首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Chen W  Yang B  Zhou H  Sun L  Dou J  Qian H  Huang W  Mei Y  Han J 《Peptides》2011,32(12):2497-2503
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs.  相似文献   

7.
Using the plasminogen activator inhibitor (PAI) promoter to drive the expression of a reporter gene (mouse CD2), we devised a system to clone negative regulators of the transforming growth factor-beta (TGF-beta) signaling pathway. We infected a TGF-beta-responsive cell line (MvLu1) with a retroviral cDNA library, selecting by fluorescence-activated cell sorter single cells displaying low PAI promoter activity in response to TGF-beta. Using this strategy we cloned the proto-oncogene brain factor-1 (BF-1). BF-1 represses the PAI promoter in part by associating with both unphosphorylated Smad3 (in the cytoplasm) and phosphorylated Smad3 (in the nucleus), thus preventing its binding to DNA. BF-1 also associates with Smad1, -2, and -4; the Smad MH2 domain binds to BF-1, and the C-terminal segment of BF-1 is uniquely and solely required for binding to Smads. Further, BF-1 represses another TGF-beta-induced promoter (p15), it up-regulates a TGF-beta-repressed promoter (Cyclin A), and it reverses the growth arrest caused by TGF-beta. Our results suggest that BF-1 is a general inhibitor of TGF-beta signaling and as such may play a key role during brain development.  相似文献   

8.
沈秀莲  逯宜超  甲芝莲  吴强 《遗传》2018,40(5):390-401
在大脑皮层发育过程中,神经元迁移是一个动态的复杂过程,与细胞骨架构建和重塑的调控息息相关。N-WASP蛋白是Wiskott-Aldrich综合征蛋白家族(WASP-WAVE family)的一个重要成员,又名WAS-like蛋白(WASL),直接参与细胞骨架中肌动蛋白丝状分支的动态调控。本研究通过蛋白免疫印迹检测发现N-WASP表达于小鼠胚胎发育时期(E12.5~E18.5)的大脑皮层中,并且其表达水平随着发育逐渐降低。利用在体子宫内胚胎电转实验,结果发现过表达或者敲低N-WASP均会造成不同程度的大脑皮层神经元迁移障碍,说明N-WASP在大脑皮层神经元迁移中起到关键作用。N-WASP蛋白主要包含4个结构域:WH1、GBD、polyPro和VCA。为进一步研究N-WASP各结构域在神经元迁移中的调控功能,设计了一系列的显性负性突变实验。通过过表达结构域删除的N-WASP蛋白,发现ΔpolyPro、ΔVCA和ΔWH1均能造成神经元迁移障碍。但是,过表达不能结合Cdc42的N-WASP蛋白(H208D突变体)却不能造成明显的神经元迁移障碍。另外,单独过表达N-WASP的结构域polyPro或VCA能够造成神经元迁移障碍,而过表达WH1结构域却不能影响迁移。最后,通过过表达polyPro和VCA结构域同时删除的N-WASP (WH1-GBD),发现WH1-GBD结构域对神经元迁移没有明显影响。上述结果表明N-WASP蛋白主要是通过polyPro和VCA两个结构域调控大脑皮层神经元的迁移过程。  相似文献   

9.
《Peptides》2012,33(12):2497-2503
Cathelicidin-BF15 (BF-15) is a 15-mer peptide derived from Cathelicidin-BF (BF-30), which is found in the venom of the snake Bungarus fasciatus and exhibits broad antimicrobial activity. Since BF-15 retains most part of the antimicrobial activity of BF-30 but has significantly reduced haemolytic activity and a much shorter sequence length (and less cost), it is a particularly attractive template around which to design novel antimicrobial peptides. However, the structure–activity relationship of it is still unknown. We designed and synthesized a series of C-terminal amidated analogs of BF-15 based on its amphipathic α-helix structure. And we characterized their antimicrobial potency and haemolytic activity. We identified the amidated BF-15 (analog B1) with potent antimicrobial activity against several antibiotic-resistant bacteria (MICs between 1 and 64 μg/mL, 2–16-folds higher than BF-30) and much lower haemolytic activity. The subsequent circular dichroism study results showed a typical α-helix pattern of analog B1 and the content of the α-helix structure of it increased significantly comparing with BF-30, which indicates the peptide sequence of BF-15 may provide a major contribution to the α-helix content of the whole BF-30 sequence. The peptide induced chaotic membrane morphology and cell debris as determined by electron microscopy. This suggests that the antimicrobial activity of B1 is based on cytoplasmic membrane permeability. Taken together, our results suggested that peptide B1 should be considered as an excellent candidate for developing therapeutic drugs.  相似文献   

10.
11.
Cordon Bleu (Cobl) is a WH2-containing protein believed to act as an actin nucleator. We show that it has a very specific localization in epithelial cells at the basal region of microvilli, a localization unlikely to be involved in actin nucleation. The protein is localized by a central region between the N-terminal COBL domain and the three C-terminal WH2 domains. Ectopic expression of Cobl shortens apical microvilli, and this requires functional WH2 domains. Proteomic studies reveal that the COBL domain binds several BAR-containing proteins, including SNX9, PACSIN 2/syndapin 2, and ASAP1. ASAP1 is recruited to the base of microvilli by binding the COBL domain through its SH3. We propose that Cobl is localized to the basal region of microvilli both to participate in length regulation and to recruit BAR proteins that associate with the curved membrane found at the microvillar base.  相似文献   

12.
13.
Bacillus anthracis BF-1 was isolated from a cow in Bavaria (Germany) that had succumbed to anthrax. Here, we report the draft genome sequence of this strain, which belongs to the European B2 subclade of B. anthracis. The closest phylogenetic neighbor of strain BF-1 is a strain isolated from cattle in France.  相似文献   

14.
We have isolated a monoclonal antibody, mAb 52G9, that recognizes a 55-kDa cell surface protein restricted to the early embryonic rat forebrain and to placode-derived structures. In the central nervous system (CNS), 52G9 immunoreactivity appears at Embryonic Day 11 (E11) in the rostral-most area of the telencephalon. It then spreads to the neuroepithelium of the telencephalon and basal diencephalon. Most strikingly, it appears at E14 in a distinct zone at the caudal end of the ventral diencephalic neuroepithelium. This area is sharply defined by strong 52G9 immunoreactivity bounded by unlabeled neuroepithelium. The pattern revealed by 52G9 is the first biochemical demonstration of spatial domains in the forebrain at a time prior to neuronal differentiation. By E18, 52G9 immunoreactivity has progressively disappeared from the forebrain; the glomerular layer of the olfactory bulb is the only 52G9-positive area in the CNS. The olfactory, otic, and hypophyseal placodes, which can be identified as early as E10, are also 52G9 positive as are their derivatives, the sensory epithelial of the nasal passage and inner ear, and also Rathke's pouch. The distribution and regulation of the 52G9 protein suggests that this novel cell surface molecule may be involved in the formation of spatial domains in the developing forebrain.  相似文献   

15.
16.
17.
Megalin is a low-density lipoprotein receptor-related protein (LRP2) expressed in the neuroepithelium and the yolk sac of the early embryo. Absence of megalin expression in knockout mice results in holoprosencephaly, indicating an essential yet unidentified function in forebrain development. We used mice with complete or conditional megalin gene inactivation in the embryo to demonstrate that expression of megalin in the neuroepithelium but not in the yolk sac is crucial for brain development. During early forebrain development, megalin deficiency leads to an increase in bone morphogenic protein (Bmp) 4 expression and signaling in the rostral dorsal neuroepithelium, and a subsequent loss of sonic hedgehog (Shh) expression in the ventral forebrain. As a consequence of absent SHH activity, ventrally derived oligodendroglial and interneuronal cell populations are lost in the forebrain of megalin-/- embryos. Similar defects are seen in models with enhanced signaling through BMPs, central regulators of neural tube patterning. Because megalin mediates endocytic uptake and degradation of BMP4, these findings indicate a role for megalin in neural tube specification, possibly by acting as BMP4 clearance receptor in the neuroepithelium.  相似文献   

18.
19.
20.
The homeobox gene Chick-en, sharing homologies to the engrailed gene of Drosophila, is expressed, during early steps of development, in a restricted area of the chick embryo including mes-metencephalic neuroepithelia. The expression of the Chick-en gene has been analyzed in chick/quail chimeric embryos in which a portion of the 2-day-old mes-metencephalic neuroepithelium has been transplanted in an inverted position. By means of a monoclonal antibody, "Mab 4D9," recognizing engrailed proteins, it is shown that the expression of the Chick-en gene is regulated in the inverted neuroepithelium according to its new position in the host neural tube. The regulation takes place within 20 hr after transplantation. These results, together with previous data demonstrating that the phenotypic expression of the inverted neuroepithelium depends, also, on its new position in the host neural tube, strongly suggest that the engrailed protein could play an important role in the positional specification of the mes-metencephalic neuroepithelium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号