首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nostocacean cyanobacteria typically produce gliding filaments termed hormogonia at a low frequency as part of their life cycle. We report here that all Nostoc spp. competent in establishing a symbiotic association with the hornwort Anthoceros punctatus formed hormogonial filaments at a high frequency in the presence of A. punctatus. The hormogonia-inducing activity was produced by A. punctatus under nitrogen-limited culture conditions. The hormogonia of the symbiotically competent Nostoc spp. were characterized as motile (gliding) filaments lacking heterocysts and with distinctly smaller cells than those of vegetative filaments; the small cells resulted from a continuation of cell division uncoupled from biomass increase. An essentially complete conversion of vegetative filaments to hormogonia occurred within 12 h of exposure of Nostoc sp. strain 7801 to A. punctatus growth-conditioned medium. Hormogonia formation was accompanied by loss of nitrogen fixation (acetylene reduction) and by decreases in photosynthetic CO2 fixation and in vivo NH4+ assimilation of 30% and approximately 40%, respectively. The rates of acetylene reduction and CO2 fixation returned to approximately the control rates within 72 to 96 h after hormogonia induction, as the cultures of Nostoc sp. strain 7801 differentiated heterocysts and reverted to the vegetative growth state. The relationship between hormogonia formation and symbiotic competence is discussed.  相似文献   

2.
Experiments were carried out to investigate if the stage of life cycle of Nostoc muscorum Agardh alters vulnerability to grazing by Pseudomicrothorax dubius Maupas. When the percentage of motile hormogonia of all counted trichomes exceeded 10%, most of the grazers (80%–100%) became satiated within 2 h. In most cases (90%) grazers successfully attacked motile hormogonia. Attacks on nonmotile trichomes were much rarer (8%) and mainly unsuccessful. Direct observations revealed that hormogonia could be ingested by the ciliates as long as they remained motile. Hormogonia already adhered to the bottom were still recognized by ciliates as potential food but were not ingested. We did not observe attacks on old vegetative colonies. This is apparently the first report on the motile stage of Nostoc being susceptible to ciliate grazing. Experiments with other grazers, Nassula tumida Maskell and two different clones of Furgassonia blochmanni Faure‐Fremiet, showed that only one clone of F. blochmanni was able to feed on motile hormogonia, whereas the second clone and N. tumida showed no interest in them.  相似文献   

3.
A phylogenetic analysis of selected symbiotic Nostoc strain sequences and available database 16S rDNA sequences of both symbiotic and free-living cyanobacteria was carried out using maximum likelihood and Bayesian inference techniques. Most of the symbiotic strains fell into well separated clades. One clade consisted of a mixture of symbiotic and free-living isolates. This clade includes Nostoc sp. strain PCC 73102, the reference strain proposed for Nostoc punctiforme. A separate symbiotic clade with isolates exclusively from Gunnera species was also obtained, suggesting that not all symbiotic Nostoc species can be assigned to N. punctiforme. Moreover, isolates from Azolla filiculoides and one from Gunnera dentata were well nested within a clade comprising most of the Anabaena sequences. This result supports the affiliation of the Azolla isolates with the genus Anabaena and shows that strains within this genus can form symbioses with additional hosts. Furthermore, these symbiotic strains produced hormogonia, thereby verifying that hormogonia formation is not absent in Anabaena and cannot be used as a criterion to distinguish it from Nostoc.The GenBank accession numbers for the cyanobacterial 16S rRNA gene sequences determined in this study are AY742447-AY742454.  相似文献   

4.
Early events during the establishment of the Gunnera/Nostoc symbiosis   总被引:1,自引:0,他引:1  
The symbiosis between Gunnera and Nostoc was reconstituted using G. chilensis Lam. and G. manicata Linden, respectively, and three different Nostoc strains. Six stages characterised by specific modifications in both the cyanobiont and the host were recognised during the infection process. Mucilage-secreting stem glands developed on the Gunnera stems independent of the presence of cyanobacteria (Stage I). Soon after addition of the Nostoc isolates to the plant apices, an abundant differentiation of motile hormogonia commenced. The cyanobacteria accumulated in the mucilage on the surface of the gland (Stage II), and the hormogonia then proceeded into the stem tissue through intercellular channels (Stage III). At the channel bases, Nostoc was detected between the cell walls of small, densely cytoplasmic Gunnera cells and also in elaborate folds of these (Stage IV). The Gunnera cell walls subsequently dissolved adjacent to the cyanobacteria and Nostoc entered the host cells (Stage V). Once the intracellular association was formed, a high proportion of the vegetative Nostoc cells differentiated into heterocysts (Stage VI). Nostoc changed from being rich in inclusions (particularly cyanophycin) while on the gland surface into a comparatively non-storing form during penetration and the early intracellular stages. Bacteria were numerous on the gland surface, fewer in the channels, and were never detected within the Gunnera cells, indicating the existence of specific recognition mechanisms discriminating between conceivable microsymbionts. Mechanisms behind mutual adaptations and interactions between the two symbionts are discussed.The technical assistance of Anette Axen and Gary Wife is gratefully acknowledged. Financial support was provided by the Swedish Natural Science Research Council and the Hierta-Retzius foundations.  相似文献   

5.
To establish a sensitive bioassay for Nostocean hormogonium induction, we compared the effectiveness of the morpho-differentiation induction on two gelled plates, agar and gellan gum, for anacardic acid C15:1-Δ8 decyl ester (1) (100 nmol/disc). On BG-110 (nitrogen-free) medium-based 0.6 and 0.8% agar plates, Nostoc sp. strain Yaku-1 isolated from a coralloid root of Cycas revoluta in Yakushima Island showed clear morpho-differentiation from filamentous aggregates into hormogonia, and the induced hormogonia dispersed within 24 h; however, similar hormogonium formation was not observed at agar concentrations of 1.0% or higher. Conversely, hormogonium induction was considerably more pronounced on gellan gum plates than those on agar plates through concentrations ranging from 0.6 to 1.6% even after 12 h of incubation, particularly active on the 0.8–1.0% gellan gum plates. Thus, gellan gum plates can achieve clear results within 12 h and are thus highly useful for primary screening for hormogonium-inducing factors (HIFs).  相似文献   

6.
There are several apparent developmental stages in the life cycle of Nostoc sphaeroides Kützing, an edible cyanobacterium found mainly in paddy fields in central China. The cytochemical changes in developmental stages such as hormogonia, aseriate stage, filamentous stage and colony in N. sphaeroides were examined using fluorescent staining and colorimetric methods. The staining of acidic and sulfated polysaccharides increased with development when hormogonia were used as the starting point. Acidic polysaccharides (AP) were most abundant at the aseriate stage and then decreased, while the sulfated polysaccharides (SP) were highest at the colony stage. Quantitatively, along the developmental process from hormogonia to colony, total carbohydrates first increased, then became stable, and then reached their highest level at the colony stage, while reducing sugars were highest at the hormogonia stage and then decreased sharply once development began. SP were not detectable in the hot water soluble polysaccharides (HWSP), and hormogonia had the lowest content of AP, while old colonies had the highest. The AP content of the aseriate stage, filamentous stage and young colony stage were very similar. The evolutionary relationships reflected in the developmental stages of N. sphaeroides are discussed.  相似文献   

7.
Geosiphon pyriforme inhabiting the surface of humid soils represents the only known example of endocytobiosis between a fungus (Zygomycotina; macrosymbiont) and cyanobacteria (Nostoc; endosymbiont). In order to elucidate the taxonomical and evolutionary relationship ofGeosiphon pyriforme to fungi forming arbuscular mycorrhiza (AM fungi), the small-subunit (SSU) ribosomal RNA genes ofGeosiphon pyriforme andGlomus versiforme (Glomales; a typical AM fungus) were analyzed and aligned with SSU rRNA sequences of several Basidiomycetes, Ascomycetes, Chytridiomycetes, and Zygomycetes, together with all AM-fungal (Glomales) sequences published yet. The distinct group of the order Glomales, which includesGeosiphon, does not form a clade with any other group of Zygomycetes. Within the Glomales, two main lineages exist. One includes the families Gigasporaceae and Acaulosporaceae; the other one is represented by the genusGlomus, the members of which are very divergent.Glomus etunicatum andGeosiphon pyriforme both form independent lineages ancestral to the Glomales. The data provided by the present paper confirm clearly thatGeosiphon represents a fungus belonging to the Glomales. The question remains still open as to whether or notGeosiphon is to be placed within or outside the genusGlomus, since this genus is probably polyphyletic and not well defined yet.Geosiphon shows the ability of aGlomus-like fungus to form a “primitive” symbiosis with a unicellular photcautotrophic organism, in this case a cyanobacterium, leading to the conclusion that a hypothetical association of aGlomus-like fungus with a green alga as a step during the evolution of the land plants appears probable. Correspondence to: H. Gehrig  相似文献   

8.
The zygomycete Geosiphon pyriforme is the only known endocyanosis of a fungus. The Nostoc spp. filaments are included in photosynthetically active and nitrogen fixing, multinucleated bladders, which grow on the soil surface. The spores of the fungus are white or slightly brownish. They are about 250 μm in diameter and develop singly on hyphal ends or, less frequently, intercalarly. The wall of the spores consists of a thin innermost layer, a laminated inner layer with a thickness of about 10–13 μm, and an evanescent outer layer. The laminated layer is composed of helicoidally arranged microfibrils, and is separated from the evanescent outer layer by a thin electron-dense sublayer. Polarisation microscopy indicates the occurrence of chitin. Shape and wall ultrastructure of the Geosiphon spores and their cytoplasm resemble that of Glomus spores, but are different from that of other genera of the Glomales and Endogonales. Germination occurs by a single thick hyphal outgrowth directly through the spore wall. Like various AM forming fungi, Geosiphon pyriforme contains endocytic bacteria-like organisms, which are not surrounded by a host membrane. Our observations indicate that Geosiphon is a potential AM fungus.  相似文献   

9.
Structural genes encoding an uptake hydrogenase of Nostoc sp. strain PCC 73102 were isolated. From partial libraries of genomic DNA, two clones (pNfo01 and pNfo02) were selected and sequenced, revealing the complete sequence of both a hupS (960 bases) and a hupL (1,593 bases) homologue in Nostoc sp. strain PCC 73102. A comparison between the deduced amino acid sequences of HupS and HupL of Nostoc sp. strain PCC 73102 and Anabaena sp. strain PCC 7120 showed that the HupS proteins are 89% identical and the HupL proteins are 91% identical. However, the noncoding region between the genes in Nostoc sp. strain PCC 73102 (192 bases) is longer than that of Anabaena sp. strain PCC 7120 and of many other microorganisms. Southern hybridizations using DNA from both N2-fixing and non-N2-fixing cells of Nostoc sp. strain PCC 73102 and different probes from within hupL clearly demonstrated that, in contrast to Anabaena sp. strain PCC 7120, there is no rearrangement within hupL of Nostoc sp. strain PCC 73102. Indeed, 6 nucleotides out of 16 within the potential recombination site are different from those of Anabaena sp. strain PCC 7120. Furthermore, we have recently published evidence demonstrating the absence of the bidirectional/reversible hydrogenase in Nostoc sp. strain PCC 73102. The present knowledge, in combination with the unique characteristics, makes Nostoc sp. strain PCC 73102 an interesting candidate for the study of deletion mutants lacking the uptake-type enzyme. Received: 20 August 1997 / Accepted: 24 November 1997  相似文献   

10.
P. Strasser  G. Falkner 《Planta》1986,168(3):381-385
The permeability properties of the cell membrane of a symbiotic Nostoc sp. for glutamate and aspartate were investigated. These compounds were translocated across the plasmalemma by a transport system which showed a very high affinity for glutamate and a lower one for aspartate. Since a concomitant release of glutamate was observed during the uptake of these two amino acids it is concluded that the transport proceeds via a counterexchange mechanism. In addition to this counterexchange a net release of glutamate occurred in the dark. Some aspects concerning the possible function of this transport system in the symbiotic association Geosiphon pyriforme are discussed.  相似文献   

11.
12.
Glutamine synthetase (GS) is the primary NH4 + assimilating enzyme of cyanobacteria. The specific activities and cellular protein concentration of GS in symbiotic cyanobacteria associated with the water fern Azolla caroliniana were determined and compared to free-living cultures of Nostoc sp. strain 7801, a strain originally isolated from symbiotic association with the bryophyte Anthoceros punctatus. Both the in vitro specific activity and concentration of GS in symbiotic cyanobacteria separated from A. caroliniana were approximately 3-fold lower than the free-living Nostoc sp. strain 7801 culture. These results imply depressed synthesis of GS by the symbiont associated with A. caroliniana.  相似文献   

13.
P. Lindblad 《Protoplasma》1989,152(2-3):87-95
Summary Free-living nitrogen-fixingNostoc PCC 73102 cells, a filamentous heterocystous cyanobacterium originally isolated from the cycadMacrozamia, were grown without or with the addition of either citrulline or ornithine and examined for the presence of carbamyl phosphate synthetase (CPS) by SDS-PAGE and Western immunoblots. Transmission electron microscopy and immunocytochemical labelling were used to study the cellular and subcellular distribution of CPS in theNostoc cells.Western immunoblots revealed that a polypeptide with a molecular weight of approximately 130 kDa was immunologically related to CPS purified fromE. coli. Nitrogen-fixingNostoc 73102 cultures grown without or with the addition of either citrulline or ornithine showed no differences in their CPS-polypeptide levels, indicating no regulatory effect on the CPS-protein level by these two amino acids. Immunolocalization demonstrated that the CPS protein was located both in vegetative cells and heterocysts, subcellularly evenly distributed over the two cell-types. Using the particle analysis of an image processor and cells grown both without or with addition of either citrulline or ornithine, about 2.5 times more CPS-gold labelling per cell area were observed in the photosynthetic vegetative cells compared to the nitrogen-fixing heterocysts.Abbreviations CPS carbamyl phosphate synthetase - IgG immunoglobulin G - OCT omithine carbamyl transferase  相似文献   

14.
Pseudopedinella pyriforme Carter displays a second non-emergent flagellum and vestigial anterior tentacles. The trailing rhizopodium is without supporting microtubules, and seemingly arises from a posterior vesicle apparently associated with the Golgi apparatus. Stalked pyrenoids, so far unreported for any other member of the Chrysophyceae, are demonstrated. The structure of P. pyriforme is compared with members of the Chrysophyceae and Craspedamonadales and its taxonomic position is discussed.  相似文献   

15.
Desmonostoc salinum CCM-UFV059 (Desmonostoc) is a novel cyanobacterial strain of the order Nostocales isolated from a saline-alkaline lake. The acclimation towards salt and desiccation stress of Desmonostoc was compared to the related and well-characterized model strain Nostoc sp. PCC7120 (Nostoc). Salt–stressed cells of Desmonostoc maintained low cellular Na+ concentrations and accumulated high amounts of compatible solutes, mainly sucrose and to a lower extent trehalose. These features permitted Desmonostoc to grow and maintain photosynthesis at 2-fold higher salinities than Nostoc. Moreover, Desmonostoc also induced sucrose over-accumulation under desiccation, which allowed this strain to recover from this stress in contrast to Nostoc. Additional mechanisms such as the presence of highly unsaturated lipids in the membrane and an efficient ion transport system could also explain, at least partially, how Desmonostoc is able to acclimate to high salinities and to resist longer desiccation periods. Collectively, our results provide first insights into the physiological and metabolic adaptations explaining the remarkable high salt and desiccation tolerance, which qualify Desmonostoc as an attractive model for further analysis of stress acclimation among heterocystous N2–fixing cyanobacteria.  相似文献   

16.
Han D  Hu Z 《Current microbiology》2007,54(4):254-259
The ribosomal RNA molecule is an ideal model for evaluating the stability of a gene product under desiccation stress. We isolated 8 Nostoc strains that had the capacity to withstand desiccation in habitats and sequenced their 16S rRNA genes. The stabilities of 16S rRNAs secondary structures, indicated by free energy change of folding, were compared among Nostoc and other related species. The results suggested that 16S rRNA secondary structures of the desiccation-tolerant Nostoc strains were more stable than that of planktonic Nostocaceae species. The stabilizing mutations were divided into two categories: (1) those causing GC to replace other types of base pairs in stems and (2) those causing extension of stems. By mapping stabilizing mutations onto the Nostoc phylogenetic tree based on 16S rRNA gene, it was shown that most of stabilizing mutations had evolved during adaptive radiation among Nostoc spp. The evolution of 16S rRNA along the Nostoc lineage is suggested to be selectively advantageous under desiccation stress. Electronic Supplementary Material Electronic Supplementary material is available for this article at and accessible for authorised users.  相似文献   

17.
Porphyra yezoensis Ueda conchospore germlings (1–4-cell stages) were treated with N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) for inducing mutations. Three kinds of color-mutated gametophytic blades, which were composed of the mutated cells wholly, sectorially or spottedly, were obtained; and most of them were sectorially variegated blades. The highest frequency of these mutated blades was 1.3%. Four different pigmentation mutant strains were obtained by regenerating single cells and protoplasts that were enzymatically isolated from the mutated sectors of the sectorially variegated blades. The mutants were relatively stable in color in both gametophytic blade and conchocelis phases. In the two phases, each mutant strain showed characteristic differences in the in vivo absorption spectra, and had different pigment contents of major photosynthetic pigments (chlorophyll a, phycoerythrin and phycocyanin) as compared with the wild-type and with each other. The gametophytic blades from the four mutant lines showed significant differences in growth and photosynthetic rates, when they were cultured in the same conditions. By crossing the mutant with the wild-type, it was found that the color phenotypes of two mutants reported above, were resulted from two mutations in different genes, respectively. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
The present study describes two new Nostoc species, N. montejanii and N. tlalocii, based on a polyphasic approach that combines morphological, ecological, and genetic characteristics. The five investigated populations, including those from newly collected material from central Mexico, were observed to possess morphological features characteristic of the Nostoc genus. Results showed that both new species are strictly associated with running water, and they show clear differences in their habitat preferences. The 16S rRNA gene sequences of the five strains displayed between 98% and 99% similarity to the genus Nostoc sensu stricto. The 16S rRNA gene phylogenetic analyses inferred using Bayesian inference, maximum likelihood, and parsimony methods, placed these five strains in two separate clades distinct from other Nostoc species. The secondary structures of the 16S–23S internal transcribed spacer rRNA region in the two new species showed >10.5% dissimilarities in the operons when compared with other Nostoc species. In addition, clear morphological differences were observed between the two Mexican species, including the color of the colonies (black in N. montejanii and green in N. tlalocii), the size of the cells (greater in N. montejanii), and the number of polyphosphate granules present in the cells (one in N. montejanii and up to four in N. tlalocii).  相似文献   

19.
Many cyanobacteria are highly adaptable to light quality, and many species undergo a complex life cycle. In this study we show that adaptive changes in the photosynthetic apparatus of cyanobacteria are not only caused by environmental, but also by developmental factors. Spectral confocal laser scanning microscopy (CLSM) was used to analyse in vivo the fluorescence spectra of the photosynthetic pigments chlorophyll a (Chl a), allophycocyanin (APC), phycocyanin (PC) and phycoerythrin (PE) of two Nostoc punctiforme strains. Changes in pigment fluorescence emission occurred in different developmental stages. Strain 1:1-26 showed an emission maximum at 674 nm in motile hormogonia stages, whereas vegetative stages showed maxima at 658 and 575 nm. These changes were not caused by chromatic adaptation. In contrast, the second strain (1:1-26lg) showed distinct fluorescence spectra, pigment localization and clear chromatic adaptation in red light. When these properties are known, both strains can be easily distinguished by the spectral CLSM method, which also allows the localization of the pigments within single cells. To calculate the contribution of individual phycobiliproteins to the observed changes, fluorescence spectra were analysed by spectral unmixing. This allowed the mathematical estimation of fluorescence shares for the individual phycobiliproteins in different developmental stages and both before and after chromatic adaptation. It is concluded that care should be taken when characterizing cyanobacteria by differences in pigment fluorescence, because these differences are influenced not only by chromatic adaptation, but also developmental stages. Spectral CLSM offers a powerful method to study the phycobiliprotein composition in vivo.  相似文献   

20.
Geosiphon pyriforme, an endosymbiotic association between a fungus and the cyanobacterium Nostoc, was shown by tracer studies to acquire carbon photosynthetically from CO2 or bicarbonate. The organism also fixes inorganic carbon in darkness, at lower rates than in the light. The patterns of label distribution are indicative of the operation of the reductive pentose-phosphate pathway in the light and of the phosphoenolpyruvate-carboxylase reaction in the dark. The results are discussed in relation to the evolution of photoautotrophic endosymbiotic associations.This investigation has been supported by the Deutsche Forschungsgemeinschaft. We are indepted to Professor G.B. Feige (Institut für Pflanzenphysiologie, Universität Essen, FRG) for helpful discussion, Karin Faist for her excellent technical assitance and to Doris Schäfer for drawing the figures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号