首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Fibroblast growth factors and their receptors in the central nervous system   总被引:22,自引:0,他引:22  
Fibroblast growth factors (FGFs) and their receptors constitute an elaborate signaling system that participates in many developmental and repair processes of virtually all mammalian tissues. Among the 23 FGF members, ten have been identified in the brain. Four FGF receptors (FGFRs), receptor tyrosine kinases, are known so far. Ligand binding of these receptors greatly depends on the presence of heparan sulfate proteoglycans, which act as low affinity FGFRs. Ligand binding specificity of FGFRs depends on the third extracellular Ig-like domain, which is subject to alternative splicing. Activation of FGFRs triggers several intracellular signaling cascades. These include phosphorylation of src and PLC leading finally to activation of PKC, as well as activation of Crk and Shc. SNT/FRS2 serves as an alternative link of FGFRs to the activation of PKC and, in addition, activates the Ras signaling cascade. In the CNS, FGFs are widely expressed; FGF-2 is predominantly synthesized by astrocytes, whereas other FGF family members, e.g., FGF-5, FGF-8, and FGF-9, are primarily synthesized by neurons. During CNS development FGFs play important roles in neurogenesis, axon growth, and differentiation. In addition, FGFs are major determinants of neuronal survival both during development and during adulthood. Adult neurogenesis depends greatly on FGF-2. Finally, FGF-1 and FGF-2 seem to be involved in the regulation of synaptic plasticity and processes attributed to learning and memory.  相似文献   

2.
Fibroblast growth factors (FGFs) are a family of nine proteins that bind to three distinct types of cell surface molecules: (i) FGF receptor tyrosine kinases (FGFR-1 through FGFR-4); (ii) a cysteine-rich FGF receptor (CFR); and (iii) heparan sulfate proteoglycans (HSPGs). Signaling by FGFs requires participation of at least two of these receptors: the FGFRs and HSPGs form a signaling complex. The length and sulfation pattern of the heparan sulfate chain determines both the activity of the signaling complex and, in part, the ligand specificity for FGFR-1. Thus, the heparan sulfate proteoglycans are likely to play an essential role in signaling. We have recently identified a role for FGF in limb bud development in vivo. In the chick limb bud, ectopic expression of the 18 kDa form of FGF-2 or FGF-2 fused to an artificial signal peptide at its amino terminus causes skeletal duplications. These data, and the observations that FGF-2 is localized to the subjacent mesoderm and the apical ectodermal ridge in the early developing limb, suggest that FGF-2 plays an important role in limb outgrowth. We propose that FGF-2 is an apical ectodermal ridgederived factor that participates in limb outgrowth and patterning. © 1994 Wiley-Liss, Inc.  相似文献   

3.
4.
Binding of fibroblast growth factors (FGFs) to receptor tyrosine kinases (FGFRs) and signaling is facilitated by binding of FGF to heparan sulfate proteoglycans (HSPGs). There are multiple families of HSPGs, including extracellular and cell surface forms. An important and potentially controversial question is whether cell surface forms of HSPGs act as positive or negative regulators of FGF signaling. This study examines the ability of the cell surface HSPG syndecan-1 to regulate FGF binding and signaling. HSPG-deficient Raji lymphoma cells, expressing a transfected syndecan-1 cDNA (Raji S1 cells), were used as HSPG “donor” cells. BaF3 cells, expressing an FGFR1 cDNA (FR1C-11 cells), were used as FGFR “reporter” cells. Using Raji S1 cells preincubated with FGF, it was found that they formed heterotypic aggregates with FR1C-11 cells in the presence of FGF-2, but not FGF-1. In addition, the FR1C-11 cells demonstrated FGF-2, but not FGF-1, dependent survival when cultured on fixed Raji S1 cells. Thus, Raji syndecan-1 (1) differentially regulates the binding and signaling of FGFs 1 and 2 and (2) acts as a positive regulator of FGF-2 signaling. J. Cell. Physiol. 174:310–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

5.
Several members of the fibroblast growth factor (FGF) family are potent endothelial cell (EC) mitogens and angiogenic factors, and their activities can be mediated by four tyrosine kinase receptors (FGFR1-4). In addition, FGFs can induce the release of inflammatory mediators by ECs and the expression of adhesion molecules at their surface, thereby favoring the recruitment and transvascular migration of inflammatory cells such as neutrophils. Neither the expression nor the biological activities that could be mediated by FGFRs have been investigated in human neutrophils. By biochemical and cytological analyses, we observed that purified circulating human neutrophils from healthy individuals expressed varying levels of FGFRs in their cytosol and at their cytoplasmic membrane. FGFR-2 was identified as the sole cell surface receptor, with FGFR-1 and -4 localizing in the cytosol and FGFR-3 being undetectable. We assessed the capacity of FGF-1 and FGF-2 to induce neutrophil chemotaxis in a modified Boyden microchamber and observed that they increase neutrophil transmigration at 10(-10) and 10(-9) M and by 1.77- and 2.34-fold, respectively, as compared with PBS-treated cells. Treatment with a selective anti-FGFR-2 antibody reduced FGF-1-mediated chemotaxis by 75% and abrogated the effect of FGF-2, while the blockade of FGFR-1 and -4 partially inhibited (15-40%) FGF-chemotactic activities. In summary, our data are the first to report the expression of FGF receptors in human neutrophils, with FGF-1 and FGF-2 promoting neutrophil chemotaxis mainly through FGFR-2 activation.  相似文献   

6.
The fibroblast growth factor (FGF) family plays a key role in a multitude of physiological and pathological processes. The activities of FGFs are mediated by a family of tyrosine kinase receptors, designated FGFRs. The mechanism by which FGFs induce receptor activation is controversial. Despite their structural similarity, FGFs display distinct receptor binding characteristics and cell type specificity. Previous studies with FGF-2 identified a low affinity receptor binding site that is located within a loop connecting its 9th and 10th beta-strands. The corresponding residues in the other family members are highly variable, and it was proposed that the variability might confer on FGFs unique receptor binding characteristics. We studied the role of this loop in FGF-7 by both site-directed mutagenesis and loop replacement. Unlike the other members of the FGF family, FGF-7 recognizes only one FGFR isoform and is, therefore, ideal for studies of how the specificity in the FGF-FGFR interaction is conferred at the structural level. Point mutations in the loop of FGF-7 did not change receptor binding affinity but resulted in reduced mitogenic potency and reduced ability to induce receptor-mediated phosphorylation events. These results suggest that the loop of FGF-7 fulfills the role of low affinity binding site required for receptor activation. The observation that it is possible to uncouple FGF-7 receptor binding and biological activity favors a bivalent model for FGFR dimerization, and it may be clinically relevant to the design of FGF-7 antagonists. Reciprocal loop replacement between FGF-7 and FGF-2 had no effect on their known receptor binding affinities nor did it alter their known specificity in eliciting a mitogenic response. In conclusion, these results suggest that, despite the diversity in the loop structure of FGF-2 and FGF-7, the loop has a similar function in both growth factors.  相似文献   

7.
The present investigation extends our previous studies on PGF2alpha-mediated signalling in osteoblast metabolism. In particular, the role of PGF2alpha as modulator of heparan sulphate proteoglycans (HSPGs), fibroblast growth factor 2 (FGF-2) and fibroblast growth factor receptors (FGFRs) was evaluated. We hereby reported the novel observation that PGF2alpha was able to promote the formation of HSPGs/FGF-2/FGFRs complexes. Moreover, our data suggested that PGF2alpha could induce new synthesis of heparan sulphate (HS) chains on osteoblasts by a mechanism involving a modulation of MAPK signalling and that HS is required for the regulation of FGF-2 induced by PGF2alpha. Indeed, a proteolytic cleavage of HSPGs with heparinase III (Hep III) prior to PGF2alpha administration down-regulated the basal expression of phospho-p44/42, likely inhibiting FGFRs tyrosine kinase activity. Interestingly, MAPK signalling influenced syntheses and subcellular localization of FGF-2, its specific receptor and HS. In addition, the proteolytic cleavage by Hep III and the MAPK kinase inhibition by PD-98059 also revealed that PGF2alpha induced cell proliferation is dependent on HSPGs and FGF-2 specific receptor, respectively. Of further relevance of this study, we demonstrated, by using a specific siRNA for FGFR1, that PGF2alpha modulates Runx2 expression by FGFR1 and HS.  相似文献   

8.
Fibroblast growth factors (FGFs) mediate a multitude of physiological and pathological processes by activating a family of tyrosine kinase receptors (FGFRs). Each FGFR binds to a unique subset of FGFs and ligand binding specificity is essential in regulating FGF activity. FGF-7 recognizes one FGFR isoform known as the FGFR2 IIIb isoform or keratinocyte growth factor receptor (KGFR), whereas FGF-2 binds well to FGFR1, FGFR2, and FGFR4 but interacts poorly with KGFR. Previously, mutations in FGF-2 identified a set of residues that are important for high affinity receptor binding, known as the primary receptor-binding site. FGF-7 contains this primary site as well as a region that restricts interaction with FGFR1. The sequences that confer on FGF-7 its specific binding to KGFR have not been identified. By utilizing domain swapping and site-directed mutagenesis we have found that the loop connecting the beta4-beta5 strands of FGF-7 contributes to high affinity receptor binding and is critical for KGFR recognition. Replacement of this loop with the homologous loop from FGF-2 dramatically reduced both the affinity of FGF-7 for KGFR and its biological potency but did not result in the ability to bind FGFR1. Point mutations in residues comprising this loop of FGF-7 reduced both binding affinity and biological potency. The reciprocal loop replacement mutant (FGF2-L4/7) retained FGF-2 like affinity for FGFR1 and for KGFR. Our results show that topologically similar regions in these two FGFs have different roles in regulating receptor binding specificity and suggest that specificity may require the concerted action of distinct regions of an FGF.  相似文献   

9.
Activation of fibroblast growth factor receptors (FGFRs) requires the formation of a ternary complex between fibroblast growth factors (FGFs), FGFRs, and heparan sulfate proteoglycans, which are all located on the cell surface and the basement membrane (BM)/extracellular matrix (ECM). Heparan sulfate proteoglycans appear to stabilize FGFs by inhibiting the rapid degradation of FGFs normally observed in solution. Because of the pivotal role of FGFs in proliferative and developmental pathways, a number of recent studies have attempted to engineer microenvironments to stabilize growth factors for use in applications in tissue culture and regenerative medicine. In this communication, we demonstrate that covalent linkage of FGF-2 to nanofibrillar surfaces (defined as covalently bound FGF-2) composed of a network of polyamide nanofibers resulted in the maintenance of the biological efficacy of FGF-2 when stored dry for at least 6 months at 25°C or 4°C. Moreover, covalently bound FGF-2 was more potent than FGF-2 in solution when measured in cellular assays of proliferation and viability using a variety of cell types. Covalently bound FGF-2 also strongly activated FGFR, extracellular signal-regulated kinase (ERK1/2), and c-fos. Hence cell-signaling molecules can be incorporated into a synthetic nanofibrillar surface, providing a novel means to enhance their stability and biological activity.  相似文献   

10.
Heparan sulfates (HS) play an important role in the control of cell growth and differentiation by virtue of their ability to modulate the activities of heparin-binding growth factors, an issue that is particularly well studied for fibroblast growth factors (FGFs). HS/heparin co-ordinate the interaction of FGFs with their receptors (FGFRs) and are thought to play a critical role in receptor dimerization. Biochemical and crystallographic studies, conducted mainly with FGF-2 or FGF-1 and FGF receptors 1 and 2, suggests that an octasaccharide is the minimal length required for FGF- and FGFR-induced dimerization and subsequent activation. In addition, 6-O-sulfate groups are thought to be essential for binding of HS to FGFR and for receptor dimerization. We show here that oligosaccharides shorter than 8 sugar units support activation of FGFR2 IIIb by FGF-1 and interaction of FGFR4 with FGF-1. In contrast, only relatively long oligosaccharides supported receptor binding and activation in the FGF-1.FGFR1 or FGF-7.FGFR2 IIIb setting. In addition, both 6-O- and 2-O-desulfated heparin activated FGF-1 signaling via FGFR2 IIIb, whereas neither one stimulated FGF-1 signaling via FGFR1 or FGF-7 via FGFR2 IIIb. These findings indicate that the structure of HS required for activating FGFs is dictated by the specific FGF and FGFR combination. These different requirements may reflect the differences in the mode by which a given FGFR interacts with the various FGFs.  相似文献   

11.
In mammals, fibroblast growth factors (FGFs) are encoded by 22 genes. FGFs bind and activate alternatively spliced forms of four tyrosine kinase FGF receptors (FGFRs 1-4). The spatial and temporal expression patterns of FGFs and FGFRs and the ability of specific ligand-receptor pairs to actively signal are important factors regulating FGF activity in a variety of biological processes. FGF signaling activity is regulated by the binding specificity of ligands and receptors and is modulated by extrinsic cofactors such as heparan sulfate proteoglycans. In previous studies, we have engineered BaF3 cell lines to express the seven principal FGFRs and used these cell lines to determine the receptor binding specificity of FGFs 1-9 by using relative mitogenic activity as the readout. Here we have extended these semiquantitative studies to assess the receptor binding specificity of the remaining FGFs 10-23. This study completes the mitogenesis-based comparison of receptor specificity of the entire FGF family under standard conditions and should help in interpreting and predicting in vivo biological activity.  相似文献   

12.
The keratinocyte growth factor (KGF or FGF-7) is unique among its family members both in its target cell specificity and its inhibition by the addition of heparin and the native heparan-sulfate proteoglycan (HSPG), glypican-1 in cells expressing endogenous HSPGs. FGF-1, which binds the FGF-7 receptor with a similar affinity as FGF-7, is stimulated by both molecules. In the present study, we investigated the modulation of FGF-7 activities by heparin and glypican-1 in HS-free background utilizing either HS-deficient cells expressing the FGF-7 receptor (designated BaF/KGFR cells) or soluble extracellular domain of the receptor. At physiological concentrations of FGF-7, heparin was required for high affinity receptor binding and for signaling in BaF/KGFR cells. In contrast, binding of FGF-7 to the soluble form of the receptor did not require heparin. However, high concentrations of heparin inhibited the binding of FGF-7 to both the cell surface and the soluble receptor, similar to the reported effect of heparin in cells expressing endogenous HSPGs. The difference in heparin dependence for high affinity interaction between the cell surface and soluble receptor may be due to other molecule(s) present on cell surfaces. Glypican-1 differed from heparin in that it stimulated FGF-1 but not FGF-7 activities in BaF/KGFR cells. Glypican-1 abrogated the stimulatory effect of heparin, and heparin reversed the inhibitory effect of glypican-1, indicating that this HSPG inhibits FGF-7 activities by acting, most likely, as a competitive inhibitor of stimulatory HSPG species for FGF-7. The regulatory effect of glypican-1 is mediated at the level of interaction with the growth factor as glypican-1 did not bind the KGFR. The effect of heparin and glypican-1 on FGF-1 and FGF-7 oligomerization was studied employing high and physiological concentrations of growth factors. We did not find a correlation between the effects of these glycosaminoglycans on FGFs biological activity and oligomerization. Altogether, our findings argue against the heparin-linked dimer presentation model as key in FGFR activation, and support the notion that HSPGs primarily affect high affinity interaction of FGFs with their receptors.  相似文献   

13.
The role of fibroblast growth factors (FGFs) in neural induction is controversial [1,2]. Although FGF signalling has been implicated in early neural induction [3-5], a late role for FGFs in neural development is not well established. Indeed, it is thought that FGFs induce a precursor cell fate but are not able to induce neuronal differentiation or late neural markers [6-8]. It is also not known whether the same or distinct FGFs and FGF receptors (FGFRs) mediate the effects on mesoderm and neural development. We report that Xenopus embryos expressing ectopic FGF-8 develop an abundance of ectopic neurons that extend to the ventral, non-neural, ectoderm, but show no ectopic or enhanced notochord or somitic markers. FGF-8 inhibited the expression of an early mesoderm marker, Xbra, in contrast to eFGF, which induced ectopic Xbra robustly and neuronal differentiation weakly. The effect of FGF-8 on neurogenesis was blocked by dominant-negative FGFR-4a (DeltaXFGFR-4a). Endogenous neurogenesis was also blocked by DeltaXFGFR-4a and less efficiently by dominant-negative FGFR-1 (XFD), suggesting that it depends preferentially on signalling through FGFR-4a. The results suggest that FGF-8 and FGFR-4a signalling promotes neurogenesis and, unlike other FGFs, FGF-8 interferes with mesoderm induction. Thus, different FGFs show specificity for mesoderm induction versus neurogenesis and this may be mediated, at least in part, by the use of distinct receptors.  相似文献   

14.
Fibroblast growth factors (FGFs) mediate many cell-cell signaling events during early development. While the actions of FGFs have been well-studied, the roles played by specific members of the FGF receptor (FGFR) family are poorly understood. To characterize the roles played by individual FGFRs we compared the regulation and expression of the three Xenopus FGFRs described to date (XFGFR-1, XFGFR-2, and XFGFR-4). First, we describe the expression of Xenopus FGFR-4; XFGFR-4 is present as a maternal mRNA and is found in the embryo through at least the tadpole stage. XFGFR-4 and XFGFR-1 mRNAs are present at comparable levels, arguing that both mediate FGF signaling during early development. Second, the expression of XFGFR-4 in animal caps differs from the expression of XFGFR-1 and XFGFR-2, suggesting that the FGFRs are independently regulated in ectoderm. Third, using whole-mount in situ hybridization, we show that XFGFR-1, XFGFR-2, and XFGFR-4 are expressed in dramatically different patterns, arguing that specific FGF signaling events are mediated by different members of the FGFR family. Among these, FGF signaling during the induction of neural crest cells is likely to be mediated by XFGFR-4. Comparison of our results with previously reported FGFR expression patterns reveals that FGFR-1 expression is highly conserved among vertebrate embryos, and FGFR-2 expression shows many features that are conserved and some that are divergent. In contrast, the expression pattern of FGFR-4 is highly divergent among vertebrate embryos. Received: 5 August 1999 / Accepted: 18 January 2000  相似文献   

15.
Fibroblast growth factors (FGFs) are signalling peptides that control important cell processes such as proliferation, differentiation, migration, adhesion and survival. Through binding to different types of receptor on the cell surface, these peptides can have different effects on a target cell, the effect achieved depending on many features. Thus, each of the known FGFs elicits specific biological responses. FGF receptors (FGFR 1–5) initiate diverse intracellular pathways, which in turn lead to a variety of results. FGFs also bind the range of FGFRs with a series of affinities and each type of cells expresses FGFRs in different qualitative and quantitative patterns, which also affect responses. To summarize, cell response to binding of an FGF ligand depends on type of FGF, FGF receptor and target cell, all interacting in concert. This review aims to examine properties of the FGF family and its members receptors. It also aims to summarize features of intracellular signalling and highlight differential effects of the various FGFs in different circumstances.  相似文献   

16.
Heparin binding (HB) proteins mediate a wide range of important cellular processes, which makes this class of proteins biopharmaceutically important. Engineering HB proteins may bring many advantages, but it necessitates cost effective and efficient purification methodologies compared to currently available methods. One of the most important classes of HB proteins are fibroblast growth factors (FGFs) and their receptors (FGFRs). In this study, we report an efficient off-column purification of FGF-1 from soluble fractions and purification of the D2 domain of FGFR from insoluble inclusion bodies, using a weak Amberlite cation (IRC) exchanger. FGF-1 and the D2 domain have been expressed in Escherichia coli and purified to homogeneity using IRC resin. This approach is an alternative to conventional affinity column chromatography, which exhibits several disadvantages, including time-consuming experimental procedures for purification and regeneration and results in the expensive production of recombinant proteins. Results of the heparin binding chromatography and steady state fluorescence experiments show that the FGF-1 and the D2 are in a native conformation. The findings of this study will not only aid an in-depth investigation of this class of proteins but will also provide avenues for inexpensive and efficient purification of other important biological macromolecules.  相似文献   

17.
18.
19.
It has been demonstrated that fibroblast growth factor receptors are key regulators of endochondral bone growth. However, it has not been determined what fibroblast growth factor ligand(s) (FGFs) are important in this process. This study sought to determine whether FGFs 1, 2, 4, 5, 6, 7, 8, 9, and 10 were capable of stimulating avian chondrocyte proliferation in vitro. We have found that FGFs 2, 4, and 9 strongly stimulate avian chondrocyte proliferation while FGFs 6 and 8 stimulate proliferation to a lesser extent. RT-PCR indicates that FGF-2 and FGF-4 are expressed in the postnatal avian epiphyseal growth plate (EGP) while FGF-8 and FGF-9 are not. Thus, FGF-2 and FGF-4 stimulate chondrocyte proliferation and are both present in the EGP. This suggests that FGF-2 and FGF-4 may be important ligands, in vivo, for the regulation of endochondral bone growth. These observations coupled with our observation that multiple avian FGF receptors (Cek1, Cek2, Cek3, and FREK) are expressed in proliferative chondrocytes highlights the complexity of FGF signaling pathways in postnatal endochondral bone growth.  相似文献   

20.
The growth factor signaling mechanisms responsible for neointimal smooth muscle cell (SMC) proliferation and accumulation, a characteristic feature of many vascular pathologies that can lead to restenosis after angioplasty, remain to be identified. Here, we examined the contribution of fibroblast growth factor receptors (FGFRs) 2 and 3 as well as novel fibroblast growth factors (FGFs) to such proliferation. Balloon catheter injury to the rat carotid artery stimulated the expression of two distinctly spliced FGFR-2 isoforms, differing only by the presence or absence of the acidic box, and two distinctly spliced FGFR-3 isoforms containing the acidic box and differing only by the presence of either the IIIb or IIIc exon. Post-injury arterial administration of recombinant adenoviruses expressing dominant negative mutant forms of these FGFRs were used to assess the roles of the endogenous FGFR isoforms in neointimal SMC proliferation. Dominant negative FGFR-2 containing the acidic box inhibited such proliferation by 40%, whereas the dominant negative FGFR-3 forms had little effect. Expression of FGF-9, known to be capable of binding to all four neointimal FGFR-2/-3 isoforms, was abundant within the neointima. FGF-9 markedly stimulated both the proliferation of neointimal SMCs and the activation of extracellular signal-related kinases 1/2, effects which were abrogated by the administration of antisense FGF-9 oligonucleotides to injured arteries and the expression of the dominant negative FGFR-2 adenovirus in cultured neointimal SMCs. These studies demonstrate that, although multiple FGFRs are induced in neointimal SMCs following arterial injury, specific interactions between distinctly spliced FGFR-2 isoforms and FGF-9 contribute to the proliferation of these SMCs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号