to the membrane, and activation of phosphatidylinositol-phospholipase C.  相似文献   

9.
The ganglioside GM1 promotes neuronal growth, differentiation, survival, phenotypic expression, and function restoration, by apparently interacting with neurotrophic factors and/or their receptors. In brain, GM1 activates the Trk receptors for neurotrophins and the Raf/MEK/ERK cascade in situ and in vivo . We have expanded these studies and explored whether GM1 recruits the phosphatidylinositol 3 (PI3)-kinase pathway in brain also. Incubating striatal slices with GM1 increased the activity of PI3-kinase in phosphotyrosine immunoprecipitates in a time- and concentration-dependent manner, and the response was blocked by the PI3-kinase inhibitors wortmannin and LY294002. PI3-kinase activation following GM1 was rapid and short lasting with an EC50 of 5 μmol/L. There was a temporally parallel activation of the downstream PI3-kinase target Akt, which was prevented by PI3-kinase inhibition. PI3-kinase activity was found increased in Trk and Gab1 immunoprecipitates, and co-immunoprecipitation studies demonstrated the association of Trk and Gab1 after GM1 treatment. Enhanced PI3-kinase activity associated with Trk or Gab1 immunoprecipitates was blocked by the Trk inhibitor K252a. GM1 did not appear to transactivate Trk and did not alter the efflux of neurotrophins in striatal slices. Our findings suggest that GM1 induces activation of PI3-kinase that is, in part, mediated through Trk and Gab1.  相似文献   

10.
11.
We have elucidated a novel mechanism through which the autophagy-specific class III phosphatidylinositol 3-kinase (PtdIns3K) complex can be recruited to the PAS in mammalian cells, through the interaction between BECN1 and the vacuole membrane protein 1 (VMP1), an integral autophagosomal membrane protein. This interaction involves the binding between the C-terminal 20 amino acids of the VMP1 hydrophilic domain, which we have named the VMP1 autophagy-related domain (VMP1-AtgD), and the BH3 domain of BECN1. The association between these two proteins allows the formation of the autophagy-specific PtdIns3K complex, which activity favors the generation of phosphatidylinositol-3-phosphate (PtdIns3P) and the subsequent association of the autophagy-related (ATG) proteins, including ATG16L1, with the phagophore membranes. Therefore, VMP1 regulates the PtdIns3K activity on the phagophore membrane through its interaction with BECN1. Our data provide a novel model describing one of the key steps in phagophore assembly site (PAS) formation and autophagy regulation, and positions VMP1 as a new interactor of the autophagy-specific PtdIns3K complex in mammalian cells.  相似文献   

12.
Estrogens can stimulate the proliferation of estrogen-responsive breast cancer cells by increasing their proliferative response to insulin-like growth factors. With a view to investigating the molecular mechanisms implicated, we studied the effect of estradiol on the expression of proteins implicated in the insulin-like growth factor signalling pathway. Estradiol dose- and time-dependently increased the expression of insulin receptor substrate-1 and the p85/p110 subunits of phosphatidylinositol 3-kinase but did not change those of ERK2 and Akt/PKB. ICI 182,780 did not inhibit estradiol-induced IRS-1 and p85 expression. Moreover, two distinct estradiol-BSA conjugate compounds were as effective as estradiol in inducing IRS-1 and p85/p110 expression indicating the possible implication of an estradiol membrane receptor. Comparative analysis of steroids-depleted and steroids-treated cells showed that IGF-I only stimulates cell growth in the latter condition. Nevertheless, expression of a constitutively active form of PI 3-kinase in steroid-depleted cells triggers proliferation. These results demonstrate that estradiol positively regulates essential proteins of the IGF signalling pathway and put in evidence that phosphatidylinositol 3-kinase plays a central role in the synergistic pro-proliferative action of estradiol and IGF-I.  相似文献   

13.
We previously found that pathophysiological concentrations (< or = 10 nm) of an amyloid beta protein (Abeta25-35) reduced the plasma membrane phosphatidylinositol monophosphate level in cultured rat hippocampal neurons with a decrease in phosphatidylinositol 4-monophosphate-dependent Cl- -ATPase activity. As this suggested an inhibitory effect of Abeta25-35 on plasma membrane phosphatidylinositol 4-kinase (PI4K) activity, in vitro effects of Abetas on PI4K activity was examined using rat brain subcellular fractions and recombinant human type II PI4K (PI4KII). Abeta25-35 (10 nm) inhibited PI4KII activity, but neither PI 3-kinase (PI3K) nor type III PI4K (PI4KIII) activity, in microsomal fractions, while 100 nm Abeta25-35 inhibited PI3K activity in mitochondrial fractions. In plasma membrane-rich fractions, Abetas (> 0.5 nm) dose-dependently inhibited PI4KII activity, the maximal inhibition to 77-87% of control being reached around 10 nm of Abetas without significant changes in apparent Km values for ATP and PI, suggesting non-competitive inhibition by Abetas. The inhibition by 10 nm Abeta25-35 was reversible. In recombinant human PI4KIIalpha, inhibition profiles of Abetas were similar to those in rat brain plasma membranes. Therefore, pathophysiological concentrations of Abetas directly and reversibly inhibited plasma membrane PI4KII activity, suggesting that plasma membrane PI4KII is a target of Abetas in the pathogenesis of Alzheimer's disease.  相似文献   

14.
Chronic activation of the phosphoinositide 3-kinase (PI3K)/PTEN signal transduction pathway contributes to metastatic cell growth, but up to now effectors mediating this response are poorly defined. By simulating chronic activation of PI3K signaling experimentally, combined with three-dimensional (3D) culture conditions and gene expression profiling, we aimed to identify novel effectors that contribute to malignant cell growth. Using this approach we identified and validated PKN3, a barely characterized protein kinase C-related molecule, as a novel effector mediating malignant cell growth downstream of activated PI3K. PKN3 is required for invasive prostate cell growth as assessed by 3D cell culture assays and in an orthotopic mouse tumor model by inducible expression of short hairpin RNA (shRNA). We demonstrate that PKN3 is regulated by PI3K at both the expression level and the catalytic activity level. Therefore, PKN3 might represent a preferred target for therapeutic intervention in cancers that lack tumor suppressor PTEN function or depend on chronic activation of PI3K.  相似文献   

15.
16.
1-Ricinoleoyl-2-acyl-sn-glycero-3-phosphocholine was prepared by incorporating ricinoleic acid completely in the sn-1 position of egg and soya phosphatidylcholine (PC) using immobilized phospholipase A1 as the catalyst. The optimum reaction conditions for maximum incorporation of ricinoleic acid into PC through transesterification were 10% (w/w) immobilized enzyme (116 mg), a 1:5 mol ratio of PC (soya, 387 mg; egg, 384 mg) to methyl ricinoleate (780 mg) at 50 °C for 24 h in hexane.  相似文献   

17.
The cellular prion protein (PrP(C)) is thought to be involved in protection against cell death, however the exact cellular mechanisms involved are still controversial. Herein we present data that strongly indicate a functional link between PrP(C) expression and phosphatidylinositol 3-kinase (PI 3-kinase) activation, a protein kinase that plays a pivotal role in cell survival. Both mouse neuroblastoma N2a cells and immortalized murine hippocampal neuronal cell lines expressing wild-type PrP(C) had significantly higher PI 3-kinase activity levels than their respective controls. Moreover, PI 3-kinase activity was found to be elevated in brain lysates from wild-type mice, as compared to prion protein-knockout mice. Recruitment of PI 3-kinase by PrP(C) was shown to contribute to cellular survival toward oxidative stress by using 3-morpholinosydnonimine (SIN-1) and serum deprivation. Moreover, both PI 3-kinase activation and cytoprotection by PrP(C) appeared to rely on copper binding to the N-terminal octapeptide of PrP(C). Thus, we propose a model in which the interaction of copper(II) with the N-terminal domain of PrP(C) enables transduction of a signal to PI 3-kinase; the latter, in turn, mediates downstream regulation of cell survival.  相似文献   

18.
Pleckstrin-2 (PLEK2) has been implicated to be regulated by phosphatidylinositol (PI) 3-kinase, while pleckstrin1 (PLEK1) has been suggested to be a major PKC substrate in platelets. In this paper, we confirmed that PLEK2 specifically bound to the PI 3-kinase products in vitro and explored its behavior. PLEK2 was found to be expressed in various adherent cell lines, while PLEK1 expression was restricted to non-adherent cells in the protein level. Expression of PLEK2 in COS1 cells induced formation of protrusive F-actin structure and enhanced the actin rearrangements induced on collagen- or fibronectin-coated plates. A PLEK2 mutant incapable of binding to the PI 3-kinase products did not show any effect on actin rearrangement. Knockdown of PLEK2 by shRNA inhibited spreading of HCC2998 adenocarcinoma cells. PLEK2 colocalized with Rac and was suggested to be oligomerized. These results suggest that PLEK2 is involved in actin rearrangement in a PI 3-kinase dependent manner.  相似文献   

19.
In vascular smooth muscles, angiotensin II (AII) has been reported to activate phospholipase C (PLC) and phosphatidylinositol 3-kinase (PI3K). We investigated the time-dependent effects of AII on both phosphatidylinositol 3,4,5-trisphosphate (PtdInsP3) and inositol phosphates (InsPs) accumulation in permeabilized microsomes from rat portal vein smooth muscle in comparison with those of noradrenaline (NA). AII stimulated an early production of PtdInsP3 (within 30 s) followed by a delayed production of InsPs (within 3-5 min), in contrast to NA which activated only a fast production of InsPs. The use of pharmacological inhibitors and antibodies raised against the PI3K and PLC isoforms expressed in portal vein smooth muscle showed that AII specifically activated PI3Kgamma and that this isoform was involved in the AII-induced stimulation of InsPs accumulation. NA-induced InsPs accumulation depended on PLCbeta1 activation whereas AII-induced InsPs accumulation depended on PLCgamma1 activation. AII-induced PLCgamma1 activation required both tyrosine kinase and PI3Kgamma since genistein and tyrphostin B48 (inhibitors of tyrosine kinase), LY294002 and wortmannin (inhibitors of PI3K) and anti-PI3Kgamma antibody abolished AII-induced stimulation of InsPs accumulation. Increased tyrosine phosphorylation of PLCgamma1 was only detected for long-lasting applications of AII and was suppressed by genistein. These data indicate that activation of both PI3Kgamma and tyrosine kinase is a prerequisite for AII-induced stimulation of PLCgamma1 in vascular smooth muscle and suggest that the sequential activation of the three enzymes may be responsible for the slow and long-lasting contraction induced by AII.  相似文献   

20.
Neutrophils play a central role in host defense and are recruited in vast numbers to sites of infection where they phagocytose and kill invading bacterial pathogens. Neutrophils have a short half-life that is extended at the inflamed site by pro-inflammatory cytokines and contact with bacterial cell walls. Normal resolution of inflammation involves the removal of neutrophils and other inflammatory cells by the induction of apoptosis. Spontaneous neutrophil apoptosis does not require Fas ligation, but is mediated by caspases 3, 8 and possibly caspase 9 and also involves activation of protein kinase C-. With chronic inflammatory disease, neutrophil apoptosis is delayed by pro-inflammatory cytokines, leading to persistence of neutrophils at the inflamed site and non-specific tissue damage. Here we discuss the evidence for inhibition of neutrophil apoptosis via signaling though PI-3-kinase and downstream pathways, including PDK-1 and PKB. Therapeutic strategies to resolve chronic inflammation could therefore usefully target neutrophil apoptosis and the PI-3-kinase or PKC- signaling pathways.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号