首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Embryonic growth and trophotaenial development are examined in two species of goodeid fish, Ameca splendens and Goodea atripinnis. During gestation of A. splendens, embryonic dry mass may increase from 0.21 mg at the onset of development to 31.70 mg at term. In G. atripinnis, embryonic dry mass ranges from 0.25 mg at the onset of development to 3.15 mg at term. Increase in mass is primarily due to the uptake of maternally derived nutrients by trophotaeniae, externalized embryonic gut derivatives. Trophotaenial development in both species is divisible into five phases. During the first phase, the anus is formed. The second phase involves dilation of the anus, enlargement of the perianal lips, differentiation of the hindgut absorptive epithelium, and formation of the trophotaenial peduncle. The third phase is characterized by a further marked hypertrophy and lateral expansion of the perianal lips that results in the formation of short trophotaenial processes. During the fourth phase, there is continued outward expansion of the inner mucosal surface of the trophotaenial peduncle that results in its eversion and lobulation. Placental function is established by this phase. Axial elongation and dichotomous branching of trophotaenial processes occurs during the fifth phase. Development of rosette and ribbon trophotaeniae differ in the degree of axial elongation during the fifth and final phase.  相似文献   

2.
Embryos of most species within the viviparous teleost family Goodeidae develop characteristics perianal processes that are considered to be derivatives of the embryonic hindgut. These processes, termed trophotaeniae, are covered with an epithelium that is continuous with the absorptive epithelium lining the hindgut. Gestation is intraovarian, and trophotaeniae mediate the uptake of maternally provided nutrients into the embryo from the ovarian fluid. Ultrastructural examination of the trophotaeniae of four goodeid species reveals substantial diversity in the organization of the epithelium within the family. The trophotaeniae of Alloophorus robustus, Zoogoneticus quitzeoensis, and Ilyodon furcidens have morphological features associated with the endocytosis of macromolecules and can be shown to endocytose the exogenous protein tracer horseradish peroxidase (HRP) rapidly. The trophotaenial epithelia of these species differ from one another with respect to other morphological features such as cell height, organization of the brush border, and the complexity of the intercellular spaces. The trophotaeniae of Goodea atripinnis lack an endocytotic apparatus and do not endocytose HRP. However, the overall organization of G. atripinnis trophotaenial cells suggests a function as a transporting epithelium. The cells have a dense brush border, numerous mitochondria, and many mitochondria that are enveloped by lamellar sheets of intracellular membrane. Post-fixation with osmium and potassium ferrocyanide reveals a marked difference in the complexity of the subepithelial connective tissue. Alloophorus robustus and Z. quitzeoensis exhibit an extremely electron-dense ground substance containing many acellular components. Goodea atripinnis exhibits an electron-lucid ground substance with few acellular components. © 1994 Wiley-Liss, Inc.  相似文献   

3.
After the membrane impermeant dye Lucifer Yellow is introduced into the cytoplasmic matrix of J774 cells, the dye is sequestered within cytoplasmic vacuoles and secreted into the extracellular medium. In the present work we studied the intracellular transport of Lucifer Yellow in J774 macrophages and the nature of the cytoplasmic vacuoles into which this dye is sequestered. When the lysosomal system of J774 cells was prelabeled with a Texas red ovalbumin conjugate and Lucifer Yellow was then loaded into the cytoplasm of the cells by ATP-mediated permeabilization of the plasma membrane, the vacuoles that sequestered Lucifer Yellow 30 min later were distinct from the Texas red-stained lysosomes. After an additional 30 min Lucifer Yellow and Texas red colocalized in the same membrane bound compartments, indicating that the Lucifer Yellow had been delivered to lysosomes. We next prelabeled the plasma membrane of J774 cells with anti-macrophage antibody and Texas red protein A before Lucifer Yellow was loaded into the cells. The phase-lucent vacuoles that subsequently sequestered Lucifer Yellow also stained with Texas red, showing that they were part of the endocytic pathway. J774 cells were fractionated on percoll density gradients either 15 or 60 min after Lucifer Yellow was introduced into the cytoplasmic matrix of the cells. In cells fractionated after 15 min, Lucifer Yellow was contained within the fractions of light buoyant density that contain plasma membrane and endosomes; the dye later appeared in vesicles of higher density which contained lysosomes. Secretion of Lucifer Yellow from the cytoplasmic matrix of J774 cells is inhibited by the organic anion transport blocker probenecid. We found that probenecid also reversibly inhibited sequestration of dye, indicating that sequestration of dye within cytoplasmic vacuoles was also mediated by organic anion transporters. These studies show that the vacuoles that sequester Lucifer Yellow from the cytoplasmic matrix of J774 cells possess the attributes of endosomes. Thus, in addition to their role in sorting of membrane bound and soluble substances, macrophage endosomes may play a role in the accumulation and transport of molecules resident in the soluble cytoplasm.  相似文献   

4.
Ultrastructural examination of the head kidney of Periophthalmus koelreuteri (Pallas) (Teleostei, Gobiidae) revealed that the nephronic tubule cells are bound by tight junctions and desmosomes with little intercellular space. The first proximal segment (PI) consists of low columnar cells with well developed brush borders, indented nuclei, and numerous apical endocytic vesicles and lysosomes. A second cell type possessing clusters of apical cilia and lacking brush border and lysosomes is occasionally found between PI cells. The second proximal segment (PII) is formed of high columnar cells with brush border, regular spherical nuclei and numerous mitochondria located between well developed infoldings of the basal membrane. Single ciliary structures protrude into the lumen from PI and PII cells. The distal segment is lined by low columnar epithelium with few microvilli, regular spherical nuclei, numerous scattered mitochondria, and microbodies. The collecting tubule cells are cuboidal with few euchromatic nuclei, some mitochondria, and secondary lysosomes.  相似文献   

5.
Numerous membrane-bounded vacuoles are found adjacent to the plasma membrane of the pathogenic protozoan Giardia lamblia. The function of these vacuoles has been discussed by several authors. Approximately 100–400 nm in diameter with a core of low electron density, they have been suggested to be mitochondria, mucocysts, lysosomes, and endocytotic vacuoles. Enzyme cytochemical localization for acid phosphatase activity using cerium as a capturing agent demonstrates reaction product in these vacuoles as well as in the endoplasmic reticulum and nuclear envelope cisternae. The distribution of reaction product suggests the vacuoles are lysosome-like; however, their function and development remain in question.  相似文献   

6.
Protein uptake and degradation by trophotaenial cells of the viviparous goodeid fish Ameca splendens were studied colorimetrically and ultrastructurally using horseradish peroxidase (HRP) as a tracer and acid (ACPase) and alkaline (ALPase) phosphatase cytochemistry. Trophotaeniae are ribbon-like external projections of the embryonic gut that are equivalent to greatly hypertrophied intestinal villi. During gestation within the ovarian lumen, trophotaeniae are directly apposed to the internal ovarian epithelium (IOE) where they establish a placental association between the developing embryo and maternal organism. Trophotaenial absorptive cells possess an ALPase reactive brush border, an endocytotic apparatus, and ACPase reactive standing lysosomes. Ultrastructural studies of protein uptake indicate that cells of the trophotaenial epithelium take up HRP by micropinocytosis and degrade it within lysosomes. Initially (from 1.5-10 min), HRP is taken up in vitro at 22 degrees C at the apical cell surface and passes via endocytotic vesicles into an apical canalicular system. From 1.5 to 10 min exposure, HRP passes passes from the apical canalicular system to a series of small collecting vesicles. After 10 min, HRP is detected within large ACPase reactive supranuclear lysosomes. Three hours after an initial 1 h exposure to HRP, most peroxidase activity within supranuclear lysosomes is no longer detected. Presence of Golgi complexes, residual bodies, and secretory granules in the infranuclear cytoplasm suggest that products of protein uptake and hydrolysis are discharged across basal and lateral cell surfaces and into the trophotaenial circulation. Trophotaeniae of embryos incubated in vitro in HRP-saline take up HRP at an initial rate of 13.5 ng HRP/mg trophotaenial protein/min. The system becomes saturated after 3 h. Trophotaeniae incubated at 4 degrees C show little or no uptake. In trophotaeniae continuously pulsed with HRP for 1 h, then incubated in HRP-free saline, levels of absorbed peroxidase declined at a rate of 0.5 ng/mg trophotaenial protein/min. HRP does not appear to enter the embryo via extra-trophotaenial routes. These findings are consistent with the putative role of trophotaeniae as the embryonic component of the functional placenta of goodeid fishes. Trophotaenial uptake of maternal nutrients accounts for a massive (15,000%) increase in embryonic dry weight during gestation.  相似文献   

7.
Summary Following perfusion fixation of the rat kidney with glutaraldehyde the proximal tubule cells display small apical vacuoles, large apical vacuoles, and apical vacuoles in which a part of the limiting membrane is invaginated into the vacuole. These invaginated apical vacuoles occur more frequently in proximal convoluted tubules than in proximal straight tubules. One tubular cell may contain apical vacuoles of different sizes and stages of invagination, ranging from larger vacuoles with a wide lumen and a small area of invaginated membrane to smaller elements with no apparent lumen and a large area of invaginated membrane. Invaginated apical vacuoles lie either singly in the cytoplasm or close to the membranes of other apical vacuoles, but never in contact with the cell membrane or the membranes of lysosomes, endoplasmic reticulum, Golgi apparatus, mitochondria and peroxisomes.These findings suggest that the invaginated apical vacuoles are not fixation artifacts, but rather develop in living state in cells of the proximal tubule from spherical endocytotic elements.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

8.
Cells treated with the VacA toxin fromHelicobacter pylori develop large membrane-bound vacuoles that originate from the late endocytotic pathway. Using different experimental approaches, we showed that VacA can induce vacuoles by acting within the cell cytosol. Moreover, separation of VacA-induced vacuoles at an early stage of formation, using a novel isopycnic density ultracentrifugation method, allowed us to show that they resemble a hybrid compartment, containing elements of both late endosomes and lysosomes. Functional defects of the endocytotic pathway were also studied before any macroscopic vacuolation is evident. VacA-intoxicated cells degrade extracellular ligands with reduced efficiency and, at the same time, they secrete acidic hydrolases into the extracellular medium, normally sorted to lysosomes. All these findings indicate that VacA translocates into the cell cytosol where it causes a lesion of the late endosomal/lysosomal compartments, such that protein trafficking across this crucial cross-point is altered with consequences that may be relevant to the pathogenesis of gastroduodenal ulcers. Presented at the1st International Minisymposium on Cellular Microbiology: Cell Biology and Signalization in Host-Pathogen Interactions, Prague, October 6, 1997.  相似文献   

9.
Cells of the J774 mouse macrophage-like cell line possess organic anion transporter that transport fluorescent dyes such as Lucifer Yellow out of the cytoplasmic matrix of the cells; the dye is both sequestered in endosomes and secreted into the extracellular medium. Lucifer Yellow that is sequestered within endosomes is subsequently delivered to the lysosomal compartment. In the present studies we demonstrated that probenecid inhibited removal of Lucifer Yellow from the soluble cytoplasm and sequestration into membrane bound organelles by quantitating Lucifer Yellow fluorescence in both soluble and membrane-associated fractions of J774 cells. In addition, we examined the uptake of Lucifer Yellow into isolated subcellular organelles derived from J774 cells. Lucifer Yellow transport in the organellar fraction of J774 cell homogenates was temperature- and pH-dependent and did not require ATP. Subcellular organelles from J774 cells were fractionated into endosome- and lysosome-enriched fractions by Percoll density gradient centrifugation. Lucifer Yellow was preferentially taken up by vesicles of the endosome-enriched fraction, and this transport was inhibited by probenecid. These studies provide direct evidence that probenecid inhibits Lucifer Yellow transport out of the cytoplasmic matrix and into cytoplasmic vacuoles in J774 cells and that organic anion transport in isolated organelles derived from J774 cells occurs preferentially in endosome, rather than in lysosome-enriched fractions; they suggest that Lucifer Yellow is carried across membranes via a secondary active transport process that requires proton symptom or hydroxyl anion antiport.  相似文献   

10.
A Miki  P Kugler 《Histochemistry》1986,85(2):169-175
The effect of exposure to leupeptin (25 micrograms/ml for 24 h) on the endocytotic activity and the membrane flow of apical cell membranes was studied in endodermal cells of cultured rat visceral yolk sacs by applying a double-labelling method using concanavalin-A ferritin (Con-A Fer) and horseradish peroxidase (HRP). Control and leupeptin-treated yolk sacs were labelled with Con-A Fer at 4 degrees C and then incubated with HRP for 5, 15 or 60 min at 37 degrees C. In controls, HRP reaction product was detected after 5 min in many of the apical vacuoles as well as a few lysosomes; after 15 min, reaction product was observed in all apical vacuoles and in lysosomes of various sizes. These HRP-positive structures usually contained a variable amount of membrane-bound Fer. After 60 min, all apical vacuoles and almost all lysosomes exhibited HRP reactions, but only some of these structures contained Fer particles. At this time, many apical canaliculi (which are involved in membrane recycling) exhibited positive HRP reactions and sometimes also contained Fer particles. In leupeptin-treated cells, HRP reaction product and variable amounts of membrane-bound Fer particles were found in apical vacuoles after 5 min; after 15 min, both labels were also observed in some small lysosomes, and after 60 min, they were found in all apical vacuoles as well as some small and middle-sized lysosomes. Significantly fewer labelled apical vacuoles, lysosomes and apical canaliculi were present after leupeptin treatment than in controls at corresponding times. At all times examined, the giant lysosomes found in leupeptin-treated cells did not exhibit any labeling.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Thin sections of Lowicryl K4M-embedded materials were labeled with protein A-gold complex. Gold particles representing the antigen sites for cathepsin B were exclusively confined to lysosomes of each segment of the nephron. The heaviest labeling was noted in the lysosomes of the S1 segment of the proximal tubules. Labeling intensity varied considerably with the individual lysosomes. Lysosomes of the other tubular segments, such as the S2 and S3 segments of the proximal tubules, distal convoluted tubules, and collecting tubules were weakly labeled by gold particles. Quantitative analysis of labeling density also confirmed that lysosomes in the S1 segment have the highest labeling density and that approximately 65% of labeling in the whole renal segments, except for the glomerulus, was found in the S1 segment. These results indicate that in rat kidney the lysosomes of the S1 segment are a main location of cathepsin B. Further precise observations on lysosomes of the S1 segment revealed that apical vesicles, tubules, and vacuoles were devoid of gold particles, but when the vacuoles contained fine fibrillar materials, gold labeling was detectable in such vacuoles. As the lysosomal matrix becomes denser, the labeling density is increased. Some small vesicles around the Golgi complex were also labeled. These results indicate that the endocytotic apparatus including the apical vesicles, tubules, and vacuoles contains no cathepsin B. When the vacuoles develop into phagosomes, they acquire this enzyme to digest the absorbed proteins.  相似文献   

12.
Intact barley (Hordeum vulgare L.) roots have been shown to take up the highly fluorescent dye Lucifer Yellow CH (LYCH) into their cell vacuoles. In the apical 1 cm of root tip, differentiating and dividing cells showed a prolific uptake of LYCH into their provacuoles. The LYCH was retained during fixation, apparently becoming bound to electron-dense material in the vacuoles. The dye freely entered the apoplast of roots in which the Casparian band was not developed, being taken up into the vacuoles of cells in both the cortex and stele. However, when LYCH was applied to a 1-cm zone approx. 6 cm behind the root tip the Casparian band on the radial walls of the endodermis completely prevented the dye from entering the cells of the stele, only the cell walls and vacuoles of the cortical cells taking up the dye. The inability of LYCH to cross the plasmalemma of the endodermal cells and enter the stele via the symplast substantiates previous claims that the dye is unable to cross the plasmalemma of plant cells. The results are discussed in the light of recent demonstrations that LYCH is a particularly effective marker for fluid-phase endocytosis in animal and yeast cells. A calculation of the energetic requirements for LYCH uptake into barley roots supports the contention that LYCH is taken up into the vacuoles of plant cells by fluid-phase endocytosis.Abbreviation LYCH Lucifer Yellow CH  相似文献   

13.
Summary The effect of exposure to leupeptin (25 g/ml for 24 h) on the endocytotic activity and the membrane flow of apical cell membranes was studied in endodermal cells of cultured rat visceral yolk sacs by applying a doublelabelling method using concanavalin-A ferritin (Con-A Fer) and horseradish peroxidase (HRP). Control and leupeptintreated yolk sacs were labelled with Con-A Fer at 4°C and then incubated with HRP for 5, 15 or 60 min at 37°C. In controls, HRP reaction product was detected after 5 min in many of the apical vacuoles as well as a few lysosomes; after 15 min, reaction product was observed in all apical vacuoles and in lysosomes of various sizes. These HRP-positive structures usually contained a variable amount of membrane-bound Fer. After 60 min, all apical vacuoles and almost all lysosomes exhibited HRP reactions, but only some of these structures contained Fer particles. At this time, many apical canaliculi (which are involved in membrane recycling) exhibited positive HRP reactions and sometimes also contained Fer particles. In leupeptin-treated cells, HRP reaction product and variable amounts of membrane-bound Fer particles were found in apical vacuoles after 5 min; after 15 min, both labels were also observed in some small lysosomes, and after 60 min, they were found in all apical vacuoles as well as some small and middle-sized lysosomes. Significantly fewer labelled apical vacuoles, lysosomes and apical canaliculi were present after leupeptin treatment than in controls at corresponding times. At all times examined, the giant lysosomes found in leupeptintreated cells did not exhibit any labelling. These findings indicate that, after leupeptin treatment, both endocytotic activity and membrane recycling decrease, and that fusions of the apical vacuolar system with giant lysosomes are retarded or inhibited.Supported by the Deutsche Forschungsgemeinschaft (SFB 105)  相似文献   

14.
Summary Ultrastructural aspects of the secretory and the endocytotic pathways and the lysosomal system of corpus cardiacum glandular cells (CCG cells) of migratory locusts were studied using morphological, marker enzyme, immunocytochemical and tracer techniques. It is concluded that (1) the distribution of marker enzymes of trans Golgi cisternae and trans Golgi network (TGN) in locust CCG cells corresponds to that in most non-stimulated vertebrate secretory cell types; (2) the acid phosphatase-positive TGN in CCG cells is involved in sorting and packaging of secretory material and lysosomal enzymes; (3) these latter substances are produced continuously; (4) at the same time, superfluous secretory granules and other old cell organelles are degraded; (5) the remarkable endocytotic activity in the cell bodies and the minor endocytotic activity in cell processes are coupled mainly to constitutive uptake of nutritional and/or regulatory (macro)molecules, rather than to exocytosis; (6) plasma membrane recycling occurs mainly by direct fusion of tubular endosomal structures with the plasma membrane and little traffic passes the Golgi/TGN; and (7) so-called cytosomes arise mainly from autophagocytotic vacuoles and represent a special kind of complex secondary lysosomes involved in the final degradation of endogenous (cell organelles) and exogenous material.  相似文献   

15.
Guard cell protoplasts were prepared from young leaves of peaplants. Under hypertonic conditions they shrink and large numbersof endocytotic (‘osmocytotic’) vacuoles are formedby invagination of the plasma membrane. In thin section theseare indistinguishable from other small vacuoles (‘mini-vacuoles’)which are formed by fragmentation of the large central vacuole.However, the two types of vacuole can be individually recognizedby labelling the central vacuole with neutral red and by performingthe osmotic shrinkage with fluorochromes such as Lucifer Yellow-CHor Cascade Blue present in the extracellular medium. Osmocytoticvacuoles do not fuse with the plasma membrane nor with the mini-vacuolesduring a subsequent swelling phase. After several hours, osmocytosedLucifer Yellow gradually leaks out of the endocytotic vacuoleswhen protoplasts are returned to hypotonic conditions. Thisleakage is not prevented by probenecid at concentrations (20–50mmol m–3) which do not give rise to pathological changesin protoplast ultrastructure. In order to determine the relevanceof these observations to the situation in planta, intact guardcells in epidermal strips were first allowed to accumulate neutralred in their vacuoles and then subjected to osmotic shrinkagein the presence of external Lucifer Yellow. Osmocytotic vacuoleswere not formed, although the production of mini-vacuoles wasfrequently observed. Key words: Guard cell protoplasts, fluid phase markers, Pisum sativum, probenecid, osmocytosis, shrinkage-swelling cycles  相似文献   

16.
Summary Lucifer yellow CH (LY) uptake into intact leaves ofCommelina communis has been studied with conventional fluorescence microscopy as well as confocal laser scanning microscopy. LY, a highly fluorescent tracer for apoplastic transport in plants and fluid phase endocytosis in animal cells, accumulates in the vacuole of leaf cells. However, considerable differences in the ability to take up LY were observed among the various cell types. Mesophyll cells take up large amounts of the dye whereas epidermal cells, including guard and subsidiary cells, showed no fluorescence in their vacuoles. An exception to this are trichome cells which show considerable accumulation of LY. When introduced into the cytoplasm of mesophyll protoplasts ofC. communis by means of a patch-clamp pipette, LY does not enter the vacuole. This supports the contention that exogenous LY can only gain access to the vacuole via endocytosis. Differences in the capacity for LY uptake may therefore reflect differences in endocytotic activity.Abbreviations CLSM Confocal laser scanning microscopy - DIC differential interference contrast - LY Lucifer yellow CH - PM plasma membrane  相似文献   

17.
Bacterial pathogens can interfere during infection with host cell organelles, such as mitochondria, the endoplasmic reticulum‐Golgi system or nuclei. As important cellular functions are often compartmentalized in these organelles, their targeting allows pathogens to manipulate key host functions during infection. Here, we identify lysosomes as a new class of organelles targeted by the pathogenic bacterium Listeria monocytogenes. We demonstrate that extracellular Listeria, via secretion of the pore‐forming toxin listeriolysin O, alters lysosomal integrity in epithelial cells but not in macrophages. Listeriolysin O induces lysosomal membrane permeabilization and release of lysosomal content, such as cathepsins proteases, which remain transiently active in the host cytosol. We furthermore show that other bacterial pore‐forming toxins, such as perfringolysin O and pneumolysin, also induce lysosomes alteration. Together, our data unveil a novel activity of bacterial cholesterol‐dependent cytolysins.  相似文献   

18.
Summary The trophotaeniae and abdominal epidermis of Xenoophorus captivus embryos were studied by light, scanning and transmission electron microscopy, freeze-fracture replication, and histochemical techniques for unspecific phosphatases. The trophotaenial epithelium is continuous with both the intestinal mucosa and the epidermis, and contains structural elements similar to both. The predominant component is a simple brush-border epithelium consisting of cuboid cells showing signs of endocytotic activity at their apical surfaces. These are the absorptive elements of the trophotaeniae, and phosphatase ultracytochemistry demonstrates the presence of alkaline phosphatase on the external leaflet of their exposed plasma membranes. Enormously dilated intercellular spaces and large gaps occur in this epithelial covering.Beneath this absorptive epithelium lies an incomplete layer of dense squamous cells that appear to be derived from the stratified epithelium covering trophotaenial areas free of brush border epithelium and the abdominal wall. The exposed cell surfaces of this component are modified to form an elaborate pattern of microplicae which can be seen by scanning EM where gaps appear in the overlying absorptive epithelium. The stratified epithelium of the abdominal wall is underlain with collagen fibrils and an intricate network of capillaries, and is considered to be a site of cutaneous respiration. This cutaneous gas-exchange pathway averages 2–4 m in thickness. Chloride cells are constituents of the stratified epithelium of the trophotaenial base and abdominal wall.The involvement of the endodermal component of the trophotaenial epithelium in the transfer of nutrients and possibly antibodies, and the role of the abdominal epidermis and ectodermal trophotaenial epithelium in gas exchange and osmoregulation, are discussed.  相似文献   

19.
K. V. Wolf  W. Stockem 《Protoplasma》1979,99(1-2):125-138
Summary The investigation of endocytotic processes in axenically cultured microplasmodia ofPhysarum polycephalum is considerably complicated by the development of an extensive cell membrane invagination system. Cross-sections through single channels of this system are difficult to distinguish from vacuoles formed endocytotically. Therefore the whole system was labelled by staining the extracellular slime with ruthenium red or lanthanum hydroxide. In this way endosomes produced during the incubation period could be clearly identified. Aerosil andThorotrast are suitable markers for food vacuoles because they can easily be detected with the electron microscope. The application of these substances revealed that submerged cultured microplasmodia are able to form endosomes which contain material of extracellular origin. However, the endocytotic uptake of food material is of much less intensity than in normal macroplasmodia. Microplasmodia seem to cover most of their requirements for metabolic substances by active trans-membrane transport.The intracellular digestive system of microplasmodia corresponds to the vacuolar apparatus of other cells. Preexisting lysosomes originating by autophagic processes play a central role in this system: They coalesce with endosomes or secondary lysosomes thus forming digestion vacuoles. Indigestible food components are extruded together withCa-containing granules into the cell surface invagination system by defecation. The physiological significance of theCa-granules is unknown.  相似文献   

20.
K. J. Oparka  D. A. M. Prior 《Planta》1988,176(4):533-540
The fluorescent dye Lucifer Yellow CH (LYCH) was introduced directly into the symplast of potato (Solanum tuberosum L.) tuber storage parenchyma by microinjection and also into the apoplast through cuts made in the stolon cortex. Microinjected LYCH moved away rapidly from a single storage cell and spread radially via the symplast. When the microinjected tissue was subsequently fixed in glutaraldehyde and sectioned the dye was seen clearly to be localised in the cytoplasm but not in the vacuole. In comparison, when LYCH was introduced into cuts made in the stolon cortex the dye entered the tuber by the xylem and subsequently spread apoplastically. No movement of dye was observed in the phloem. In glutaraldehyde-fixed tissues, in which LYCH was introduced to the apoplast, the dye was found within xylem vessels, in the cell walls and in intercellular spaces. Wall regions, possibly associated with plasmodesmata, became stained by the dye as it moved through the apoplast. Three hours after introduction of the dye to the stolon, intense deposits of LYCH were found in the vacuoles of all cells in the tuber, many aligned along the tonoplast. Differentiating vascular parenchyma elements contained large amounts of dye within enlarging vacuoles. However, with the exception of plasmolysed and-or damaged cells, LYCH was absent from the cytoplasm following its introduction to the plasmalemma it is suggested that the most likely pathway from the cell wall to the vacuole was by endocytosis, the dye being transported across the cytoplasm in membrane-bound vesicles. Clathrin-coated vesicles were abundant in the storage cells, providing a possible endocytotic pathway for dye movement. The significance of these observations is discussed in relation to the movement of LYCH in plant tissues and to the movement of solutes within and between storage cells of the tuber.Abbreviation LYCH Lucifer Yellow CH  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号