首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of a spider myo-apodeme junction is described, and discussed in terms of other arthropod muscle attachments. This is contrasted with the situation in the venom gland, equipped with muscle fibers that control expulsion of the secreted material. The latter involves a cell-free collagenous matrix, lying between the muscle cells and the sheath of the gland. As in other arthropods, skeletal fibers are attached to the apodeme cuticle via specialized epidermal cells, containing oriented microtubules. Interdigitations between these cells and muscle, basally, and cuticle, apically, are described. Extracellular tonofibrillae described elsewhere are inconspicuous in the apodeme cuticle.  相似文献   

2.
The cuticle of the free-living nematode Caenorhabditis elegans is a proteinaceous extracellular structure that is replaced at each of four postembryonic molts by the underlying hypodermis. The cuticles of the adult and three juvenile stages (L1, Dauer larva, L4) have been compared ultrastructurally and biochemically. Each cuticle has an annulated surface and comprises two main layers, an inner basal layer and an outer cortical layer. The adult cuticle has an additional clear layer which separates the basal and cortical layers and is traversed by regularly arranged columns of electron-dense material. The fine structure of the cortical layer is similar in cuticles from different stages while that of the basal layer is stage specific. Purified cuticles were obtained by sonication and treatment with sodium dodecyl sulfate (SDS) and their component proteins solubilized with a sulfhydryl reducing agent. The degree of cuticle solubility is stage specific and the insoluble structures for each cuticle were localized by electron microscopy. Analysis of 35S-labeled soluble cuticle proteins by SDS-polyacrylamide gel electrophoresis yields unique banding patterns for each stage. Most proteins are of high molecular weight (100–200 K) and are restricted to particular stages. Sixteen of the nineteen major proteins characterized are specifically degraded by bacterial collagenase. The results indicate that the different molts are not reiterative, but require the integration of both unique and shared gene functions. The potential use of stage-specific cuticle differences to identify and characterize regulatory genes controlling cuticle-type switching during development is discussed.  相似文献   

3.
The cuticle of the nematomorpha Gordius villoti is a proteinaceous extracellular structure that covers the body during the endoparasitic life in the hemocoelic cavity of insect hosts, and of the free-living adult animals. The ultrastructure of the cuticle has a complex spatial organization with several parallel layers of large diameter fibers, interposed thinner fibrous elements and honeycomb-shaped matrix surrounding the fibers. When adult isolated cuticles were partially solubilized by several compounds, the structure revealed a strong insolubility and the main fibers were always observable. HPLC and spectrophotometric assays carried out to investigate the presence of tyrosine cross-linking, indicated such a mechanism as a key-element in the hardening process of the cuticle. Such data strongly suggest that the Gordius cuticle contains dityrosine compounds, whose formation is probably mediated by endogenous peroxidase activity.  相似文献   

4.
ARCHANGELSKY, S., TAYLOR, T. N. & KURMANN, M. H., 1985. Ultrastructural studies of fossil plant cuticles: Ticoa harrisii from the early Cretaceous of Argentina. The fine structure of fossil plant cuticles of Cretaceous age demonstrates well preserved layers that are topographically equivalent to those in some extant plants. Cuticle stratification on specialized structures (stomatal apparatus and trichomes) is presented, together with an account of the fine structure of both the upper and lower cuticular membrane. Levels of cuticle stratification are compared with those of extant plants.  相似文献   

5.
The fine structure of the somatic muscles and their attachment to the cuticle in the pyenogonids Nymphon (Chaetonymphon) macronyx G. O. Sars and Boreonymphon cf. abyssorum (Norman) is described. The muscles possess characteristics which are typical of arthropod slow muscle fibers: relatively long sarcomeres, a mean A-band length of about 6 μm and a ratio of thin to thick contractile filaments of 4:1. The sarcotubular system consists of distinct t-tubules, an irregular SR part and randomly distributed dyads and triads, the muscles are attached to the cuticle by specialized epidermal cells containing microtubules extending from the cuticular to the muscular side. The myoepidermal and epidermal-cuticular junctions are described.  相似文献   

6.
The cuticles of some insectan, chelicerate, and crustacean arthropods have been examined, and evidence obtained of the presence in the laminae of material of different composition from the remainder of the cuticle. This material is present both between the layers of crossed fibres of the balken type of cuticle, and in the plumose type of lamina. It has been observed in some instances to form a clearly defined membrane.  相似文献   

7.
Insect exoskeletons are composed of the cuticle, a biomaterial primarily formed from the linear and relatively rigid polysaccharide, chitin, and structural proteins. This extracellular material serves both as a skin and skeleton, protecting insects from environmental stresses and mechanical damage. Despite its rather limited compositional palette, cuticles in different anatomical regions or developmental stages exhibit remarkably diverse physicochemical and mechanical properties because of differences in chemical composition, molecular interactions and morphological architecture of the various layers and sublayers throughout the cuticle including the envelope, epicuticle and procuticle (exocuticle and endocuticle). Even though the ultrastructure of the arthropod cuticle has been studied rather extensively, its temporal developmental pattern, in particular, the synchronous development of the functional layers in different cuticles during a molt, is not well understood. The beetle elytron, which is a highly modified and sclerotized forewing, offers excellent advantages for such a study because it can be easily isolated at precise time points during development. In this study, we describe the morphogenesis of the dorsal and ventral cuticles of the elytron of the red flour beetle, Tribolium castaneum, during the period from the 0 d-old pupa to the 9 d-old adult. The deposition of exocuticle and mesocuticle is substantially different in the two cuticles. The dorsal cuticle is four-fold thicker than the ventral. Unlike the ventral cuticle, the dorsal contains a thicker exocuticle consisting of a large number of horizontal laminae and vertical pore canals with pore canal fibers and rib-like veins and bristles as well as a mesocuticle, lying right above the enodcuticle. The degree of sclerotization appears to be much greater in the dorsal cuticle. All of these differences result in a relatively thick and tanned rigid dorsal cuticle and a much thinner and less pigmented membrane-like ventral cuticle.  相似文献   

8.
The ultrastructure and formation of the cuticle of a myodocopan ostracod, Euphilomedes japonica, are investigated utilizing scanning and transmission electron microscopy. The outer lamella cuticle consists of four layers; epicuticle, exocuticle, endocuticle, and membranous layer like in the cuticle of other arthropods. The exocuticle and endocuticle are well-calcified and the organic matrix develops within the both cuticles. The outermost layer of new cuticle (epicuticle) is secreted first and the inner layers (exocuticle, endocuticle and membranous layer) are added proximally in the pre-, and postmoult stages. The calcification takes place in the whole area of carapace at the same time together with the synthesis of organic matrix within the endocuticle. This study demonstrates that the ultrastructure and formation of the cuticle in myodocopans are different from those in podocopans, and that the myodocopan carapaces have achieved a structural diversity for adaptation to different lifestyles.  相似文献   

9.
Summary The fine structure of single identified muscle fibers and their nerve terminals in the limb closer muscle of the shore crab Eriphia spinifrons was examined, using a previous classification based on histochemical evidence which recognizes a slow (Type-I) fiber and three fast (Type-II, Type-III, Type-IV) fibers. All four fiber types have a fine structure characteristic of crustacean slow muscle, with 10–12 thin filaments surrounding each thick filament and sarcomere lengths of 6–13 m. Type-IV fibers have sarcomere lengths of 6 m while the other three types have substantially longer sarcomeres (10–13 m). Structural features of nerve terminals revealed excitatory innervation in all four fiber types but inhibitory innervation in Type-I, Type-II, and Type-III fibers only. Thus fibers with longer sarcomeres receive the inhibitor axon but those with shorter sarcomeres do not. Amongst the former, synaptic contact from an inhibitory nerve terminal onto an excitatory one, denoting presynaptic inhibition, was seen in Type-I and Type-II fibers but not in Type-III and Type-IV fibers. Inhibitory innervation of the walking leg closer muscle is therefore highly differentiated: some fibers lack inhibitory nerve terminals, some possess postsynaptic inhibition, and some possess both postsynaptic and presynaptic inhibition.  相似文献   

10.
A perusal of the literature on copepod cuticles has been made, and results of the investigation of six species made by the author are included in this review. The integument of copepods is of the arthropod type. Pore canals and other structures traversing the cuticle, common in most arthropods, are not always present in free-living and some parasitic copepods. In parasitic forms, with advanced morphological changes, the cuticle is generally very thin and the epicuticle in many species forms external microvilli-like structures. In the copepods hitherto investigated the epicuticle is probably the sole layer present in the cuticle. Some copepods show specialized regions of the cuticular surface, the function of which still remains obscure. Integumental organs and integumental structures are numerous and variable. The association of bacteria with the cuticle has been observed in many species. The structure of the integument of parasitic species lacking an alimentary tube and in close contact with the host tissue or hemocoelic cavity supports the idea that the integument could be the obligatory site of nutrient uptake. In spite of the relatively few species of copepods that have been investigated, a remarkable variation of cuticular fine structure has been revealed.  相似文献   

11.
Lin, J.‐P., Ivantsov, A.Y. & Briggs, D.E.G. 2011: The cuticle of the enigmatic arthropod Phytophilaspis and biomineralization in Cambrian arthropods. Lethaia, Vol. 44, pp. 344–349. Many non‐trilobite arthropods occur in Cambrian Burgess Shale‐type (BST) biotas, but most of these are preserved in fine‐grained siliciclastics. Only one important occurrence of Cambrian non‐trilobite arthropods, the Sinsk biota (lower Sinsk Formation, Botomian) from the Siberian Platform, has been discovered in carbonates. The chemical compositions of samples of the enigmatic arthropod Phytophilaspis pergamena Ivantsov, 1999 and the co‐occurring trilobite Jakutus primigenius Ivantsov in Ponomarenko, 2005 from this deposit were analysed. The cuticle of P. pergamena is composed of mainly calcium phosphate and differs from the cuticle of J. primigenius, which contains only calcium carbonate. Phosphatized cuticles are rare among large Cambrian arthropods, except for aglaspidids and a few trilobites. Based on recent phylogenetic studies, phosphatization of arthropod cuticle is likely to have evolved several times. □arthropod cuticle, Burgess Shale‐type preservation, fossil‐diagenesis, phosphatization.  相似文献   

12.
The fine structure of the myo-cuticular junction in an acarid mite, Caloglyphus mycophagus, is described. The muscle fibres are attached to the cuticle via flattened, much invaginated, epidermal cells. Unlike the situation described for other arthropods, the stress across these epidermal cells does not appear to be transmitted by microtubules but rather by desmosome-like structures which form intraepidermal cell bridges where invaginations from the outer and inner surfaces of the epidermal cells lie close together. The muscles are attached to the inner surface of this complex desmosome and the outer surface is linked to the cuticle by extracellular fibrils.  相似文献   

13.
H. W. Schmidt  J. Schönherr 《Planta》1982,156(4):380-384
The effect of BF3-methanol treatment on the mass and fine structure of isolated Clivia leaf cuticles at different stages of development has been investigated. BF3-methanol cleaves ester linkages in cutin; however, the cuticles are not completely depolymerized. With increasing age, the residue left after BF3-methanol treatment increases in mass. In very young cuticles, 10% of the total cutin resisted BF3-methanol and the fraction of nonester cutin increased up to 62% in mature leaves. Transmission electron microscopy shows that fine structure of the cuticle proper is severely distorted but not destroyed. The internal cuticular layer, which exhibits a heavy contrast when fixed with KMnO4, is completely depolymerized, while the external cuticular layer is hardly affected. The results are discussed in relation to cuticle development and to the function of cuticles as transpiration resistances.Abbreviation CP cuticle proper - ECL external cuticular layer - E cutin ester bonded cutin - ICL internal cuticular layer - MX-membrane polymer matrix membrane - NE-cutin non-ester bonded cutin - TEM transmission electron microscopy  相似文献   

14.
Modern arthropod cuticles consist of chitin fibres in a protein matrix, but those of fossil arthropods with an organic exoskeleton, particularly older than Tertiary, contain a dominant aliphatic component. This apparent contradiction was examined by subjecting modern cockroach, scorpion and shrimp cuticle to artificial maturation (350 degrees C/700 bars/24 h) following various chemical treatments, and analysing the products with pyrolysis-gas chromatography/mass spectrometry (Py-GC/MS). Analysis of artificially matured untreated cuticle yielded moieties related to phenols and alkylated substituents, pyridines, pyrroles and possibly indenes (derived from chitin). n-Alkyl amides, C16 and C18 fatty acids and alkane/alk-1-ene homologues ranging from C9 to C19 were also generated, the last indicating the presence of an n-alkyl component, similar in composition to that encountered in fossil arthropods. Similar pyrolysates were obtained from matured pure C16 and C18 fatty acids. Py-GC/MS of cuticles matured after lipid extraction and hydrolysis did not yield any aliphatic polymer. This provides direct experimental evidence that lipids incorporated from the cuticle were the source of aliphatic polymer. This process of in situ polymerization appears to account for most of the fossil record of terrestrial arthropods as well as marine arthropods that lacked a biomineralized exoskeleton.  相似文献   

15.
16.
Regions of muscle fibers that are many sarcomeres in length and uniform with regard to striation spacing, curvature, and tilt have been observed by light microscopy. We have investigated the possibility that these sarcomere domains can explain the fine structure in optical diffraction patterns of skeletal muscle fibers. We studied near-field and far-field diffraction patterns with respect to fiber translation and to masking of the laser beam. The position of diffracted light in the near-field pattern depends on sarcomere length and position of the diffracting regions within the laser beam. When a muscle fiber was translated longitudinally through a fixed laser beam, the fine structural lines in the near-field diffraction pattern moved in the same direction and by the same amount as the fiber movement. Translation of the muscle fiber did not result in fine structure movement in the far-field pattern. As the laser beam was incrementally masked from one side, some fine structural lines in both the near-field and far-field diffraction patterns changed in intensity while others remained the same. Eventually, all the fine structural lines broadened and decreased in intensity. Often a fine structural line increased in intensity or a dark area in the diffraction pattern became brighter as the laser beam was restricted. From these results we conclude that the fine structure in the laser diffraction pattern is due to localized and relatively uniform regions of sarcomeres (domains) and to cross interference among light rays scattered by different domains.  相似文献   

17.
18.
Summary The anterior and the posterior drum muscles of the piranha resemble each other in all essential fine structural aspects: myofibrils are slender; sarcomeres are short compared with those of other drum muscles; mitochondria, located in the periphery of the fibers, are numerous and show an irregular internal structure; and the sarcoplasmic reticulum is abundant. Triads appear at the level of the Z lines. The drum muscles have many motor endplates, which, however, lack the characteristic junctional-fold apparatus. No lipid substances could be demonstrated in these muscles. In the posterior drum muscle the fibers depart from their orderly longitudinal arrangement at irregular intervals.  相似文献   

19.
1. Lipids deposited on the surface or embedded within the cuticle of terrestrial plants and arthropods are primarily responsible for the observed low rates of water loss through the cuticle. 2. These lipids are a mixture of long-chain compounds which include hydrocarbons (saturated, unsaturated, branched), wax esters, free fatty acids, alcohols, ketones, aldehydes, and cyclic compounds. 3. The cuticle of both plants and arthropods is a continuous, non-cellular multilayered membrane which overlies the epidermal cells. 4. In arthropods, horizontal division of the cuticle into layers is clearly visible. In plants, the layers comprising the cuticle are not sharply demarcated. 5. The substance responsible for the structural integrity of the plant cuticle (cutin) is composed of cross-esterified fatty acids; structural integrity in arthropod cuticle is provided by a chitin-protein complex. 6. Cuticular lipids are probably formed near the surface in both plants and arthropods; however, specific sites of synthesis are known for only a few species and little is known about their transport from these sites to the surface. The elaborate pore canal and wax canal system of arthropod cuticle is absent from plants. 7. The physical structure and arrangement of the lipid deposits on the cuticular surface that are so important in controlling water movement depend on both quantity and chemical composition, and are, in turn, specific to each species in relation to its environment. 8. Different lipid components are not equally efficient in reducing transpiration. Maximum waterproofing effectiveness is provided by long-chain, saturated, non-polar molecules containing few methyl branches. 9. Plants and arthropods can, within genetic constraints, alter the composition of their cuticular waxes to improve impermeability when conditions require increased water conservation. 10. None of the models proposed to explain the change in arthropod cuticular permeability which occurs at a species-specific temperature (‘transition temperature’) in many species is supported by the experimental data now available.  相似文献   

20.
The fine structure and monomeric composition of the ester-cutin fraction (susceptible to BF3/CH3OH transesterification) of the adaxial leaf cuticle of Clivia miniata Reg. were studied in relation to leaf and cuticle development. Clivia leaves grow at their base such that cuticle and tissues increase in age from the base to the tip. The zone of maximum growth (cell expansion) was located between 1 and 4 cm from the base. During cell expansion, the projected surface area of the upper epidermal cells increased by a factor of nine. In the growth region the cuticle consists mainly of a polylamellate cuticle proper of 100–250 nm thickness. After cell expansion has ceased both the outer epidermal wall and the cuticle increase in thickness. Thickening of the cuticle is accomplished by interposition of a cuticular layer between the cuticle proper and the cell wall. The cuticular layer exhibits a reticulate fine structure and contributes most of the total mass of the cuticle at positions above 6 cm from the leaf base. The composition of ester cutin changed with the age of cuticles. In depolymerisates from young cuticles, 26 different monomers could be detected whereas in older ones their number decreased to 13. At all developmental stages, 9,16-/10,16-dihydroxyhexadecanoic acid (positional isomers not separated), 18-hydroxy-9-octadecenoic acid, 9,10,18-trihydroxyoctadecanoic acid and 9,10-epoxy-18-hydroxyoctadecanoic acid were most frequent with the epoxy alkanoic acid clearly predominating (47% at 16 cm). The results are discussed as to (i) the age dependence of cutin composition, (ii) the relationship between fine structure and composition, (iii) the composition of the cuticle proper, the cuticular layer and the non-depolymerizable cutin fraction, and (iv) the polymeric structure of cutin.Abbreviations CL cuticular layer - CP cuticle proper - MX cutin polymer matrix  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号