首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The present study characterizes constitutively expressed rat testicular interleukin-1α (IL-1α) proteins. IL-1 bioactivity of crude testis protein was completely neutralized by IL-1α antiserum, IL-1 receptor antagonist, and soluble type I IL-1 receptor. Upon non-denaturating gel permeation chromatography, bioactive IL-1 eluted at molecular sizes of 45, 31, and 17 kDa and at charges of pH 5.7 and 6.0 after chromatofocusing. SDS-PAGE/Western blot analysis of proteins extracted from whole testis, seminiferous tubules, interstitial, and seminiferous tubule fluids all demonstrated IL-1α immunoreactivity at 45, 24, and 19 kDa. Activated macrophages and tissue proteins from endotoxin treated rats showed immunoreactive 31 and 19 kDa IL-1α. The results indicate that the testis produces three isoforms of IL-1α proteins that are secreted into the interstitial compartment and tubular lumen where they may exert paracrine functions. The testicular IL-1α isoforms may represent posttranslationally modified precursor, mature IL-1α, and a 24-kDa alternate splice form.  相似文献   

2.
The thermodynamics of protamine-DNA interaction was investigated with clupeine Z from herring labeled at its amino terminus with fluorescein. The ionic strength dependence, the influence of protamine phosphorylation, of the native DNA conformation, using native and heat-denatured DNA, and of the protamine primary structure, using two oligoarginine peptides of similar length as the clupeine, was thoroughly studied. The unusually high cooperativity of interaction found is strictly correlated to the native DNA conformation and the protamine primary structure. Cooperativity is explained by cross-linking of DNA segments resulting in an increase of the negative charge density. The importance of protamine phosphorylation lies in the fact that thermodynamically governed interaction with DNA and favorable cross-linking of DNA are shifted to physiologically reasonable ionic strengths.Abbreviations FITC fluorescein isothiocyanate - FTC-clupeine clupeine labeled at its amino terminus with fluorescein via a thiocarbamate bond  相似文献   

3.
Transition protein 1 (TP1) is a small basic nuclear protein that functions in chromatin condensation during spermatogenesis in mammals. Here, recently identified cDNA clones encoding mouse transition protein 1(mTP1) were used to characterize the expression of the mTP1 mRNA during spermatogenesis. Southern blot analysis demonstrates that there is a single copy of the gene for transition protein 1 in the mouse genome. Northern blot analysis demonstrates that mTP1 mRNA is a polyadenylated mRNA approximately 600 bases long, which is first detected at the round spermatid stage of spermatogenesis. mTP1 mRNA is not detectable in poly(A)+ RNAs isolated from mouse brain, kidney, liver, or thigh muscle. mTP1 mRNA is translationally regulated in that it is first detected in round spermatids, but no protein product is detectable until approximately 3 days later in elongating spermatids. In total cellular RNA isolated from stages in which mTP1 is synthesized, the mTP1 mRNA is present as a heterogeneous class of mRNAs that vary in size from about 480 to 600 bases. The shortened, heterogeneous mTP1 mRNAs are found in the polysome region of sucrose gradients, while the longer, more homogeneous mTP1 mRNAs are present in the postmonosomal fractions.  相似文献   

4.
Summary Smooth muscle heavy myosin and actin have been detected in mouse and rat meiotic chromosomes, by indirect immunofluorescence performed on testis cryostat sections and isolated germ cells. Both contractile proteins are detectable in the nuclei of meiotic cells during the first prophase. The appearance and disappearance time of myosin and actin, however, is not synchronous. While actin is visible in small spots from resting to late diplotene spermatocytes, myosin appears as filaments in the primary spermatocytes from the zygotene to the early stage of diplotene. The number of myosin filaments in the pachytene spermatocytes corresponds to the number of bivalent chromosomes, whereas actin spots constantly outnumber the pairing chromosomes by two units. These immunochemical observations suggest that the two contractile proteins are associated with the synaptonemal complex (SC). Myosin seems to be associated with the central region of the SC, while actin is present in its basal knob which is in connection with the nuclear membrane. The difference in number between myosin filaments and actin spots appears to be related to the peculiar behaviour of the pairing sex chromosomes. The presence of contractile proteins in the nuclei of primary spermatocytes seems to suggest that they might play a role in the process of pairing of homologous chromosomes.  相似文献   

5.
Summary The structure of the seminiferous tubules in neonate harp seals, Pagophilus groenlandicus, was essentially similar in one-, five and ten-day old animals. The tubules were small in diameter, devoid of lumina and contained predominantly supportive cells. The interstitial cells in the neonates were large, numerous and highly vacuolated. They became smaller and appeared less active in the ten-day old animals compared with the one-day old seals, although they were still considerably more numerous and vacuolated than in testes taken from adult harp seals.The work was supported by grants from the National Science and Engineering Research Council of Canada (J.F.L. and K.R.) and from the Donner (Canadian) Foundation (K.R.)  相似文献   

6.
Bleomycin (BLM) induces DNA damage in living cells. In this report we analyzed the role of chromatin compactness in the differential response of mosquito (ATC-15) and mammalian (CHO) cells to DNA strand breaks induced by BLM. We used cells unexposed and exposed to sodium butyrate (NaB), which induces chromatin decondensation. By nucleoid sedimentation assay and digestions of nuclei with DNAse I, untreated mosquito cells (no BLM; no NaB) were shown to have more chromatin condensation than untreated CHO cells. By alkaline unwinding ATC-15 cells treated with NaB showed more BLM-induced DNA strand breaks than NaB-untreated CHO cells. The time-course of BLM-induced DNA damage to nuclear DNA was similar for NaB-untreated mammalian and insect cells, but with mosquito cells showing less DNA strand breaks, both at physiological temperatures and at 4 °C. However, when DNA repair was inhibited by low temperatures and chromatin was decondensed by NaB treatments, differences in BLM-induced DNA damage between these cells lines were no longer observed. In both cell lines, NaB did not affect BLM action on cell growth and viability. On the other hand, the low sensitivity of ATC-15 cells to BLM was reflected in their better growth efficiency. These cells exhibited a satisfactory growth at BLM doses that produced a permanent arrest of growth in CHO cells. The data suggest that mosquito cells might have linker DNAs shorter than those of mammalian cells, which would result in the observed both greater chromatin condensation and greater resistance to DNA damage induced by BLM as compared to CHO cells.  相似文献   

7.
Melipona quadrifasciata and Melipona rufiventris are stingless bee species which present low and high heterochromatin content, respectively, on their mitotic chromosomes as assessed visually after a C-banding assay. However, these species do not show differences in the C-banding responses of their Malpighian tubule interphase nuclei. In the present study, the Feulgen-DNA response, which could inform on differences in DNA depurination due to differences in chromatin condensation, was compared in the cell nuclei of the Malpighian tubules of these species. It was hypothesized that differences in acid hydrolysis kinetics patterns, as assessed by Feulgen reaction and studied microspectrophotometrically, could discriminate M. quadrifasciata and M. rufiventris interphase nuclei not distinguishable with the C-banding method. Feulgen-DNA values corresponding to more than one ploidy class were found in both species; these values at the hydrolysis time corresponding to the maximal DNA depurination for each ploidy degree were higher in M. quadrifasciata, reflecting a higher DNA content in the Malpighian tubule cell nuclei of this species compared to those of M. rufiventris at the same larval instar. The maximal Feulgen-DNA values of M. quadrifasciata after short (50 min) and long (90 min) hydrolysis times were found to be closer to each other, while those of M. rufiventris occurred sharply at the long hydrolysis time, indicating that DNA depurination in M. quadrifasciata occurred faster. This result is probably related to the involvement of differences in chromatin condensation; it agrees with the idea that M. rufiventris contains more heterochromatin than M. quadrifasciata, which is supported by the analysis of results obtained with the image analysis parameter average absorption ratio. The depurination kinetics studied here with the Feulgen reaction were revealed to be more pertinent than the C-banding technique in establishing differences in levels of chromatin condensation for these cell nuclei.  相似文献   

8.
Abstract Six putative GTP binding proteins were detected by ultraviolet light in the presence of [α-32P]GTP during the developmental cycle of Streptomyces coelicolor . Four out of six were true GTP binding proteins. Immunological reactions carried out with antiserum which recognizes the α-common subunit of G regulatory proteins identified two bands of 67 kDa and 30 kDa. Studies with [γ-32P]GTP showed significant changes in protein phosphorylation during the cell cycle. The results show that at least three different systems of GTP protein interaction are present in S. coelicolor .  相似文献   

9.
The structure of chromatin is the major factor determining the rate and efficiency of DNA repair. Chromatin remodeling events such as rearrangement of nucleosomes and higher order chromatin structures are indispensable features of repair processes. During the last decade numerous chromatin proteins have been identified that preferentially bind to different types of DNA damage. The HMGB proteins, which preferentially interact with DNA intrastrand crosslinks induced by cisplatin, are the archetypal example of such proteins. Several hypothetical models have been proposed describing the role of such damage-binding chromatin proteins. The damage shielding model postulates that binding of chromatin proteins to damaged DNA might disturb damage recognition by repair factors and impair its removal. Alternatively, the damage-recognition/signaling model proposes that the binding of specific chromatin proteins to damaged DNA could serve as a hallmark to be recognized by repair proteins. Additionally, the binding of specific chromatin proteins to damaged DNA could induce chromatin remodeling at the damage site and indirectly affect its repair. This paper aims to critically review current experimental data in relation to such possible roles of chromatin proteins.  相似文献   

10.
In mammals, a family of four lipid binding proteins has been previously defined that includes two lipopolysaccharide binding proteins and two lipid transfer proteins. The first member of this family to have its three-dimensional structure determined is bactericidal/permeability-increasing protein (BPI). Using both the sequence and structure of BPI, along with recently developed sequence-sequence and sequence-structure similarity search methods, we have identified 13 distant members of the family in a diverse set of eukaryotes, including rat, chicken, Caenorhabditis elegans, and Biomphalaria galbrata. Although the sequence similarity between these 13 new members and any of the 4 original members of the BPI family is well below the "twilight zone," their high sequence-structure compatibility with BPI indicates they are likely to share its fold. These findings broaden the BPI family to include a member found in retina and brain, and suggest that a primitive member may have contained only one of the two similar domains of BPI.  相似文献   

11.
The volume of a typical Eschericia coli nucleoid is roughly 104 times smaller than the volume of a freely coiling linear DNA molecule with the same length as the E. coli genome. We review the main forces that have been suggested to contribute to this compaction factor: macromolecular crowding (that “pushes” the DNA together), DNA charge neutralization by various polycationic species (that “glues” the DNA together), and finally, DNA deformations due to DNA supercoiling and nucleoid proteins. The direct contributions of DNA supercoiling and nucleoid proteins to the total compaction factor are probably small. Instead, we argue that the formation of the bacterial nucleoid can be described as a consequence of the influence of macromolecular crowding on thick, supercoiled protein-DNA fibers, that have been partly charge neutralized by small multivalent cations.  相似文献   

12.
Molecular beacons for detecting DNA binding proteins: mechanism of action   总被引:3,自引:0,他引:3  
New methodology for detecting sequence-specific DNA binding proteins has been recently developed (T. Heyduk, and E. Heyduk, Nat. Biotechnol. 20 (2002) 171). The central feature of this assay is protein-dependent association of two DNA fragments, each containing about half of a DNA sequence-defining the protein binding site. In this report we propose a physical model explaining the functioning of the assay. The model involves two linked equilibria: association between the two DNA fragments and binding of the protein exclusively to the complex between the two DNA fragments. Equilibrium and kinetic experiments provided evidence supporting the proposed model and showed that the model was sufficient to describe the behavior of the assay under a variety of conditions. Kinetic data identified the association between the two DNA half-sites as the rate-limiting step of the assay. Theoretical simulations based on the proposed model were used to investigate parameters important for the maximal sensitivity of the assay. Physical understanding of the assay will provide means for rational design of the assay for a variety of target proteins.  相似文献   

13.
Gur E  Katz C  Ron EZ 《FEBS letters》2005,579(9):1935-1939
DnaJ, DjlA and CbpA are the J-domain proteins of DnaK, the major Hsp70 of Escherichia coli. CbpA was originally discovered as a DNA binding protein. Here, we show that DNA binding is a property of DnaJ and DjlA as well. Of special interest in this respect is DjlA, as this cytoplasmic protein is membrane bound and, as shown here, its affinity for DNA is extremely high. The finding that all the three J-proteins of DnaK are DNA binding proteins sheds new light on the cellular activity of these proteins.  相似文献   

14.
15.
16.
Alignments of the sequences of the all members of the archaeal histone and Alba1 families of chromatin proteins identified isoleucine residues, I19 in HMtB and I39 in MtAlba, in Methanothermobacter thermautotrophicus, at locations predicted to be directly involved in DNA binding. In all other HMfB family members, residue 19 is an arginine (R19), and either arginine or lysine is present in almost all other Alba1 family members at the structural site equivalent to I39 in MtAlba. Electrophoretic mobility shift assays revealed that recombinant HMtB and MtAlba do not bind DNA, but variants constructed with R19 and R39, respectively, bound DNA; and whereas MtAlba(I19) did not bind RNA, MtAlba(R19) bound both single stranded RNA and tRNA. Amplification and sequencing of MT0254 (encodes HMtB) and MT1483 (encodes MtAlba) from several Methanothermobacter thermautotrophicus lineages has revealed that HMtB and MtAlba had arginine residues at positions 19 and 39, respectively, in the original isolate and that spontaneous mutations must have occurred, and been fixed, in some laboratory lineages that now have HMtB(I19) and MtAlba(I39). The retention of these variants suggests some continuing functions and fusion of the HMtB(I19) sequence to HMtA2 resulted in a protein that folds to form a histone fold heterodimer that binds and compacts DNA. The loss of DNA binding by HMtB(I19) does not therefore prevent HMtB from participating in DNA interactions as one partner of an archaeal histone heterodimer.  相似文献   

17.
Mitochondria and crude nuclei containing fractions from human placenta have been shown to contain proteins which bind [α32P]‐GTP. Prior to this study the number of GTP‐binding proteins in placental nuclei and their nucleotide specificity was not known. Also unknown was the identity of any of the GTP‐binding proteins in mitochondria of human placenta. Nuclei and mitochondria were purified from human placental extracts by sedimentation. Proteins were separated by electrophoresis and transferred to nitrocellulose membranes. Overlay blot with [α32P]‐GTP identified two nuclei proteins with approximate molecular weights of 24 and 27 kDa. Binding of [α32P]‐GTP to the 27 and 24 kDa proteins was significantly displaced by guanine nucleotides but not by adenine, thymine or cytosine nucleotides or deoxy (d) GTP. Western blot with a specific antibody to Ran identified a band at 27 kDa in nuclei and in mitochondrial fractions. These data indicate that both nuclei and mitochondria contain 24 and 27 kDa GTP‐binding proteins. The GTP‐binding proteins in nuclei display binding specificity for guanine nucleotides and the hydroxylated carbon 2 on the ribose ring of GTP appears essential for binding. It will be important in future studies to determine the functions of these small GTP‐binding proteins in the development and physiology of the placenta. J. Cell. Biochem. 84: 100–107, 2002. © 2001 Wiley‐Liss, Inc.  相似文献   

18.
Salt-induced inhibition of phosphorus transport in lettuce plants   总被引:1,自引:0,他引:1  
Copper interferes with numerous physiological processes and can be toxic at low concentrations. We examined the effect of a 2-week exposure to various concentrations of copper on the structure of the nucleus in maize root meristem cells by transmission electron microscopy. Copper uptake and distribution in the plants, as well as DNA synthesis were also investigated. Treatment with Cu induced alterations in the structure of the nucleus, resulting mainly in a greater density of chromatin. Morphometric analysis showed that the part of the condensed chromatin in the nucleus might be increased by Cu, an observation that was correlated with decreased DNA synthesis as measured by incorporation of 3H-thymidine. Copper may therefore play a role in chromatin structure and one of the manifestations of Cu toxicity is an alteration in the structure of the nucleus, leading to decreased DNA synthesis.  相似文献   

19.
Genomic integrity is maintained by the coordinated interaction of many DNA damage response pathways, including checkpoints, DNA repair processes, and cell cycle restart. In Saccharomyces cerevisiae, the BRCA1 C-terminal domain-containing protein Rtt107/Esc4 is required for restart of DNA replication after successful repair of DNA damage and for cellular resistance to DNA-damaging agents. Rtt107 and its interaction partner Slx4 are phosphorylated during the initial phase of DNA damage response by the checkpoint kinases Mec1 and Tel1. Because the natural chromatin template plays an important role during the DNA damage response, we tested whether chromatin modifications affected the requirement for Rtt107 and Slx4 during DNA damage repair. Here, we report that the sensitivity to DNA-damaging agents of rtt107Δ and slx4Δ mutants was rescued by inactivation of the chromatin regulatory pathway leading to H3 K79 trimethylation. Further analysis revealed that lack of Dot1, the H3 K79 methyltransferase, led to activation of the translesion synthesis pathway, thereby allowing the survival in the presence of DNA damage. The DNA damage-induced phosphorylation of Rtt107 and Slx4, which was mutually dependent, was not restored in the absence of Dot1. The antagonistic relationship between Rtt107 and Dot1 was specific for DNA damage-induced phenotypes, whereas the genomic instability caused by loss of Rtt107 was not rescued. These data revealed a multifaceted functional relationship between Rtt107 and Dot1 in the DNA damage response and maintenance of genome integrity.  相似文献   

20.
The binding of the intermediate proteins φ1 and φ3 from the mussel Mytilus edulis to DNA was studied in comparison with the typical protamine from the squid Loligo vuigaris using precipitation curves, thermal denaturation and X-ray diffraction techniques. The properties of protein φ1 appear to be very close to those of typical protamines while the properties of protein φ3 are notably different. The method of reconstitution influences the structural properties of the complexes. This effect is most pronounced in the case of protein φ3. The structural heterogeneity of the protein component in the complexes is discussed in the light of these observations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号