共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Weiguang Wang Diana Rigueur Karen M. Lyons 《Birth defects research. Part C, Embryo today : reviews》2014,102(1):37-51
Members of the transforming growth factor beta (TGFβ) superfamily of secreted factors play essential roles in nearly every aspect of cartilage formation and maintenance. However, the mechanisms by which TGFβs transduce their effects in cartilage in vivo remain poorly understood. Mutations in several TGFβ family members, their receptors, extracellular modulators, and intracellular transducers have been described, and these usually impact the development of the cartilaginous skeleton. Furthermore, genome‐wide association studies have linked components of the (TGFβ) superfamily to susceptibility to osteoarthritis. This review focuses on recent discoveries from genetic studies in the mouse regarding the regulation of TGFβ signaling in developing growth plate and articular cartilage, as well as the different modes of crosstalk between canonical and noncanonical TGFβ signaling. These new insights into TGFβ signaling in cartilage may open new prospects for therapies that maintain healthy articular cartilage. Birth Defects Research (Part C) 102:37–51, 2014. © 2014 Wiley Periodicals, Inc. 相似文献
3.
4.
5.
6.
Susana Jurado Natalia Garcia‐Giralt Adolfo Díez‐Pérez Pedro Esbrit Guy Yoskovitz Lídia Agueda Roser Urreizti Lluís Pérez‐Edo Guillem Saló Leonardo Mellibovsky Susana Balcells Daniel Grinberg Xavier Nogués 《Journal of cellular biochemistry》2010,110(2):304-310
The RANKL/RANK/OPG pathway is essential for bone remodeling regulation. Many hormones and cytokines are involved in regulating gene expression in most of the pathway components. Moreover, any deregulation of this pathway can alter bone metabolism, resulting in loss or gain of bone mass. Whether osteoblasts from osteoporotic and nonosteoporotic patients respond differently to cytokines is unknown. The aim of this study was to compare the effect of interleukin (IL)‐1β, proftaglandin E2 (PGE2), and transforming growth factor‐β1 (TGF‐β1) treatments on OPG and RANKL gene expression in normal (n = 11) and osteoporotic (n = 8) primary osteoblasts. OPG and RANKL mRNA levels of primary human osteoblastic (hOB) cell cultures were assessed by real‐time PCR. In all cultures, OPG mRNA increased significantly in response to IL‐1β treatment and decreased in response to TGF‐β1 whereas PGE2 treatment had no effect. RANKL mRNA levels were significantly increased by all treatments. Differences in OPG and RANKL responses were observed between osteoporotic and nonosteoporotic hOB: in osteoporotic hOB, the OPG response to IL‐1β treatment was up to three times lower (P = 0.009), whereas that of RANKL response to TGF‐β1 was five times higher (P = 0.002) after 8 h of treatment, as compared with those in nonosteoporotic hOBs. In conclusion, osteoporotic hOB cells showed an anomalous response under cytokine stimulation, consistent with an enhanced osteoclastogenesis resulting in high levels of bone resorption. J. Cell. Biochem. 110: 304–310, 2010. © 2010 Wiley‐Liss, Inc. 相似文献
7.
Bone morphogenetic protein-3b (BMP-3b) gene expression is correlated with differentiation in rat calvarial osteoblasts 总被引:1,自引:0,他引:1
BMP-3b (also called GDF-10) is a novel BMP-3-related protein recently discovered in rat femur tissue. Gene expression of BMP-3b in osteoblastic cells and its regulation by prolonged culture, BMP-2 and transforming growth factor beta1 (TGF-beta1) were examined. The BMP-3b gene was highly expressed in rat osteoblasts obtained from calvarial bones but not in the osteoblastic cell lines (MC3T3-E1 and U2-OS). BMP-3b mRNA increased during osteoblastic differentiation in prolonged culture and was associated with increased alkaline phosphatase (ALPase) activity. When BMP-2, an enhancer of ALPase activity, was added to the primary osteoblast culture, BMP-3b mRNA increased 6.9-fold after 24 h. In contrast, TGF-beta1 treatment, which suppresses ALPase activity, rapidly and completely inhibited gene expression of BMP-3b. The regulation of BMP-3 mRNA differed from that of BMP-3b, even though both proteins share 81% identity. These findings indicate that BMP-3b gene expression is regulated by osteoblastic differentiation and BMP-3b functions in highly differentiated osteoblasts. 相似文献
8.
9.
10.
11.
In this paper we examined the effects of transforming growth factor β (TGFβ) on the proliferation and differentiation of rabbit tracheal epithelial cells in primary culture. Treatment of these cells with TGFβ inhibits cell proliferation in a time- and dose-dependent manner; concentrations as low as 1 pM are able to inhibit cell growth. Concomitantly, TGFβ causes cells to accumulate in the G0/G1 phase of the cell cycle and a sharp reduction in the ability of the cells to form colonies after subculture at clonal density. These results indicate that TGFβ induces terminal cell division in these cells. The inhibition of cell growth is accompanied by changes in cell morphology and a stimulation of the formation of cross-linked envelopes. TGFβ enhances the levels of transglutaminase activity and cholesterol sulfate, two markers of squamous differentiation. Our results indicate that TGFβ induces terminal squamous cell differentiation in rabbit tracheal epithelial cells. Retinoic acid (RA) does not affect the commitment to terminal cell division induced by TGFβ, but inhibits the expression of the squamous phenotype. Growth of normal human bronchial epithelial cells was affected by TGFβ in a way similar to that of rabbit tracheal epithelial cells. Several carcinoma cell lines tested were quite resistant to TGFβ, whereas growth of one carcinoma cell line was stimulated by TGFβ. These results indicate that a modified response to TGFβ could be one mechanism involved in the aberrant growth control of malignant cells. 相似文献
12.
Identification of the role of bone morphogenetic protein (BMP) and transforming growth factor‐β (TGF‐β) signaling in the trajectory of serotonergic differentiation in a rapid assay in mouse embryonic stem cells in vitro 下载免费PDF全文
Atsushi Yamasaki Atsushi Kasai Akihiro Toi Maki Kurita Saki Kimoto Atsuko Hayata‐Takano Takanobu Nakazawa Kazuki Nagayasu Norihito Shintani Ryota Hashimoto Akira Ito Herbert Y. Meltzer Yukio Ago James A. Waschek Yusuke Onaka Toshio Matsuda Akemichi Baba Hitoshi Hashimoto 《Journal of neurochemistry》2015,132(4):418-428
The mechanism by which extracellular molecules control serotonergic cell fate remains elusive. Recently, we showed that noggin, which inactivates bone morphogenetic proteins (BMPs), induces serotonergic differentiation of mouse embryonic (ES) and induced pluripotent stem cells with coordinated gene expression along the serotonergic lineage. Here, we created a rapid assay for serotonergic induction by generating knock‐in ES cells expressing a naturally secreted Gaussia luciferase driven by the enhancer of Pet‐1/Fev, a landmark of serotonergic differentiation. Using these cells, we performed candidate‐based screening and identified BMP type I receptor kinase inhibitors LDN‐193189 and DMH1 as activators of luciferase. LDN‐193189 induced ES cells to express the genes encoding Pet‐1, tryptophan hydroxylase 2, and the serotonin transporter, and increased serotonin release without altering dopamine release. In contrast, TGF‐β receptor inhibitor SB‐431542 selectively inhibited serotonergic differentiation, without changing overall neuronal differentiation. LDN‐193189 inhibited expression of the BMP signaling target gene Id, and induced the TGF‐β target gene Lefty, whereas the opposite effect was observed with SB‐431542. This study thus provides a new tool to investigate serotonergic differentiation and suggests that inhibition of BMP type I receptors and concomitant activation of TGF‐β receptor signaling are implicated in serotonergic differentiation.
13.
14.
15.
16.
TGFβ signaling and the control of myofibroblast differentiation: Implications for chronic inflammatory disorders 总被引:1,自引:0,他引:1 下载免费PDF全文
Jonathon M. Carthy 《Journal of cellular physiology》2018,233(1):98-106
The myofibroblast is a highly specialized cell type that plays a critical role during normal tissue wound healing, but also contributes pathologically to chronic inflammatory conditions such as fibrosis and cancer. As fibrotic conditions continue to be a major burden to the public health system, novel therapies that target the function of myofibroblasts may show promise in the clinic. The cytokine transforming growth factor β (TGFβ) is the most potent known inducer of myofibroblast differentiation and thus represents a powerful target to modify myofibroblast function during disease. This review focuses on our current understanding of the key signaling pathways activated by TGFβ during myofibroblast differentiation. 相似文献
17.
Angharad E. Simpson Martin J. Stoddart Catrin M. Davies Katharina Jähn Pamela I. Furlong Jürg A. Gasser David B. Jones Brendon S. Noble Robert G. Richards 《Cell biochemistry and function》2009,27(1):23-29
The goal of this study was to assess the effect of the addition of TGFβ3, alone or in combination with loading, on the survival of osteocytes in 3D human explant cancellous bone during long-term culture in an ex vivo loading bioreactor. Human cancellous bone explants were cultured for up to 14 days with or without TGFβ3 (15 ng ml−1) and with or without loading (300 cycles, at 1 Hz, producing 4000 microstrain). Bone core response was visualized using undecalcified histology with morphological methods after embedding with Technovit 9100 New® resin. Histological examination revealed normal gross level bone structure with or without the application of load or the addition of TGFβ3. The viability of the osteocytes within the bone was assessed by lactate dehydrogenase (LDH) activity. We demonstrate that this ex vivo loading bioreactor is able to maintain a high percentage (over 50%) of viable osteocytes throughout the bone explants after 14 days in ex vivo culture. Further to this, the combination of daily loading and TGFβ3 administration produced superior osteocyte survival at the core centres when compared to loading or TGFβ alone. Copyright © 2008 John Wiley & Sons, Ltd. 相似文献
18.
Jennifer H. Dorrington James J. Bendell Shafiq A. Khan 《The Journal of steroid biochemistry and molecular biology》1993,44(4-6):441-447
Estradiol-17β (E2) is a mitogen in vivo for the proliferation of granulosa cells in the rat ovary. E2 is synthesized by the preovulatory follicle through a series of gonadotrophin-dependent events: LH stimulates thecal cells to synthesize androgens (androstenedione and testosterone) which are substrates for FSH-induced aromatization to estrogens in granulosa cells. More recently, we have found that transforming growth factor-β (TGF-β) stimulates DNA synthesis in rat granulosa cells in vitro and this effect is augmented by FSH. Since E2 is a mitogen in vivo and TGF-β is the only known growth factor to stimulate proliferation in vitro, the possible link between the actions of E2 and TGF-β were examined. E2 stimulated the secretion of a TGF-β-like factor by rat granulosa cells in culture, and with time DNA synthesis was stimulated. The mitogenic action of E2 was enhanced in the presence of FSH, and attenuated by a neutralizing antibody to TGF-β. The latter observations have identified TGF-β as the “missing-link” in the mitogenic actions of E2 on rat granulosa cells. In addition to the growth-promoting actions of TGF-β plus FSH, TGF-β enhanced FSH-induced aromatase activity. Consequently, FSH plus TGF-β stimulates both the proliferation and aromatization capacity of rat granulosa cells. We propose that interactions between FSH, E2 and TGF-β lead to the exponential increase in serum E2 levels that occurs during the follicular phase of the cycle. Similarly, FSH stimulates the aromatization of exogenous androgens to estrogen by Sertoli cells isolated from immature rat testes, and there is a correlation between FSH-induced aromatization and mitotic activity. We have shown that FSH plus TGF-β stimulates DNA synthesis in Sertoli cells. Since E2 increases the secretion of TGF-β by Sertoli cells, interactions between FSH, E2 and TGF-β may provide the mitogenic stimulus for Sertoli cells during the prepubertal period. In summary, our findings suggest that the estrogen-induced growth of rat granulosa cells is mediated through the production of TGF-β, which acts as an autocrine regulator of proliferation. We also propose that the growth-promoting actions of FSH on Sertoli cells may depend upon a cascade series of events involving estrogens and TGF-β. 相似文献
19.
Danielle Lindenmuth Andr J. van Wijnen Sheldon Penman Janet L. Stein Gary S. Stein Jane B. Lian 《Journal of cellular biochemistry》1998,69(3):291-303
Nuclear matrix protein (NMP) composition of osteoblasts shows distinct two-dimensional gel electrophoretic profiles of labeled proteins as a function of stages of cellular differentiation. Because NMPs are involved in the control of gene expression, we examined modifications in the representation of NMPs induced by TGF-β1 treatment of osteoblasts to gain insight into the effects of TGF-β on development of the osteoblast phenotype. Exposure of proliferating fetal rat calvarial derived primary cells in culture to TGF-β1 for 48 h (day 4–6) modifies osteoblast cell morphology and proliferation and blocks subsequent formation of mineralized nodules. Nuclear matrix protein profiles were very similar between control and TGF-β–treated cultures until day 14, but subsequently differences in nuclear matrix proteins were apparent in TGF-β–treated cultures. These findings support the concept that TGF-β1 modifies the final stage of osteoblast mineralization and alters the composition of the osteoblast nuclear matrix as reflected by selective and TGF-β–dependent modifications in the levels of specific nuclear matrix proteins. The specific changes induced by TGF-β in nuclear matrix associated proteins may reflect specialized mechanisms by which TGF-β signalling mediates the alterations in cell organization and nodule formation and/or the consequential block in extracellular mineralization. J. Cell. Biochem. 69:291–303, 1998. © 1998 Wiley-Liss, Inc. 相似文献
20.
Leila Akkari Delphine Haouzi Fabien Binam Nicolas Floc'h Patrice Lassus Stephen Baghdiguian Urszula Hibner 《Journal of cellular physiology》2010,225(1):186-195
Cellular differentiation relies on both physical and chemical environmental cues. The bipotential mouse embryonic liver (BMEL) cells are early progenitors of liver epithelial cells with an apparently infinite proliferative potential. These cells, which remain undifferentiated in a monolayer culture, differentiate upon release from geometrical constraints imposed by growth on a stiff plastic plate. In a complex three dimensional environment of a Matrigel extracellular matrix, BMEL cells form two types of polarized organoids of distinct morphologies: cyst‐like structures suggesting cholangiocyte‐type organization or complex organoids, reminiscent of liver parenchyma and associated with acquisition of hepatocyte‐specific phenotypic markers. The choice of the in vitro differentiation lineage is governed by Transforming Growth Factor‐β (TGF‐β) signaling. Our results suggest that morphological cues initiate the differentiation of early hepatic precursors and confirm the inhibitory role of TGF‐β on hepatocytic lineage differentiation. J. Cell. Physiol. 225: 186–195, 2010. © 2010 Wiley‐Liss, Inc. 相似文献