首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The effect of angiotensin II (Ang II) on the early growth response gene-1 (Egr-1) mRNA, on the Egr-1 protein and on the phosphoinositide PI turnover signalling system was investigated in the presence and absence of EXP3174, a potent non-peptide Ang II receptor antagonist. Ang II induced an accumulation of 3.4 kb Egr-1 mRNA and the 80 kDa Egr-1 protein, with a maximum at 30 min and 60 min, respectively. EXP3174 blocked the Ang II-induced increase of inositol phosphates, Egr-1 mRNA and the Egr-1 protein, suggesting the involvement of the PI signalling system by the expression of the Egr-1 gene.  相似文献   

2.
Two forms of protein kinase C (PKC) activity in cytosol of cultured rat mesangial cells have been characterized in vitro by using histone H1 or endogenous proteins as substrates. Histones H1-phosphorylation was significantly increased only when calcium, phosphatidylserine (PS) and 1,2-diacylglycerol (DAG) or phorbol myristate acetate (PMA) were present together in the incubation medium. EGTA, a calcium chelator, completely inhibited this activity. Upon hydroxyapatite chromatography (HPLC), the PKC activity was eluted as a main peak at 150 mM potassium phosphate with a shoulder at 180 mM. Both peaks corresponded to the type III PKC from rat brain and were identified as PKC alpha isoform by immunoblot analysis. In contrast with what was observed using histone H1, the increased phosphorylation of endogenous proteins in the presence of a mixture of Ca2+/PS, plus either DAG or PMA, was only partly reduced by EGTA. Moreover, the level of the PKC activity detected in the presence of EGTA was comparable to the level of kinase activity, measured in the presence of PS alone or associated with DAG or PMA. This suggests that mesangial cells contain PKC activity which does not absolutely require calcium. Polyacrylamide gel electrophoresis revealed that patterns of phosphorylated mesangial cell proteins are different depending on whether calcium was added or not. In the presence of calcium, PKC strongly phosphorylated the proteins of 53,000 molecular weight, a doublet of 37,000-39,000, the 24,000 and the triplet of 17,000-20,000-22,000 molecular weight. The addition of EGTA to the assays suppressed completely the labelling of most proteins; only the 20,000 molecular weight protein remained strongly labelled, while the 39,000 molecular weight band was only faintly visible. The same patterns of phosphorylations were obtained after omission of calcium in the assays containing only PS and DAG (or PMA). So, the main substrates of calcium-dependent PKC are proteins of 53,000, 39,000, 37,000, 22,000, 24,000 and 17,000 molecular weight while the protein of 20,000 molecular weight appears to be the main substrate of calcium-independent PKC. The existence in mesangial cells of at least two forms of PKC, which phosphorylate specific endogenous proteins, emphasizes the complexity of the phospholipid-dependent regulatory cascade and raises the possibility that actions of different regulators may be transduced through distinct PKC isozymes.  相似文献   

3.
Intestinal P-glycoprotein, which is encoded by the MDR1 gene, plays an important role in the absorption and presystemic elimination of many xenobiotics. Hence, an understanding of the factors regulating its expression and function is of substantial interest. In addition to genetic factors, exposure to drugs such as rifampin can profoundly affect its expression. So far, the mechanisms by which rifampin induces MDR1 expression are poorly understood. Recent studies demonstrate that the nuclear receptor PXR (pregnane X receptor) is involved in xenobiotic induction of CYP3A4. Because CYP3A4 and MDR1 are often co-induced, we investigated whether a similar mechanism is also involved in MDR1 induction. The human colon carcinoma cell line LS174T was used as an intestinal model to study induction because in these cells the endogenous MDR1 gene is highly inducible by rifampin. The 5'-upstream region of human MDR1 was examined for the presence of potential PXR response elements. Several binding sites were identified that form a complex regulatory cluster at about -8 kilobase pairs. Only one DR4 motif within this cluster is necessary for induction by rifampin. We conclude that induction of MDR1 is mediated by a DR4 motif in the upstream enhancer at about -8 kilobase pairs, to which PXR binds.  相似文献   

4.
5.
Y Orita  Y Fujiwara  S Ochi  Y Tanaka  T Kamada 《FEBS letters》1985,192(1):155-158
The analysis of the 100 000 X g supernatant fraction of cultured rat glomerular mesangial cells with DEAE-cellulose ion-exchange chromatography revealed a large peak showing the activity of a protein kinase (protein kinase C) which depended on phospholipid and diolein as well as Ca2+. Furthermore, it was shown that angiotensin II (AII) (10(-6)M) induced rapid hydrolysis of phosphatidylinositol 4,5-bisphosphate, leading to production of diacylglycerol rich in arachidonic acid, in the cultured rat mesangial cells. These results suggest that activation of protein kinase C resulting from enhancement of phosphoinositide metabolism may be important as an intracellular regulatory mechanism of AII upon cultured mesangial cells.  相似文献   

6.
7.
We explored the role of the recently discovered "early growth response gene-1 (Egr-1)" in the induction of myocardial protein synthesis by endothelin-1. Endothelin-1 stimulated protein synthesis (i.e. 3H-phenylalanine incorporation) in isolated adult rat cardiomyocytes more than 2-fold. Addition of a 15mer Egr-1 antisense oligodeoxyribonucleotide complementary to the first 5 codons of the Egr-1 mRNA completely blocked endothelin-induced protein synthesis. A single base mismatch in the oligonucleotide sequence abolished the inhibitory effect. T3-induced stimulation of protein synthesis was unaffected by the antisense oligonucleotide. These results indicate that the Egr-1 gene product is involved (putatively as a third messenger) in the signal transduction cascade initiated by endothelin-1 which eventually culminates in the induction of cardiac protein synthesis.  相似文献   

8.
9.
Multivalent antigen that is capable of binding to and crosslinking the IgE receptors on rat basophilic leukemia (RBL) cells, induces a rapid and sustained rise in the content of filamentous actin. This reorganization of the actin may be responsible for changes in cellular morphology during the degranulation process. The antigen-stimulated polymerization of actin can be blocked in a dose-dependent manner by protein kinase inhibitors which also block degranulation. Conversely, reagents such as PMA, 1,2-dioctanoyl-sn-glycerol (diC8), and 1-oleoyl-2-acetyl-glycerol (OAG) which stimulate protein kinase C (PKC) also activate the rise in F-actin, although they have no effect on degranulation by themselves. The actin response which can be stimulated by the PKC activators can also be blocked by protein kinase inhibitors indicating that the PMA- and OAG-induced response is probably through activation of a protein kinase. Depletion of PKC activity through long term (20 h) exposure of RBL cells to PMA, also inhibited the F-actin response when the cells were stimulated with either multivalent antigen or OAG. External Ca++, which is an absolute requirement for degranulation, is not necessary for the rise in F-actin, but may modulate the response. Furthermore, ionomycin, which induces a large Ca++ influx, does not stimulate the F-actin increase even at doses that cause degranulation. These results suggest that activation of a protein kinase, such as PKC, may be responsible for signaling the polymerization of actin in RBL cells and that a rise in intracellular Ca++ is neither necessary nor sufficient for this response.  相似文献   

10.
11.
12.
13.
Ceramide levels are strongly increased by stimulation of renal mesangial cells with nitric oxide (NO). This effect was shown previously to be due to a dual action of NO, comprising an activation of sphingomyelinases and an inhibition of ceramidase activity. In this study we show that the NO-triggered inhibition of neutral ceramidase activity is paralleled by a down-regulation at the protein level. A complete loss of neutral ceramidase protein is obtained after 24 h of stimulation. Whereas the selective proteasome inhibitor lactacystin blocked NO-evoked ceramidase degradation, several caspase inhibitors were ineffective. Moreover, the NO-induced degradation is reversed by the protein kinase C (PKC) activator, 12-O-tetradecanoylphorbol-13-acetate (TPA), and also by the physiological PKC activators platelet-derived growth factor-BB (PDGF), angiotensin II and ATP, resulting in a normalization of neutral ceramidase protein as well as activity. In vivo phosphorylation studies using (32)P(i)-labeled mesangial cells revealed that TPA, PDGF, angiotensin II, and ATP trigger an increased phosphorylation of the neutral ceramidase, which is blocked by the broad spectrum PKC inhibitor Ro-31 8220 but not by CGP 41251, which has a preferential action on Ca(2+)-dependent isoforms, thus suggesting the involvement of a Ca(2+)-independent PKC isoform. In vitro phosphorylation assays using recombinant PKC isoenzymes and neutral ceramidase immunoprecipitated from unstimulated mesangial cells show that particularly the PKC-delta isoform and to a lesser extent the PKC-alpha isoform are efficient in directly phosphorylating neutral ceramidase. In summary, our data show that NO is able to induce degradation of neutral ceramidase, thereby promoting accumulation of ceramide in the cell. This effect is reversed by PKC activation, most probably by the PKC-delta isoenzyme, which can directly phosphorylate and thereby prevent neutral ceramidase degradation. These novel regulatory interactions will provide therapeutically valuable information to target neutral ceramidase stability and subsequent ceramide accumulation.  相似文献   

14.
Nefiracetam is a pyrrolidine-related nootropic drug exhibiting various pharmacological actions such as cognitive-enhancing effect. We previously showed that nefiracetam potentiates NMDA-induced currents in cultured rat cortical neurons. To address questions whether nefiracetam affects NMDA receptor-dependent synaptic plasticity in the hippocampus, we assessed effects of nefiracetam on NMDA receptor-dependent long-term potentiation (LTP) by electrophysiology and LTP-induced phosphorylation of synaptic proteins by immunoblotting analysis. Nefiracetam treatment at 1-1000 nM increased the slope of fEPSPs in a dose-dependent manner. The enhancement was associated with increased phosphorylation of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor through activation of calcium/calmodulin-dependent protein kinase II (CaMKII) without affecting synapsin I phosphorylation. In addition, nefiracetam treatment increased PKCalpha activity in a bell-shaped dose-response curve which peaked at 10 nM, thereby increasing phosphorylation of myristoylated alanine-rich protein kinase C substrate and NMDA receptor. Nefiracetam treatment did not affect protein kinase A activity. Consistent with the bell-shaped PKCalpha activation, nefiracetam treatment enhanced LTP in the rat hippocampal CA1 region with the same bell-shaped dose-response curve. Furthermore, nefiracetam-induced LTP enhancement was closely associated with CaMKII and PKCalpha activation with concomitant increases in phosphorylation of their endogenous substrates except for synapsin I. These results suggest that nefiracetam potentiates AMPA receptor-mediated fEPSPs through CaMKII activation and enhances NMDA receptor-dependent LTP through potentiation of the post-synaptic CaMKII and protein kinase C activities. Together with potentiation of nicotinic acetylcholine receptor function, nefiracetam-enhanced AMPA and NMDA receptor functions likely contribute to improvement of cognitive function.  相似文献   

15.
M Issandou  J M Darbon 《FEBS letters》1991,281(1-2):196-200
The tumor-promoting phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA) is shown to be mitogenic for quiescent glomerular mesangial cells cultured in serum-free conditions. TPA induces DNA synthesis measured by [3H]thymidine incorporation in a dose-dependent manner with an ED50 of 7 ng/ml and an optimal response for 50 ng/ml. The phorbol ester action is potentiated by insulin with an increase of the maximal effect from 232 +/- 15% for TPA alone to 393 +/- 96% for TPA plus insulin. Down-regulation of protein kinase C by prolonged exposure to TPA completely abolishes the mitogenic effect of the phorbol ester. Using a highly resolutive 2D electrophoresis, we have shown that TPA is able to stimulate the phosphorylation of 2 major proteins of Mr 80,000, pl 4.5 (termed 80K) and Mr 28,000, pI 5.7-5.9 (termed 28K). The 80K protein phosphorylation is time- and dose-dependent with an ED50 of 8 ng/ml TPA. Exposure of mesangial cells to heat-shock induces synthesis of a 28K protein among a set of other proteins suggesting that the 28K protein kinase C substrate belongs to the family of low molecular mass stress proteins. Mitogenic concentrations of TPA and phorbol 12,13-dibutyrate inhibit [125 I]epidermal growth factor binding and stimulate the 80K protein phosphorylation with the same order of potency. The inactive tumor-promoter 4 alpha-phorbol was found to be ineffective both on these 2 parameters and on DNA synthesis. These results suggest a positive role for protein kinase C on mesangial cell proliferation and indicate the existence in this cell line of 2 major protein kinase C substrates.  相似文献   

16.
17.
Transforming growth factor-beta 1 (TGF-beta 1) regulates the expression of the carcinoembryonic antigen (CEA) gene family in the human colon carcinoma cell line Moser. The mechanisms through which it acts, however, are unknown. In this communication, several lines of evidence are presented to show that the induction of CEA expression and secretion (collectively called CEA responses) by TGF-beta 1 is associated with protein kinase C (PKC) pathway of signal transduction. Treatment of intact cells with the PKC-specific inhibitor calphostin C down-modulated cellular PKC phosphotransferase activity and blocked the induction of the CEA responses by TGF-beta 1. Depletion of PKC by treatment of intact cells with phorbol ester also blocked the action of TGF-beta 1. The induction of the CEA responses by TGF-beta 1 was also blocked by the protein kinase inhibitor 1-(isoquinolinesulfonyl)-2-methylpiperazine dihydrochloride (H-7), which also inhibited cellular PKC activity. However, TGF-beta 1 did induce the CEA responses in intact cells treated with the calmodulin antagonist N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide hydrochloride (W-7), the calmodulin-dependent phosphodiesterase inhibitor calmidazolium, the diacylglycerol kinase inhibitor R59 022, and the G-protein inhibitors cholera toxin and pertussis toxin. Treatment of intact cells with TGF-beta 1 induced a rapid and transient increase in PKC phosphotransferase activity. TGF-beta 1, however, was unable to induce PKC enzymatic activity in cells pretreated with calphostin C. Therefore, it is concluded that TGF-beta 1 regulates the CEA responses through a signal transducing pathway associated with PKC.  相似文献   

18.
Arginine vasopressin (AVP) promotes proliferation of glomerular mesangial cells. We examined whether AVP modulates an apoptosis of cultured rat glomerular mesangial cells at 3-17th passages. The agarose gel electrophoresis demonstrated that AVP attenuated a ladder formation stimulated by the serum deprivation. The quantitation of oligonucleosomes by ELISA also showed that AVP suppressed the serum deprivation-induced apoptosis. Such an antiapoptotic effect of AVP was dose-dependent. An AVP V1a receptor antagonist, d(CH2)5Tyr(Me)AVP, abolished the antiapoptotic effect of AVP. The inhibitory effect of AVP on the apoptosis was reduced by staurosporine and mimicked by phorbol-12-myristate-13-acetate. These results suggest that AVP inhibits serum deprivation-induced apoptosis of glomerular mesangial cells via V1a receptor-protein kinase C pathway.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号