首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Interpretation of the toothplates of chimaeroid fishes   总被引:1,自引:0,他引:1  
It has been argued that the toothplates of chimaeroid fishes exhibit a mode of growth that is fundamentally different from that of other chondrichthyans. Chimaeroid toothplates are supposed to be statodont, growing from the basal surface, whereas other chondrichthyan dentitions are lyodont, growing from the lingual towards the labial surface of the jaw. That idea is shown to be mistaken, because chimaeroid toothplates grow from the lingual surface, like other chondrichthyan dentitions. The mistake resulted from confusion about the nomenclature of toothplate surfaces, and on the choice of Chimaera as a Recent model. Callorhynchus is a more appropriate model, since it is shown to exhibit a primitive toothplate conformation, with the labial and symphysial margins of the occlusal surface bounded by a descending lamina which is applied to the margin of the jaw cartilage and grows basally throughout life. The descending lamina is well developed in toothplates of the extinct chimaeroid genera Ischyodus, Pachymylus and Brachymylus, but is much reduced in all Recent genera other than Callorhynchus. A basally-growing descending lamina also bounds the labial and symphysial margins of the principal toothplates in the Mesozoic myriacanthoids and Squaloraja. The toothplates of the Palaeozoic ‘cochliodonts' are reviewed; amongst them, the chondrenchelyids are the only forms with a basally growing descending lamina. So far as the dentition and its mode of growth arc concerned, the closest Palaeozoic relatives of chimaeroids seem to be the chondrenchelyids. The only statodont (basally growing) toothplates found in the course of this work are those of ptyctodont placoderms, which are therefore unlikely to be related to any chondrichthyans. Statodonty in its original sense (failure to shed teeth) is shown to be widespread and possibly primitive in chondrichthyans. Cochliodont and chimaeroid toothplates grow in a logarithmic spiral. Toothplates of primitive chimaeroid type, with basally growing marginal descending laminae, can develop only when the constant angle of the spiral is small (less than about 35°), and when the oral surface of the jaw grows to the same logarithmic spiral.  相似文献   

2.
The development of Callorhinchus milii, a primitive chondrichthyan fish (Subclass Holocephali) is described in detail based on a complete series of embryos from stage 17 to hatching. The external features of these specimens, in comparison with other chondrichthyan embryos, are used to establish the first staging table for any chimaeroid species. Each stage of C. milii is defined by a suite of morphological characters in addition to total length, including the number of somites, extent of external pigmentation, eye size and shape, head flexure, heart morphology, and size and shape of paired and unpaired fins. Particular attention is given to features of the gill arches and associated structures, including external gill filaments and the opercular flap. Embryos of this species also possess a transient rostral bulb, a feature unique to chimaeroids. Embryological development of Callorhinchus milii is similar to that previously described for sharks and batoids (Subclass Elasmobranchii), including the spiny dogfish, Squalus acanthias, the Japanese bullshark, Heterodontus japonicus, the lesser spotted dogfish, Scyliorhinus canicula, the frill shark, Chlamydoselachus anguineus, the guitarfish, Rhinobatus halavi, and the skate, Raja brachyura. Callorhinchus milii is also similar in overall development to another holocephalan, Hydrolagus colliei. A review of previous staging schemes confirms that early morphological development in all three major chondrichthyan lineages (sharks, batoids, and chimaeras) can be correlated using a common set of stages. A uniform staging system is provided that should prove useful in continuing ontogenetic and phylogenetic studies of this entire clade of fishes. J. Morphol. 236:25–47, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
A chimaerid holocephalian, Chimaera zangerli sp. nov., is described from both palatine tooth plates, two tooth plate fragments, and part of the chondrocranium in a nodule from the Maastrichtian of Antarctica. Possibly the oldest known chimaerid, C. zangerli sp. nov. exhibits a tooth plate which is a morphological intermediate between that of the Jurassic Ganodus and the Oligocene C. rupeliensis . The presence of C. zangerli sp. nov. before the end of the Cretaceous is evidence of the early evolution of the Chimaeridae, considered the most derived of the chimaeroid fishes.  相似文献   

4.
The chimaeroid fishes (Chondrichthyes: Holocephali) are a small, ancient and poorly studied group of cartilaginous fishes that have puzzled and intrigued taxonomists, ichthyologists and evolutionary biologists for over 100 years. Like their close relatives, the elasmobranchs (sharks, skates and rays), chimaeroids possess an extensive battery of sense organs that allow them to detect information about the external environment in order to find mates, locate food and preferred habitats and avoid predators. In recent years the sensory systems of elasmobranchs have received an up-swell of attention from biologists, which has resulted in a greater understanding of the sensory capabilities and behaviour of these fishes. However, very little recent work has been done on the chimaeroids. The aim of this review is to provide a survey of the existing literature on the major senses (vision, smell, taste, mechanoreception, hearing and electroreception) in chimaeroids, in order to stimulate and identify areas for future research. In chimaeroids information on sensory systems is largely restricted to one or two species (with the exception of some aspects of the visual system) and for some sensory systems essentially nothing is known. Most studies are anatomical in nature and so there is a demand for a greater degree of neurophysiological and behavioural assessment of sensory capability in these fishes. The majority of chimaeroids occupy deep-sea habitats and are becoming increasingly threatened by the expansion of deep-sea fisheries, so an understanding of the sensory biology and behaviour of chimaeroids may be important for the protection and management of these fascinating fishes.  相似文献   

5.
The development of comb rows in larval and adult Mnemiopsis leidyi and adult Pleurobrachia pileus is compared to regeneration of comb plates in these ctenophores. Late gastrula embryos and recently hatched cydippid larvae of Mnemiopsis have five comb plates in subsagittal rows and six comb plates in subtentacular rows. Subsagittal rows develop a new (sixth) comb plate and both types of rows add plates at similar rates until larvae reach the transition to the lobate form at ~5 mm size. New plate formation then accelerates in subsagittal rows that later extend on the growing oral lobes to become twice the length of subtentacular rows. Interplate ciliated grooves (ICGs) develop in an aboral‐oral direction along comb rows, but ICG formation itself proceeds from oral to aboral between plates. New comb plates in Mnemiopsis larvae are added at both aboral and oral ends of rows. At aboral ends, new plates arise as during regeneration: local widening of a ciliated groove followed by formation of a short split plate that grows longer and wider and joins into a common plate. At oral ends, new plates arise as a single tuft of cilia before an ICG appears. Adult Mnemiopsis continue to make new plates at both ends of rows. The frequency of new aboral plate formation varies in the eight rows of an animal and seems unrelated to body size. In Pleurobrachia that lack ICGs, new comb plates at aboral ends arise between the first and second plates as a single small nonsplit plate, located either on the row midline or off‐axis toward the subtentacular plane. As the new (now second) plate grows larger, its distance from the first and third plates increases. Size of the new second plate varies within the eight rows of the same animal, indicating asynchronous formation of plates as in Mnemiopsis. New oral plates arise as in Mnemiopsis. The different modes of comb plate formation in Mnemiopsis versus Pleurobrachia are accounted for by differences in mesogleal firmness and mechanisms of ciliary coordination. In both cases, the body of a growing ctenophore is supplied with additional comb plates centripetally from opposite ends of the comb rows. J. Morphol. 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

6.
A systematic SEM survey of tooth microstructure in (primarily) fossil taxa spanning chondrichthyan phylogeny demonstrates the presence of a superficial cap of single crystallite enameloid (SCE) on the teeth of several basal elasmobranchs, as well as on the tooth plates of Helodus (a basal holocephalan). This suggests that the epithelial-mesenchymal interactions required for the development of enameloid during odontogenesis are plesiomorphic in chondrichthyans, and most likely in toothed gnathostomes, and provides phylogenetic support for the homology of chondrichthyan and actinopterygian enameloid. Along the neoselachian stem, we see a crownward progression, possibly modulated by heterochrony, from a monolayer of SCE lacking microstructural differentiation to the complex triple-layered tooth enameloid fabric of neoselachians. Finally, the occurrence of fully-differentiated neoselachian enameloid microstructure (including compression-resistant tangle fibered enameloid and bending-resistant parallel fibered enameloid) in Chlamydoselachus anguineus, a basal Squalean with teeth that are functionally "cladodont," is evidence that triple-layered enameloid microstructure was a preadaption to the cutting and gouging function of many neoselachian teeth, and thus may have played an integral role in the Mesozoic radiation of the neoselachian crown group.  相似文献   

7.
8.
Placoderms (Devonian fossil fishes) are resolved phylogenetically to the base of jawed vertebrates and provide important evidence for evolutionary origins of teeth, particularly with respect to the Arthrodira. The arthrodires represent a derived group of placoderms; the dentition of other more primitive placoderms such as the acanthothoracids is less well known. Articulated acanthothoracid dental plates are rare; x‐ray computed tomography of a single, unique specimen, along with 3D segmentation of bone, oral denticles and vascular spaces, provides intrinsic developmental and topological information relevant to tooth origins. Recently, a disarticulated element was identified as a dental plate of the acanthothoracid Romundina stellina, with synchrotron microtomography providing characters to comment on ongoing debates regarding the evolution of teeth. We used segmental quantitative methods to re‐analyse this data, for comparison to the articulated and unquestionable acanthothoracid dental plates above. We demonstrate substantial differences between these, disputing the identity of the isolated plate of R. stellina as a dental plate, and thus its relevance to questions of tooth evolution.  相似文献   

9.
Analysis of the genome of the elephant shark (Callorhinchus milii), a member of the cartilaginous fishes (Class Chondrichthyes), reveals that it encodes all three members of the p53 gene family, p53, p63 and p73, each with clear homology to the equivalent gene in bony vertebrates (Class Osteichthyes). Thus, the gene duplication events that lead to the presence of three family members in the vertebrates dates to before the Silurian era. It also encodes Mdm2 and Mdm4 genes but does not encode the p19Arf gene. Detailed comparison of the amino acid sequences of these proteins in the vertebrates reveals that they are evolving at highly distinctive rates, and this variation occurs not only between the three family members but extends to distinct domains in each protein.  相似文献   

10.
The relationships of placoderm fishes   总被引:1,自引:0,他引:1  
  相似文献   

11.
The ventral gill arch skeleton was examined in some representatives of batoid fishes. The homology of the components was elucidated by comparing similarities and differences among the components of the ventral gill arches in chondrichthyans, and attempts were made to justify the homology by giving causal mechanisms of chondrogenesis associated with the ventral gill arch skeleton. The ceratohyal is present in some batoid fishes, and its functional replacement, the pseudohyal, seems incomplete in most groups of batoid fishes, except in stingrays. The medial fusion of the pseudohyal with successive ceratobranchials occurs to varying degrees among stingray groups. The ankylosis between the last two ceratobranchials occurs uniquely in stingrays, and it serves as part of the insertion of the last pair of coracobranchialis muscles. The basihyal is possibly independently lost in electric rays, the stingray genus Urotrygon (except U. daviesi) and pelagic myiiobatoid stingrays. The first hypobranchial is oriented anteriorly or anteromedially, and it varies in shape and size among batoid fishes. It is represented by rami projecting posterolaterally from the basihyal in sawfishes, guitarfishes and skates. It consists of a small piece of cartilage which extends anteromedially from the medial end of the first ccratobranchial in electric rays. It is a large cartilaginous plate in most of stingrays. It is absent in pelagic myliobatoid stingrays. The remaining hypobranchial cartilages also vary in shape and size among batoid fishes. Torpedo and possibly the Jurassic Belemnobalis and Spathobatis possess the generalized or typical chondrichthyan ventral gill arch structure in which the hypobranchials form a Σ-shaped pattern. In the electric ray Hypnos and narkinidid and narcinidid electric rays, the hypobranchial components are oriented longitudinally along the mid-portion of the ventral gill arches. They form a single cartilaginous plate in the narkinidid electric rays, Narcine and Diplobatis. In guitarfishes and skates, the second hypobranchial is unspecialized, and in skates, it does not have a direct contact with the second ceratobranchial. In both groups, the third and fourth hypobranchials are composed of a small cartilage which forms a passage for the afferent branches of the ventral aorta and serve as part of the insertion of the coracobranchialis muscle. In sawfishes and stingrays, the hypobranchials appear to be included in the medial plate. In sawfishes, the second and third components separately chondrify in adults, but the fourth component appears to be fused with the middle medial plate. In stingrays, a large medial plate appears to include the second through to the last hypobranchial and most of the basibranchial copulae. The medial plate probably develops independently in sawfishes and stingrays. Because the last basibranchial copula appears to be a composite of one to two hypobranchials and at least two basibranchial copulae, the medial plate may be formed by several developmental processes of chondrogenesis. More detailed comparative anatomical and developmental studies are needed to unveil morphogenesis and patternings of the ventral gill arch skeleton in batoid fishes.  相似文献   

12.
Labyrinth morphology in extant elasmobranchs (neoselachians: sharks, skates and rays) and several extinct chondrichthyans ranging in age from Pliocene to Devonian is investigated using high-resolution computed tomography (CT scanning) and digital reconstitution techniques. The elasmobranch labyrinth is highly specialized toward low-frequency semi-directional sound detection (LFSDP), optimally around 100 Hz. Several features associated with LFSDP in neoselachians also occur in Mesozoic hybodonts (e.g., Egertonodus, Tribodus) and in some incertae sedis extinct sharks (Acronemus, Tristychius), but are absent in osteichthyans, extant and fossil holocephalans, and certain Paleozoic chondrichthyans (ctenacanths, symmoriiforms, Pucapampella). Thus, LFSDP is regarded as an evolutionary novelty of elasmobranchs that arose some time after their divergence from chimaeroids. The suite of characters associated with LFSDP was probably acquired progressively, some characters being more widely distributed among fossil chondrichthyans than others. LFSDP evolved only within chondrichthyans whose otico-occipital fissure became secondarily closed during ontogeny.  相似文献   

13.
All extant holocephalans (Chimaeroidei) have lost the ability to make individual teeth, as tooth germs are not part of the embryonic development of the dental plates or of their continuous growth. Instead, a hypermineralized dentine with a unique mineral, whitlockin, is specifically distributed within a dentine framework into structures that give the dental plates their distinctive, species-specific morphology. Control of the regulation of this distribution must be cellular, with a dental epithelium initiating the first outer dentine, and via contact with ectomesenchymal tissue as the only embryonic cell type that can make dentine. Chimaeroids have three pairs of dental plates within their mouth, two in the upper jaw and one in the lower. In the genera Chimaera, Hydrolagus and Harriotta, the morphology and distribution of this whitlockin within each dental plate differs both between different plates in the same species and between species. Whitlockin structures include ovoids, rods and tritoral pads, with substantial developmental changes between these. For example, rods appear before the ovoids and result from a change in the surrounding trabecular dentine. In Harriotta, ovoids form separately from the tritoral pads, but also contribute to tritor development, while in Chimaera and Hydrolagus, tritoral pads develop from rods that later are perforated to accommodate the vasculature. Nevertheless, the position of these structures, secreted by the specialized odontoblasts (whitloblasts), appears highly regulated in all three species. These distinct morphologies are established at the aboral margin of the dental plate, with proposed involvement of the outer dentine. We observe that this outer layer forms into serially added lingual ridges, occurring on the anterior plate only. We propose that positional, structural specificity must be contained within the ectomesenchymal populations, as stem cells below the dental epithelium, and a coincidental occurrence of each lingual, serial ridge with the whitlockin structures that contribute to the wear-resistant oral surface.  相似文献   

14.
The structure of the tooth plates of Protopterus and Lepidosiren was investigated to determine the causes and consequences of postlarval shape change. During growth, the basal area of the tooth plates increases, some cusps become more prominent, and shearing surfaces are sharpened. The jaw articulation restricts the range of movements of the lower jaw, and causes the tooth plates to occlude precisely; the resulting wear patterns are regular. The tooth plates are composed of enamel, trabecular dentine, and petrodentine. A petrodentine column forms the core of a tooth plate; it is flanked by trabecular dentine. Microhardness measurements show that trabecular dentine is comparable in hardness to mammalian dentine, whereas the petrodentine is comparable to enamel. The location and differential wear of these tissues produce the prominent cusps and self-sharpened blades of the adult tooth plates.  相似文献   

15.
The phylogenetic relationships between the different groups of Paleozoic gnathostomes are still debated, mainly because of incomplete datasets on Paleozoic jawed vertebrate fossils and ontogeny of some modern taxa. This issue is illustrated by the condition of the glossopharyngeal nerve relative to the parachordal plate, the otic capsules and the metotic fissure in gnathostomes. Two main conditions are observed in elasmobranchs (shark and rays) and osteichthyans (bony fishes and tetrapods). The condition in the other chondrichthyan taxon, the holocephalans, is still poorly known, and without any information on this taxon, it remains difficult to polarize the condition in gnathostomes. Based on the anatomical study of an embryo of the holocephalan Callorhinchus milii by means of propagation X-Ray Synchrotron phase contrast microtomography using both holotomography and single distance phase retrieval process, we show that, contrary to what was previously inferred for holocephalans (i.e. an osteichthyan-like condition), the arrangement of the glossopharyngeal nerve relative to the surrounding structure in holocephalans is more similar to that of elasmobranchs. Furthermore, the holocephalan condition represents a combination of plesiomorphic characters for gnathostomes (e.g., the glossopharyngeal nerve leaves the braincase via the metotic fissure) and homoplastic characters. By contrast, the crown osteichthyans are probably derived in having the glossopharyngeal nerve that enters the saccular chamber and in having the glossopharyngeal foramen separated from the metotic fissure.  相似文献   

16.
BackgroundLiving gnathostomes (jawed vertebrates) comprise two divisions, Chondrichthyes (cartilaginous fishes, including euchondrichthyans with prismatic calcified cartilage, and extinct stem chondrichthyans) and Osteichthyes (bony fishes including tetrapods). Most of the early chondrichthyan (‘shark’) record is based upon isolated teeth, spines, and scales, with the oldest articulated sharks that exhibit major diagnostic characters of the group—prismatic calcified cartilage and pelvic claspers in males—being from the latest Devonian, c. 360 Mya. This paucity of information about early chondrichthyan anatomy is mainly due to their lack of endoskeletal bone and consequent low preservation potential.Conclusions/SignificanceThe Meckel’s cartilages show a jaw articulation surface dominated by an expansive cotylus, and a small mandibular knob, an unusual condition for chondrichthyans. The scapulocoracoid of the new specimen shows evidence of two pectoral fin basal articulation facets, differing from the standard condition for early gnathostomes which have either one or three articulations. The tooth structure is intermediate between the ‘primitive’ ctenacanthiform and symmoriiform condition, and more derived forms with a euselachian-type base. Of special interest is the highly distinctive type of calcified cartilage forming the endoskeleton, comprising multiple layers of nonprismatic subpolygonal tesserae separated by a cellular matrix, interpreted as a transitional step toward the tessellated prismatic calcified cartilage that is recognized as the main diagnostic character of the chondrichthyans.  相似文献   

17.
Size measurements are crucial for studies on the growth, maturation, maximum size, and population structure of cartilaginous fishes. However, researchers use a variety of measurement techniques even when working on the same species. Accurate comparison of results among studies is only possible if the measurement technique used is adequately defined and, if different techniques are used, a conversion equation can be derived. These conditions have not always been met, leading to invalid comparisons and incorrect conclusions. This paper reviews methods used for measuring chondrichthyans, and summarises the variety of constraints that influence the choice of a measurement technique. Estimates of the variability present in some measurement techniques are derived for shortfin mako shark, Isurus oxyrinchus, porbeagle shark, Lamna nasus, blue shark, Prionace glauca, Antarctic thorny skate, Amblyraja georgiana, and Pacific electric ray, Torpedo californica. Total length measured with the tail in the natural position (sharks) and disc widths (batoids) have higher variability than other methods, and are not recommended. Instead, the longest longitudinal axis should be measured where possible and practical; i.e., flexed total length for sharks, total length for batoids (excluding suborder Myliobatoidei), pelvic length for batoids of the suborder Myliobatoidei, and chimaera length (snout to posterior end of supracaudal fin) for chimaeroids (except for Callorhinchus, for which fork length should be measured from the anterior edge of the snout protuberance). Straight-line measurements are preferred to measurements over the curve of the body. Importantly, measurement methods must be clearly defined, giving information on the anterior reference point, the posterior reference point, and how the measurement was made between these two. Measurements using at least two different methods are recommended on at least a subsample of the fish in order to develop conversion regression relationships.  相似文献   

18.
Previous attempts to age chimaeroids have not rigorously tested assumptions of dorsal fin spine growth dynamics. Here, novel imaging and data-analysis techniques revealed that the dorsal fin spine of the spotted ratfish Hydrolagus colliei is an unreliable structure for age estimation. Variation among individuals in the relationship between spine width and distance from the spine tip indicated that the technique of transverse sectioning may impart imprecision and bias to age estimates. The number of growth-band pairs observed by light microscopy in the inner dentine layer was not a good predictor of body size. Mineral density gradients, indicative of growth zones, were absent in the dorsal fin spine of H. colliei , decreasing the likelihood that the bands observed by light microscopy represent a record of growth with consistent periodicity. These results indicate that the hypothesis of aseasonal growth remains plausible and it should not be assumed that chimaeroid age is quantifiable by standard techniques.  相似文献   

19.
Chondrichthyan fishes have an evolutionary history spanning over 400 million years and are characterized, in part, by internal fertilization. Traditionally, oviparity has been assumed to be the primitive birthing mode for these fishes and for vertebrates in general, with viviparity and matrotrophic nutrition being derived. The fossilized remains of two specimens of Harpagofututor volsellorhinus from the Upper Mississippian of Montana now provide the first direct evidence of matrotrophic live birth in a Palaeozoic chondrichthyan and of superfoetation in an extinct fish. Each female exhibits multiple foetuses of two size groups, indicating simultaneous gestation of multiple litters. There is no evidence of yolk sacs, only preserved organic pigments enveloping the young, suggesting matrotrophically derived material. Young were born large, as head lengths of the largest embryos measured up to 66 per cent of the mother's head length. Comparison of in utero embryos to isolated specimens suggests, unlike all extant chondrichthyans, the absence of a juvenile stage and rapid maturity. These new data suggest the advantages of superfoetative viviparity for a small bodied fish in a 318 Myr old species‐ and predator‐rich marine bay. In the greater view of gnathostome evolution, this finding combines with other recent discoveries to document that multiple, and not necessarily closely related, species of both placoderms and chondrichthyans exhibited viviparity by the Upper Devonian and the Upper Mississippian. The capacity for internal fertilization probably predisposed members of these lineages to develop viviparity so early in gnathostome history. Yet, the surprising range of viviparity exhibited at this stage of vertebrate evolution emphasizes that derived reproductive strategies had evolved in gnathostomes by 380–318 million years ago. © 2011 The Linnean Society of London, Zoological Journal of the Linnean Society, 2011, 161 , 587–594.  相似文献   

20.
Nodal is a key player in the process regulating oral–aboral axis formation in the sea urchin embryo. Expressed early within an oral organizing centre, it is required to specify both the oral and aboral ectoderm territories by driving an oral–aboral gene regulatory network. A model for oral–aboral axis specification has been proposed relying on the self activation of Nodal and the diffusion of the long-range antagonist Lefty resulting in a sharp restriction of Nodal activity within the oral field. Here, we describe the expression pattern of lefty and analyse its function in the process of secondary axis formation. lefty expression starts at the 128-cell stage immediately after that of nodal, is rapidly restricted to the presumptive oral ectoderm then shifted toward the right side after gastrulation. Consistently with previous work, neither the oral nor the aboral ectoderm are specified in embryos in which Lefty is overexpressed. Conversely, when Lefty's function is blocked, most of the ectoderm is converted into oral ectoderm through ectopic expression of nodal. Reintroducing lefty mRNA in a restricted territory of Lefty depleted embryos caused a dose-dependent effect on nodal expression. Remarkably, injection of lefty mRNA into one blastomere at the 8-cell stage in Lefty depleted embryos blocked nodal expression in the whole ectoderm consistent with the highly diffusible character of Lefty in other models. Taken together, these results demonstrate that Lefty is essential for oral–aboral axis formation and suggest that Lefty acts as a long-range inhibitor of Nodal signalling in the sea urchin embryo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号