首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
This study reports on the effects of heparin, basic and acidic fibroblast growth factors (bFGF and aFGF, respectively), and transforming growth factor type-e (TGFe) on the growth of a human adrenocortical carcinoma cell line, SW-13. Heparin has previously been shown to inhibit growth in several cell types, including smooth muscle cells, certain fibroblasts, and epithelial cells, and to modulate the effects of fibroblast growth factors. Whereas bFGF and aFGF bind tightly to heparin and elute from a heparin-Sepharose column with 2 M NaCl and 1.6 M NaCl, respectively, TGFe binds to heparin with lower affinity and can be eluted from heparin-Sepharose column with 0.5 M NaCl. TGFe is a polypeptide unrelated to FGF, is present in neoplastic and nonneoplastic tissues, and stimulates the growth of certain epithelial cells and fibroblasts in soft agar and monolayer. Since the growth of SW-13 cells is stimulated by TGFe and by bFGF, we hypothesized that heparin would inhibit the growth of SW-13 cells by binding to these growth factors and that the effects of heparin could be overcome with the addition of either growth factor. Our experiments confirmed that heparin inhibits the growth of SW-13 cells. A dose-dependent growth inhibition was observed in both monolayer and soft agar. The inhibition in monolayer was partially reversed upon heparin withdrawal. The effects of heparin in both monolayer and soft agar were at least partially overcome by TGFe and by basic or acidic FGF. Overall protein synthesis does not appear to be affected by heparin as measured by [35S]methionine uptake. In contrast, epidermal growth factor (EGF) and insulin-like growth factor I (IGF-I) were unable to overcome heparin-induced inhibition both in monolayer and in soft agar. Heparin also inhibited [3H]thymidine incorporation in AKR-2B and partially inhibited AKR-2B cell stimulation by TGFe; however, it further potentiated the already potent stimulation by bFGF. We propose that heparin, TGFe, bFGF, and aFGF modulate the growth of SW-13 cells and possibly of other epithelial cells in complex ways and that heparin-like substances present in the extracellular matrix play an important role in the control of epithelial growth.  相似文献   

2.
Neprilysin is a cell surface peptidase that catalytically inactivates neuropeptide substrates and functions as a tumor suppressor via its enzymatic function and multiple protein-protein interactions. We investigated whether neutral endopeptidase could inhibit angiogenesis in vivo utilizing a murine corneal pocket angiogenesis model and found that it reduced fibroblast growth factor-2-induced angiogenesis by 85% (p < 0.01) but had no effect on that of vascular endothelial growth factor. Treatment with recombinant neprilysin, but not enzymatically inactive neprilysin, resulted in a slight increase in basic fibroblast growth factor electrophoretic mobility from proteolytic cleavage between amino acids Leu-135 and Gly-136, which was inhibited by the neutral endopeptidase inhibitor CGS24592 and heparin. Cleavage kinetics were rapid, comparable with that of other known neprilysin substrates. Functional studies involving neprilysin-expressing vascular endothelial cells demonstrated that neutral endopeptidase inhibition significantly enhanced fibroblast growth factor-mediated endothelial cell growth, capillary array formation, and signaling, whereas exogenous recombinant neprilysin inhibited signaling. Recombinant constructs confirmed that cleavage products neither promoted capillary array formation nor induced signaling. Moreover, mutation of the cleavage site resulted in concomitant loss of cleavage and increased the potency of fibroblast growth factor-2 to induce capillary array formation. These data indicate that neprilysin proteolytically inactivates fibroblast growth factor-2, resulting in negative regulation of angiogenesis.  相似文献   

3.
Hemoderivative materials are used to treat different diseases. These derivatives include platelet-rich plasma, serum, platelet gel, and platelet lysate (PL). Among them, PL contains more growth factors than the others and its production is inexpensive and easy. PL is one of the proper sources of platelet release factors. It is used in cells growth and proliferation and is a good alternative to fetal bovine serum. In recent years, the clinical use of PL has gained more appeal by scientists. PL is a solution saturated by growth factors, proteins, cytokines, and chemokines and is administered to treat different diseases such as wound healing, bone regeneration, alopecia, oral mucositis, radicular pain, osteoarthritis, and ocular diseases. In addition, it can be used in cell culture for cell therapy and tissue transplantation purposes. Platelet-derived growth factor, fibroblast growth factor, insulin-like growth factor, transforming growth factor β, and vascular endothelial growth factor are key PL growth factors playing a major role in cell proliferation, wound healing, and angiogenesis. In this paper, we scrutinized recent advances in using PL and PL-derived growth factors to treat diseases and in regenerative medicine, and the ability to replace PL with other hemoderivative materials.  相似文献   

4.
5.
Recently we identified a plasma serine protease with a high affinity to glycosaminoglycans like heparin or hyaluronic acid, termed hyaluronan-binding protease (HABP). Since glycosaminoglycans are found on cell surfaces and in the extracellular matrix a physiological role of this plasma protease in a pericellular environment was postulated. Here we studied the influence of HABP on the regulation of endothelial cell growth. We found that HABP efficiently prevented the basic fibroblast growth factor/epidermal growth factor (bFGF/EGF)-dependent proliferation of human umbilical vein endothelial cells. Proteolytic cleavage of adhesion molecules was found to be involved, but was not solely responsible for the anti-proliferative activity. Pre-treatment of growth factor-supplemented cell culture medium with HABP indicated that no direct contact between the active protease and cells was required for growth inhibition. In vitro studies revealed a growth factor-directed activity of HABP, resulting in complexation and partial hydrolysis and, thus, inactivation of basic fibroblast growth factor, a potent mitogen for endothelial cells. Heparin and heparan sulfate fully protected bFGF from complexation and cleavage by HABP, although these glycosaminoglycans are known to enhance the proteolytic activity of HABP. This finding suggested that free circulating bFGF rather than bFGF bound to heparan sulfate proteoglycans would be a physiologic substrate. In conclusion, down-regulation of bFGF-dependent endothelial cell growth represents an important mechanism through which HABP could control cell growth in physiologic or pathologic processes like angiogenesis, wound healing or tumor development.  相似文献   

6.
7.
血管生成素(angiogenin,ANG)在伤口愈合、月经周期、妊娠、胚胎发育、先天性免疫、细胞应激保护和维持机体稳态等生理病理过程,特别是肿瘤的生存与进展、神经细胞的存活和生长中扮演着重要角色,是药物研发的重要靶点.本文综述了ANG在功能上的特殊性及其药物研发潜力.在肿瘤中,ANG扮演促进肿瘤细胞增生和促进血管生成的双重角色,且是其它血管生成因子如血管内皮生长因子(vascular endothelial growth factor, VEGF)、酸性成纤维生长因子(acidic fibroblast growth factor, aFGF)、碱性成纤维生长因子(basic fibroblast growth factor, bFGF)和表皮生长因子(epidermal growth factor, EGF)发挥作用的必需准许因子. ANG的抗肿瘤治疗较之目前常用的针对单一血管生成因子的抑制剂更有效,具有良好的药物研发和临床运用前景.由于ANG通过核转位促进rRNA转录是发挥促进肿瘤细胞增生和血管生成活性所必须的,因此,它的核转位抑制剂如新霉胺,将有望首先获得抗肿瘤临床应用.另外,业已证明重组ANG能促进体内外运动神经元的存活,且可明显改善肌萎缩侧索硬化症(amyotrophic lateral sclerosi, ALS)模型小鼠的行为,其在神经退行性疾病治疗方面也将有良好的研发前景.  相似文献   

8.
The effects on vascular wound repair in vitro of aFGF and TGF-beta, growth factors having opposite influences on endothelial cell growth and angiogenesis, were studied using as a model a mechanical lesion of confluent endothelium. Modulation by heparin of the activities of these growth factors during the repair process was also examined. Whereas heparin alone inhibited repair by lowering both cell proliferation and cell migration, TGF-beta alone mainly inhibited cell proliferation. When added together, TGF-beta and heparin exerted a combined inhibitory effect resulting in a residual lesion 50% larger than in controls. aFGF alone accelerated lesion coverage and this effect was enhanced by 40% over control values when heparin was added with aFGF. This acceleration was slightly (less than 10%) but consistently diminished by TGF-beta. Cell density in confluent unwounded areas was increased by 40% in the presence of aFGF, but TGF-beta diminished cell density by 20%. A small (30%) increase in intracellular cAMP was measured whenever aFGF was present during the repair process. In comparison, intracellular cAMP inducing agents (forskolin, dbcAMP) accelerated cell migration by 20% during lesion recovery without affecting cell proliferation or density. The present results show that the inhibitory effects of TGF-beta during vascular wound repair are opposed by aFGF. Furthermore, heparin (or heparan sulfates in vivo) modulates growth factors having activating or inhibiting functions and thus plays a regulatory role during the repair process. cAMP-inducing substances other than growth factors are able to accelerate cell migration.  相似文献   

9.
An androgen-responsive cloned cell line (SC-3) derived from Shionogi carcinoma 115 (SC115) has been shown to secrete fibroblast growth factor (FGF)-like peptide in response to androgen, which binds to FGF receptor and promotes the proliferation of SC-3 cells in an autocrine mechanism. Since the androgen-induced autocrine factor has a property to bind heparin, we examined the effects of heparin on the growth of SC-3 cells. Heparin was found to exhibit significant inhibition of testosterone-induced growth in a concentration-dependent manner: Approximately 50% inhibition was found at a concentration of 0.1 micrograms/ml. DNA synthesis of SC-3 cells induced by testosterone was also inhibited strongly by heparin, and less strongly by heparan sulfate and dermatan sulfate. Proliferation of SC-3 cells induced by acidic (a) or basic (b) FGF appeared not to be modulated by heparin. In contrast, heparin efficiently blocked DNA synthesis stimulated with androgen-induced growth factor in the conditioned medium from testosterone-treated cells. These results indicate that heparin inhibits autocrine loop in SC-3 cells induced by androgen. Thus, the autocrine growth factor possesses a different characteristic from aFGF and bFGF in that its bioactivities are negatively modulated by the glycosaminoglycan.  相似文献   

10.
Since we have found previously that adult donor skin fibroblasts (TIG-114) migrated more slowly in serum-depleted medium than in medium supplemented with 10% FBS, we tried to identify a factor(s) which promotes fibroblast migration from the edge of a denuded area in a monolayer. In medium supplemented with 10% FBS, the effects of both suramin, a competitor of growth factors at the receptor level, and monensin, an inhibitor of the secretion of extracellular matrix, were examined. Both substances suppressed cell migration, suggesting that growth factors and matrix substances are important for cell migration. Then, we examined the effects of growth factors and extracellular matrix on fibroblast migration in serum-free medium. Platelet-derived growth factor (PDGF), basic fibroblast growth factor, acidic fibroblast growth factor, and transforming growth factor-beta did not stimulate cell migration. Type I collagen, plasma fibronectin, and heparin also did not promote cell migration. However, the combination of PDGF and type I collagen did promote cell migration. Addition of anti-PDGF antibody reduced the stimulatory effect induced by the combination of PDGF and type I collagen. These results suggest that the copresence of growth factors and extracellular matrix regulates fibroblast migration into a denuded area in a monolayer.  相似文献   

11.
Kumar SM  Wang HM  Mohan SK  Chou RH  Yu C 《Biochemistry》2010,49(50):10756-10764
Acidic fibroblast growth factor (FGF1) regulates a wide array of important biological phenomena such as angiogenesis, cell differentiation, tumor growth, and neurogenesis. Generally, FGFs are known for their strong affinity for the glycosaminoglycan heparin, as a prerequisite for recognition of a specific tyrosine kinase on the cell surface and are responsible for the cell signal transduction cascade. Inositol hexaphosphate (IP6) is a natural antioxidant and is known for its antiangiogenic role, in addition to its ability to control tumor growth. In the present study, we investigated the interaction of IP6 with the acidic fibroblast growth factor (FGF1) using various biophysical techniques including isothermal calorimetry, circular dichroism, and multidimensional NMR spectroscopy. Herein, we have reported the three-dimensional solution structure of the FGF1-IP6 complex. These data show that IP6 binds FGF1 and enhances its thermal stability. In addition, we also demonstrate that IP6 acts as an antagonist to acidic fibroblast growth factor by inhibiting its receptor binding and subsequently decreasing the mitogenic activity. The inhibition likely results in the ability of IP6 to antagonize the angiogenic and mitogenic activity of FGF1.  相似文献   

12.
Integumentary wounds in mammalian fetuses heal without scar; this scarless wound healing is intrinsic to fetal tissues and is notable for absence of the contraction seen in postnatal (adult) wounds. The precise molecular signals determining the scarless phenotype remain unclear. We have previously reported that the eta subunit of the chaperonin containing T-complex polypeptide (CCT-eta) is specifically reduced in healing fetal wounds in a rabbit model. In this study, we examine the role of CCT-eta in fibroblast motility and contractility, properties essential to wound healing and scar formation. We demonstrate that CCT-eta (but not CCT-beta) is underexpressed in fetal fibroblasts compared to adult fibroblasts. An in vitro wound healing assay demonstrated that adult fibroblasts showed increased cell migration in response to epidermal growth factor (EGF) and platelet derived growth factor (PDGF) stimulation, whereas fetal fibroblasts were unresponsive. Downregulation of CCT-eta in adult fibroblasts with short inhibitory RNA (siRNA) reduced cellular motility, both basal and growth factor-induced; in contrast, siRNA against CCT-beta had no such effect. Adult fibroblasts were more inherently contractile than fetal fibroblasts by cellular traction force microscopy; this contractility was increased by treatment with EGF and PDGF. CCT-eta siRNA inhibited the PDGF-induction of adult fibroblast contractility, whereas CCT-beta siRNA had no such effect. In each of these instances, the effect of downregulating CCT-eta was to modulate the behavior of adult fibroblasts so as to more closely approximate the characteristics of fetal fibroblasts. We next examined the effect of CCT-eta modulation on alpha-smooth muscle actin (α-SMA) expression, a gene product well known to play a critical role in adult wound healing. Fetal fibroblasts were found to constitutively express less α-SMA than adult cells. Reduction of CCT-eta with siRNA had minimal effect on cellular beta-actin but markedly decreased α-SMA; in contrast, reduction of CCT-beta had minimal effect on either actin isoform. Direct inhibition of α-SMA with siRNA reduced both basal and growth factor-induced fibroblast motility. These results indicate that CCT-eta is a specific regulator of fibroblast motility and contractility and may be a key determinant of the scarless wound healing phenotype by means of its specific regulation of α-SMA expression.  相似文献   

13.
RNA binding protein acheron has proved to be either the mediator of integrin‐extracellular matrix interactions or the regulatory factor that participates in vertebrate development, cell differentiation and cell death. We report the role of acheron in vascular endothelial proliferation, angiogenesis and wound healing post‐trauma. Co‐immunoprecipitation showed that Acheron forms a ternary complex with β1 integrin and Id1 in human umbilical vein endothelial cells following stimulation with serious trauma serum. Acheron, vascular endothelial growth factor (VEGF), and β1 integrin mRNA expression was apparently inhibited, and capillary density and wound healing rate also were reduced in Id1‐deficient mice trauma model. Acheron together with Id1 significantly induces VEGF, not CD105 level inhibition by serious trauma serum for 24 h. In conclusion, we have demonstrated that acheron may be an effective mediator of promoting endothelial proliferation, angiogenesis and wound healing probably by regulating VEGF together with Id1. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

14.
Growth factors with heparin binding affinity in human synovial fluid   总被引:3,自引:0,他引:3  
Synovial effusions were obtained from the knees of 15 subjects with joint trauma, menisceal or ligamentous injury, or osteoarthritis. Heparin-Sepharose affinity chromatography of these synovial fluids revealed, in general, three major peaks of mitogenic activity as measured by incorporation of 3H-thymidine into 3T3 cells. Gradient elution patterns showed activities at 0.5M NaCl, which is characteristic of platelet derived growth factor, and at 1.1M NaCl and 1.6M NaCl, indicative of acidic and basic fibroblast growth factors, respectively. The identities of these mitogenic fractions were confirmed by specific immunologic and receptor-binding assays. The presence of platelet derived, acidic and basic fibroblast growth factors in the synovial fluid may contribute to wound healing in the arthritic joint.  相似文献   

15.

Background  

Angiogenesis, the growth of new blood vessels from the pre-existing vasculature is associated with physiological (for example wound healing) and pathological conditions (tumour development). Vascular endothelial growth factor (VEGF), fibroblast growth factor-2 (FGF-2) and epidermal growth factor (EGF) are the major angiogenic regulators. We have identified a natural product (cheiradone) isolated from a Euphorbia species which inhibited in vivo and in vitro VEGF- stimulated angiogenesis but had no effect on FGF-2 or EGF activity. Two primary cultures, bovine aortic and human dermal endothelial cells were used in in vitro (proliferation, wound healing, invasion in Matrigel and tube formation) and in vivo (the chick chorioallantoic membrane) models of angiogenesis in the presence of growth factors and cheiradone. In all cases, the concentration of cheiradone which caused 50% inhibition (IC50) was determined. The effect of cheiradone on the binding of growth factors to their receptors was also investigated.  相似文献   

16.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

17.
Angiogenesis is indispensable to guide a regeneration of good periodontal tissue in the wound healing after periodontal surgery. Hepatocyte growth factor is well known for a strong angiogenic factor and it may play important roles in the periodontal tissue during periodontal wound healing. In exploring the promotion of angiogenesis in the periodontal ligament, proliferative and tubulogenic responses of endothelial cells to hepatocyte growth factor and to soluble factors secreted by fibroblasts were investigated. Pavement-shaped cells isolated from a human periodontal ligament were identified as the endothelial cell by their granular immunoreactivity for factor VIII. The proliferation of the endothelial cells was accelerated by the addition of hepatocyte growth factor or fibroblast-conditioned medium, and far more by adding both than either. The endothelial cells seeded on the agar containing both hepatocyte growth factor and fibroblast products formed a dense network in a shorter time than on the agar containing either. The endothelial cells in the dense network took a tube-like structure with lumen and were covered with laminin. These results suggest that hepatocyte growth factor administered into the regenerating periodontal tissue may promote, synergistically with local factors produced by the activated fibroblast, the proliferation and tubulogenesis of the remaining endothelial cells.  相似文献   

18.
Several mitogens such as vascular endothelial growth factor (VEGF) have been implicated in mammalian vascular proliferation and repair. However, the molecular mediators of human blood-nerve barrier (BNB) development and specialization are unknown. Primary human endoneurial endothelial cells (pHEndECs) were expanded in vitro and specific mitogen receptors detected by western blot. pHEndECs were cultured with basal medium containing different mitogen concentrations with or without heparin. Non-radioactive cell proliferation, Matrigel?-induced angiogenesis and sterile micropipette injury wound healing assays were performed. Proliferation rates, number and total length of induced microvessels, and rate of endothelial cell monolayer wound healing were determined and compared to basal conditions. VEGF-A165 in the presence of heparin, was the most potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. 1.31 nM VEGF-A165 induced ~110 % increase in cell proliferation relative to basal conditions (~51 % without heparin). 2.62 pM VEGF-A165 induced a three-fold increase in mean number of microvessels and 3.9-fold increase in total capillary length/field relative to basal conditions. In addition, 0.26 nM VEGF-A165 induced ~1.3-fold increased average rate of endothelial wound healing 4–18 h after endothelial monolayer injury, mediated by increased cell migration. VEGF-A165 was the only mitogen capable of complete wound closure, occurring within 30 h following injury via increased cell proliferation. This study demonstrates that VEGF-A165, in the presence of heparin, is a potent inducer of pHEndEC proliferation, angiogenesis, and wound healing in vitro. VEGF-A165 may be an important mitogen necessary for human BNB development and recovery in response to peripheral nerve injury.  相似文献   

19.
Heparin and heparin-like molecules may function, apart from their effect on hemostasis, as regulators of cell growth and neovascularization. We investigated whether similar effects are exerted by laminarin sulfate, an unrelated polysulfated saccharide isolated from the cell wall of seaweed and composed of chemically O-sulfated b?-(1,3)-linked glucose residues. Laminarin sulfate exhibits about 30% of the anticoagulant activity of heparin and is effective therapeutically in the prevention and treatment of cerebrovascular diseases. We characterized the effect of laminarin sulfate on interaction of the heparin-binding angiogenic factor, basic fibroblast growth factor (bFGF), with a naturally produced subendothelial extracellular matrix (ECM) and with cell surface receptor sites. Laminarin sulfate (1-2 m?g/ml) inhibited the binding of bFGF to ECM and to the surface of vascular smooth muscle cells (SMC) in a manner similar to that observed with heparin. Likewise, laminarin sulfate efficiently displaced both ECM-and cell-bound bFGF at concentrations as low as 1 m?g/ml. Both laminarin sulfate and heparin efficiently induced restoration of bFGF receptor binding in xylosyltransferase-deficient CHO cell mutants defective in initiation of glycosaminoglycan synthesis. Moreover, laminarin sulfate elicited bFGF receptor activation and mitogenic response in heparan sulfate(HS)-deficient, cytokine-dependent lymphoid cells. These results indicate that laminarin sulfate effectively replaced the need for heparin and HS in the induction of bFGF receptor binding and signaling. In other experiments, laminarin sulfate was found to inhibit the proliferation of vascular SMC in a manner similar to that observed with heparin. These effects of laminarin sulfate may have potential clinical applications in diverse situations such as wound healing, angiogenesis, and atherosclerosis. © 1995 Wiley-Liss, Inc.  相似文献   

20.
Gamma-aminobutyric acid (GABA) is a non-protein amino acid. It is well known for its role as an inhibitory neurotransmitter of developing and operating nervous systems in brains. In this study, a novel function of GABA in the healing process of cutaneous wounds was presented regarding anti-inflammation and fibroblast cell proliferation. The cell proliferation activity of GABA was verified through an MTT assay using murine fibroblast NIH3T3 cells. It was observed that GABA significantly inhibited the mRNA expression of iNOS, IL-1beta, and TNF-alpha, in LPS-stimulated RAW 264.7 cells. To evaluate in vivo activity of GABA in wound healing, excisional open wounds were made on the dorsal sides of Sprague-Dawley rats under anesthesia, and the healing of the wounds was apparently assessed. The molecular aspects of the healing process were also investigated by hematoxylineosin staining of the healed skin, displaying the degrees of reepithelialization and linear alignment of the granulation tissue, and immunostaining and RT-PCR analyses of fibroblast growth factor and platelet-derived growth factor, implying extracellular matrix synthesis and remodeling of the skin. The GABA treatment was effective to accelerate the healing process by suppressing inflammation and stimulating reepithelialization, compared with the epidermal growth factor treatment. The healing effect of GABA was remarkable at the early stage of wound healing, which resulted in significant reduction of the whole healing period.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号