首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Genital tract fluids were collected continuously from conscious ewes through catheters inserted surgically into the uterus and oviducts. Cauda epididymal spermatozoa and fluid were obtained through catheters inserted into the transected vas deferens. The washed spermatozoa were labelled using the surface-specific chloroglycoluril-Na125I procedure. High-resolution electrophoretic analysis of sperm plasma membrane preparations revealed a partial loss of a major surface component (i.e. Mr 97,000) during incubation in uterine and oviduct fluids. This specific loss resulted in a shift in radioactivity distribution toward an Mr 24,000 component which had been previously identified as a sialoglycoprotein. No significant changes in the distribution of radiolabelled surface components were detectable when the spermatozoa were incubated in synthetic medium. Incubation of unlabelled spermatozoa in 125I-labelled uterine fluid showed that adsorption of exogenous fluid components was highly selective; an Mr 16,000 polypeptide was greatly enriched on the sperm surface although it was only a minor component in the incubation fluid. Adsorption of labelled oviduct fluid components was also selective and involved predominantly high molecular weight components (i.e. Mr 140,000, 95,000, 78,000, 53,000). When spermatozoa were incubated in labelled cauda epididymal fluid after exposure to unlabelled uterine and oviduct fluids, several fluid components were incorporated by the plasma membrane, indicating that surface renovation of 'capacitated' spermatozoa may be a more general process rather than a specific event. These results suggest that capacitation of ram spermatozoa involves loss of specific surface proteins as well as selective adsorption of exogenous fluid components and point to a polypeptide in uterine fluid as an active constituent.  相似文献   

2.
During the passage through the epididymis, testicular spermatozoa are directly exposed to epididymal fluid and undergo maturation. Proteins and glycoproteins of epididymal fluid may be adsorbed on the sperm surface and participate in the sperm maturation process, potentially in sperm capacitation, gamete recognition, binding and fusion. In present study, we separated proteins from boar epididymal fluid and tested their binding abilities. Boar epididymal fluid proteins were separated by size exclusion chromatography and by high-performance liquid chromatography with reverse phase (RP HPLC). The protein fractions were characterized by SDS-electrophoresis and the electrophoretic separated proteins after transfer to nitrocellulose membranes were tested for the interaction with biotin-labeled ligands: glycoproteins of zona pellucida (ZP), hyaluronic acid and heparin. Simultaneously, changes in the interaction of epididymal spermatozoa with biotin-labeled ligands after pre-incubation with epididymal fluid fractions were studied on microtiter plates by the ELBA (enzyme-linked binding assay) test. The affinity of some low-molecular-mass epididymal proteins (12-17 kDa and 23 kDa) to heparin and hyaluronic acid suggests their binding ability to oviductal proteoglycans of the porcine oviduct and a possible role during sperm capacitation. Epididymal proteins of 12-18 kDa interacted with ZP glycoproteins. One of them was identified as Crisp3-like protein. The method using microtiter plates showed the ability of epididymal fluid fractions to change the interaction of the epididymal sperm surface with biotin-labeled ligands (ZP glycoproteins, hyaluronic acid and heparin). These findings indicate that some epididymal fluid proteins are bound to the sperm surface during epididymal maturation and might play a role in the sperm capacitation or the sperm-zona pellucida binding.  相似文献   

3.
Recalling the evolutionary sequence of development first of gonad and subsequently of oviducts, ovarian endocrine regulation of all known components of oviduct physiology is reviewed. Ovaries not only influence oviducts via the systemic blood circulation, but also locally by counter‐current transfer of relatively high concentrations of steroid hormones and prostaglandins between the ovarian vein and oviduct branch of the ovarian artery. The efficiency and impact of such counter‐current transfer is greatest around the time of ovulation, the transfer process receiving further inputs from hormones present in peritoneal fluid. Classical oviduct physiology is summarised, and the potential molecular consequences of temperature gradients within the duct lumen examined. At ovulation, an oocyte‐cumulus complex is displaced in minutes from the follicular surface to the site of fertilisation at the ampullary‐isthmic junction of the oviduct. This rapid initial phase is contrasted with the subsequent slow progression of embryos to the uterus in days, still encompassed within a zona pellucida. Regarding transport of spermatozoa, the formation of a pre‐ovulatory reservoir in the caudal portion of the oviduct isthmus is noted, with suppression of motility and sperm‐head binding to epithelial organelles acting to maintain fertilising ability. Completion of capacitation is prompted shortly before ovulation, predominantly by Ca2+ influx into bound spermatozoa. A controlled release of spermatozoa coupled with their hyperactivation results in initial sperm:egg ratios at the site of fertilisation close to unity, thereby avoiding the pathological condition of polyspermy. Both the oviduct milieu and embryonic development are influenced by paracrine activity of follicular granulosa cells released at ovulation and remaining in suspension in the vicinity of the oocyte or embryo. These cells may amplify early pregnancy signals from a zygote to the endosalpinx. Beneficial effects of the oviduct on domestic animal embryos are contrasted with anomalies arising as a consequence of in vitro culture. Primate embryos do not require exposure to an oviduct for normal development, perhaps due to overlapping compositions of endosalpingeal and endometrial secretions. Additionally, primate endometrial secretions may be modified by viable gametes or an embryo in the presence of a cumulus cell suspension.  相似文献   

4.
Eight heifers were artificially inseminated with frozen-thawed semen during heat. Semen was deposited in one of the uterine horns. The animals were slaughtered 2 h after insemination and the genital tract was flushed. Sperm concentration in the flushing fluid was estimated by haemocytometric counting.There was a considerable transport of spermatozoa from the site of semen deposition to the uterine horn and oviduct on the opposite side. Spermatozoa were recovered from all parts of the oviduct (infundibulum, ampulla and isthmus) and distal and proximal parts of the horn on the non-inseminated side. In 7 out of 8 heifers more spermatozoa were recovered from the side of the tract opposite to insemination than from the inseminated side, although the differences were small in 2 animals. No clear relationship could be seen between ovarian activity and distribution of spermatozoa.  相似文献   

5.
6.
Up to 40% of cattle embryos die within 3 weeks of fertilization while they are nutritionally dependent on the maternal environment provided by the oviduct and uterine fluids for their development and survival. Despite this dependence there is limited information on the composition of these fluids in cattle. Amino acids are essential for the normal growth and development of the early embryo, acting as precursors of proteins and nucleic acids and as energy sources, osmolytes and signaling molecules. The objective of this study was to measure and compare the amino acid concentrations of oviduct and uterine fluid and blood plasma on different days of the estrous cycle. Oviduct fluid was collected in situ from anaesthetised heifers on Days 0, 2, 3, 4 and 6 and uterine fluid on Days 6, 8 and 14 of the estrous cycle and the concentrations of 19 amino acids determined. Glycine was the most abundant amino acid in both oviduct and uterine fluid. However, the concentrations of many amino acids differed between oviduct and uterus and many were present at higher concentrations in oviduct and uterine fluid than in blood plasma. Oviduct fluid concentrations of amino acids were not affected by day of cycle in contrast to uterine fluid for which there was a day of cycle effect on most of the amino acids. These results provide novel information on the amino acid concentrations in the maternal environment of the early cattle embryo and could form the basis for devising improved media for the production of embryos in vitro.  相似文献   

7.
Why so many mammalian spermatozoa--a clue from marsupials?   总被引:2,自引:0,他引:2  
Mammals generally ejaculate many more spermatozoa than seem to be needed for fertilization. This apparent profligacy has not been explained, but observations made in marsupials may shed light on it. The Virginia opossum, Didelphis virginiana, inseminates only about three million spermatozoa, a very low number. As a corollary, relatively few (ca. 13 X 10(6] are stored in each cauda epididymidis. However, some 5% of the spermatozoa that the opossum ejaculates populate the oviduct about 12 h later when ovulation can be anticipated--a success rate in the female orders of magnitude greater than in eutherian mammals. It is not certain what determines the unusually efficient transport to and the high survival rate of spermatozoa in the oviduct of Didelphis, but two unusual features suggest themselves as possible contributors. Didelphis (and all other American marsupial) spermatozoa undergo a head-to-head pairing in the epididymis by the acrosomal face; this serves to isolate the acrosome of ejaculated spermatozoa from the female milieu until the pairs separate in the oviduct. Secondly, spermatozoa are housed in special crypts in the isthmus of the oviduct. Australian marsupials, which usually lack such features, store spermatozoa in the epididymis in numbers more close to those in comparably sized eutheriam mammals. Exceptions which store very low sperm numbers there can be seen in one Australian Family, the Dasyuridae . The spermatozoa of dasyurids are not paired, but the species examined possess distinctive sperm storage crypts in the oviducal isthmus similar to those in the opossum. The present findings suggest that where mechanisms exist that could protect the acrosome and, or, the whole spermatozoon in the female tract, a much lower level of sperm production can be maintained without compromising fertility. While the number ejaculated typically by any one species is probably determined ultimately by several interacting factors, it therefore seems likely that a most important one in this respect relates to conditions spermatozoa face in the female tract.  相似文献   

8.
Exposure of rabbit ova to wheat germ agglutinin (WGA) at a concentration of 50 microgram/ml for 30-45 min rendered the zona pellucida at least 10 times more resistant to digestion by 1 mg trypsin/ml, and also more resistant to acrosin. Nevertheless, the zonas of WGA-treated eggs were penetrated by spermatozoa as readily as those of untreated eggs in the same oviduct. These results suggest that penetration of spermatozoa through the zona pellucida may not require the agency of a trypsin-like enzyme acting as a primary zona lysin. The validity of the general belief that a lysin in necessary for zona penetration is considered briefly in relation to the mode of penetration and structural organization of the mammalian sperm head.  相似文献   

9.
Sperm surface changes occurring in the reptile Wolffian duct have been explored with particular references to the snake, Natrix fasciata. In the snake Wolffian duct there are several proteins not present in serum, the pattern of which changes in concert with the seasonal testicular cycle. Whereas testicular spermatozoa did not bind antibody to duct secretions, all Wolffian duct spermatozoa did so over both head and tail, according to immunofluorescence patterns. Thus, on entering the Wolffian duct, the entire surface of N. fasciata spermatozoa acquires one of more of the duct's secretory components. As indicated by immunofluorescence, immunoelectrophoresis, and immunodiffusion, epitopes on at least some molecules that bind to spermatozoa or that remain free in the duct fluid are shared with those in other Natrix species, but not in more distant reptiles (turtle, anole lizard), nor chicken, rat, or rabbit. In regard to glycoproteins, one prominent con A-reactive band was present in polyacrylamide gel electrophoresis (PAGE) of snake fluid and more were evident in fluid collected from the turtle duct. However, such lectin-reactive elements did not bind to spermatozoa as judged by an absence of any change in snake, turtle and lizard sperm lectin-binding patterns in passing from the testis into and through the Wolffian duct. In all, evidence from these and other species studied begins to suggest that the nature of the post-testicular sperm surface modification displayed in most vertebrates that fertilize internally may differ in sub-therian and therian groups, respectively. There appears to be a relative emphasis on glycosyl-rich surface elements in the latter. The possible significance of these changes for sperm function in the different groups is discussed briefly in terms of sperm survival/storage, as well as capacitation and sperm binding to the zona.  相似文献   

10.
Spermatozoa are known to be stored within the female genital tract after mating in various species to optimize timing of reproductive events such as copulation, fertilization, and ovulation. The mechanism supporting long‐term sperm storage is still unclear in turtles. The aim of this study was to investigate the interaction between the spermatozoa and oviduct in Chinese soft‐shelled turtle by light and electron microscopy to reveal the potential cytological mechanism of long‐term sperm storage. Spermatozoa were stored in isthmus, uterine, and vagina of the oviduct throughout the year, indicating long‐term sperm storage in vivo. Sperm heads were always embedded among the cilia and even intercalated into the apical hollowness of the ciliated cells in the oviduct mucosal epithelium. The stored spermatozoa could also gather in the gland conduit. There was no lysosome distribution around the hollowness of the ciliated cell, suggesting that the ciliated cells of the oviduct can support the spermatozoa instead of phagocytosing them in the oviduct. Immune cells were sparse in the epithelium and lamina propria of oviduct, although few were found inside the blood vessel of mucosa, which may be an indication of immune tolerance during sperm storage in the oviduct of the soft‐shelled turtle. These characteristics developed in the turtle benefited spermatozoa survival for a long time as extraneous cells in the oviduct of this species. These findings would help to improve the understanding of reproductive regularity and develop strategies of species conservation in the turtle. The Chinese soft‐shelled turtle may be a potential model for uncovering the mechanism behind the sperm storage phenomenon.  相似文献   

11.
A group of female hamsters was mated with males of proven fertility either several hours before or during ovulation. Another group of females was artificially inseminated several hours before ovulation. Females were killed at various times after the onset of mating or artificial insemination, oviducts were fixed and sectioned serially, and spermatozoa were counted individually as to their location in the oviduct. Regardless of the type or time of insemination, the vast majority of spermatozoa that entered the oviduct remained in the lower segments of the isthmus (the intramural and caudal isthmus) without ascending to the ampulla. The lower segments of the oviduct, particularly the caudal isthmus, appeared to be acting as a "sieve" and/or "sperm reservoir." In females mated or artificially inseminated prior to ovulation, virtually no spermatozoa reached the cephalic isthmus or ampulla until the commencement of ovulation. Although a few spermatozoa reached the ampulla by 1 h after the onset of mating, they were the exception rather than the rule. When females were mated during ovulation, spermatozoa spent a minimum of about 3 h in the caudal isthmus before ascending to the ampulla. The number of spermatozoa that entered the oviduct after artificial insemination was considerably lower than in naturally mated animals, but this low number was apparently large enough to ensure complete fertilization.  相似文献   

12.
The plasma membrane of spermatozoa undergoes substantial remodeling during passage through the epididymal duct, principally because of changes in phospholipid composition, exchange of glycoproteins with epididymal fluid, and processing of existing membrane proteins. Here, we describe the interaction of an epididymal glycoprotein recognized by monoclonal antibody 2D6 with the plasma membrane of rat spermatozoa. Our goals have been to understand more about the mechanism of secretion of epididymal glycoproteins, how they interact with the sperm's plasma membrane, and their disposition within it. Reactivity to 2D6 monoclonal antibody was first detectable in principal cells in the distal caput epididymidis and as a soluble high-molecular-weight complex in the secreted fluid. It was not associated with membranous vesicles in the duct lumen. On cauda spermatozoa 2D6 monoclonal antibody recognized a 24-kDa glycoprotein (the subunit of a disulfide cross-linked homodimer of 48 kDa) that was present on the plasma membrane overlying the sperm tail. Binding of 2D6 to immature spermatozoa in vitro was cell-type specific but not species specific, and the antigen could only be extracted from cauda spermatozoa with detergents. Sequencing studies revealed that the 24-kDa glycoprotein was a member of the beta-defensin superfamily of small pore-forming glycopeptides of which several others (ESP13.2, Bin1b, E-2, EP2, HE2) are found in the epididymis. This evidence suggests that some epididymal glycoproteins are secreted into the luminal fluid in a soluble form and bind to specific regions of the sperm's surface via hydrophobic interactions. Given the antimicrobial function of beta-defensins, they have a putative role in protecting spermatozoa and the epididymis from bacterial infections.  相似文献   

13.
《Theriogenology》2015,84(9):1502-1513
The sperm reservoir is formed when spermatozoa bind to the epithelium of the uterotubal junction and caudal isthmus of the oviduct. It is an important mechanism that helps synchronize the meeting of gametes by regulating untimely capacitation and polyspermic fertilization. This study investigated the influence of epididymal maturation and caudal fluid on the ability of spermatozoa to bind to oviduct epithelium using a model porcine oviduct explant assay. Spermatozoa from the rete testis, middle caput (E2-E3), middle corpus (E6), and cauda (E8) of Large White or Large White × Landrace boars aged 10 to 14 months were diluted in modified Androhep solution and incubated with porcine oviduct explants. Results reported in this study support our hypothesis that testicular spermatozoa need to pass through the regions of the epididymis to acquire the ability to bind to the oviduct. There was a sequential increase in the number of spermatozoa that bound to oviduct explants from the rete testis to caudal epididymis. Binding of caudal spermatozoa to isthmic explants was the highest (15.0 ± 1.2 spermatozoa per 1.25 mm2, mean ± standard error of the mean; P ≤ 0.05) and lowest by spermatozoa from the rete testis (2.0 ± 0.3 per 1.25 mm2), and higher to isthmus from sows compared to gilts (35.8 ± 6.7 per 1.25 mm2 vs. 14.8 ± 3.0 per 1.25 mm2; P ≤ 0.05). Binding of ejaculated spermatozoa to porcine isthmus was higher than that for caudal spermatozoa (26.3 ± 1.4 per 1.25 mm2 vs. 15.0 ± 0.8 per 1.25 mm2; P ≤ 0.05) and higher to porcine than to bovine isthmus (26.3 ± 2.3 per 1.25 mm2 vs. 18.8 ± 1.9 per 1.25 mm2; P ≤ 0.05). Incubation of spermatozoa from the caput and corpus in caudal fluid increased the ability of spermatozoa to bind to the oviduct epithelium (P ≤ 0.05). In conclusion, the capacity of testicular spermatozoa to bind to the oviduct epithelium increases during their maturation in the epididymis and can be advanced by components of the caudal fluid.  相似文献   

14.
Glycosylation is one of the important post-translational modifications of sperm plasma membrane proteins during the maturation of epididymal spermatozoa that results in the development of motility and fertilizing capability. The aim of the present study was to identify and characterize the maturation-dependent asparagine-linked (N-linked) and serine- and threonine-linked (O-linked) glycoproteins of the epididymal spermatozoa of rhesus monkeys. The presence of N- and O-linked glycoproteins was confirmed by treatment of sperm membranes with N-glycosidase F and O-glycosidase. The major maturation-dependent sperm membrane glycoproteins identified on blots of SDS-PAGE-fractionated proteins of purified sperm plasma membranes from five segments of epididymis, probed with biotinylated lectins and Vectastain-ABC reagent included O-linked 170, 150, 86 and 60/58 kDa glycoproteins; N-linked 68, 56, 48 and 38 kDa glycoproteins and N- and O-linked 116 kDa glycoprotein, all of which exhibited marked differences in the degree of glycosylation between immature and mature sperm surfaces. These glycoproteins can be used as markers of sperm maturation in the epididymis of rhesus monkeys, during the screening of antifertility agents acting at the epididymis, or may be developed as potential sperm antigens. The 100% inhibition of fertility in female rats and rabbits immunized with major maturation-dependent 116 kDa glycoprotein showed the significance of glycosylation changes in the maturation status of epididymal spermatozoa. This 116 kDa protein can be used as a marker parameter of sperm maturation in the rhesus monkey, which is often the preferred animal model for preclinical studies. These results will contribute to the identification of an appropriate animal model for the development of male contraceptives in humans.  相似文献   

15.
The aim of this study was to assess the participation of carbohydrate residues in the adhesion of spermatozoa to the oviductal epithelium in the rat. We first examined, by lectin labeling, the distribution of glycoconjugates in rat oviducts obtained under various hormonal environments. Several classes of glycoconjugates were abundant in the epithelium, and the expression of some of these molecules varied differentially in ampulla and isthmus, along the estrous cycle and with estradiol and progesterone treatment. Proestrous rats were intraoviductally injected with lectins Dolichos biflorus, Erythrina cristagalli, Helix pomatia, Arachis hypogea, Ulex europaeus I, Triticum vulgaris, or Tritrichomonas mobilensis and were inseminated with 10-20 million epididymal spermatozoa in each uterine horn. Three hours later, the total number of spermatozoa present in the oviduct and the proportion adhering to the epithelium were determined. Intraoviductal administration of lectins did not affect the total number of spermatozoa recovered from the oviduct and only the sialic acid-binding lectin TML decreased the percentage of sperm cells adhering to the epithelium. The involvement of sialic acid in sperm-oviduct adhesion was further explored, inseminating spermatozoa preincubated with mannose, galactose, sialic acid, fucose, fetuin, or asialofetuin. Sialic acid and fetuin inhibited sperm-oviduct binding while other carbohydrates had no effect. Using TML lectin immunohistochemistry, we found that sialic acid-rich glycoconjugates are equally localized in the epithelium of ampulla and isthmus of proestrous rats. The electrophoretic pattern of sialic acid-rich glycoproteins of the epithelium showed 15 major protein bands, for which molecular mass ranged from 200 to 50 kDa with no difference between ampulla and isthmus or between estrous cycle stages. Binding sites for sialic acid-fluorescein isothiocyanate were demonstrated on the surface of rat spermatozoa, and biotinylated sialic acid recognized 11 plasma membrane proteins of sperm cells. These groups of sialic acid-rich glycoproteins in the oviductal epithelium and of sialic acid-binding proteins in the plasma membrane of sperm cells are good candidates for further studies to characterize the molecules responsible for sperm binding. We conclude that there are segment-specific changes of sugar residues present in the oviductal epithelium associated with different endocrine environments. Sperm-oviduct adhesion in the rat occurs by interaction of sialoglycoconjugates present in the epithelial cells with sialic acid-binding proteins on the sperm surface. This replicates the situation previously found in hamsters, disclosing for the first time that species-specificity in the sugar involved in sperm binding is not absolute.  相似文献   

16.
Recently, we provided evidence that the glycosylation of hamster oviductin, a member of the mucin family of glycoproteins, is regulated during the estrous cycle. In order to further elucidate the glycosylation process of oviductal glycoproteins, we identified biosynthetic pathways involved in the assembly of mucin-type O-linked oligosaccharide (O-glycan) chains in the hamster oviduct. Our results demonstrated that the hamster oviduct has high activities of glycosyltransferases that synthesize O-glycans with core 1, 2, 3 and 4 structures as well as elongated structures. Oviduct therefore represents a typical mucin-secreting tissue. Our results also showed that specific glycosyltransferase activities are regulated during the estrous cycle. Mucin-type core 2 beta6-GlcNAc-transferase (C2GnT2) is responsible for synthesizing core 2 and core 4 structures in the oviduct. Specific assays for C2GnT2 revealed a cyclical pattern throughout the estrous cycle with high activity at the stages of proestrus and estrus and low activity at diestrus 1. Using semiquantitative RT-PCR, the mRNA levels for C2GnT2 in the estrous cycle stages could be correlated with the enzyme activities. An increase in glycosyltransferase activity in the hamster oviduct at the time of ovulation suggests that glycosylation of oviductal glycoproteins may be necessary for these proteins to exert their functions during the process of fertilization.  相似文献   

17.
Glycoproteins from luminal fluid of the mouse cauda epiciidymidis have been compared with glycoproteins from Triton X-100 extracts of mouse spermatozoa from varying regions of the epididymis, using lectins with specific affinity for different sugar residues. Concanavalin A recognizes 11 glycocomponents on Western blots of fractionated caudal fluid; wheat germ agglutinin (WGA) binds 12 proteins; Ulex europaeus agglutinin (UEA) binds seven; and Dolichos biflorus agglutinin (DBA) recognizes nine. Several of these glycoproteins display an affinity for more than one lectin, indicating a diversity in their exposed carbohydrate residues; whereas other proteins bind only one of the four lectins used. The results also show that some glycoproteins exhibit a higher affinity for particular lectins. Eight glycoproteins of similar mobility and lectin-binding characteristics are detected in Triton X-100 extracts of spermatozoa from different regions of the epididymis and in caudal fluid. The lectin affinity of some proteins appears or increases in spermatozoa from distal epididymal regions (54 kD, 32 kD), whereas the lectin affinity of others decreases (29 kD, 40 kD). There are differences in lectin affinities between proteins in sperm extracts and in caudal fluid. Some proteins show an affinity for three or four lectins in caudal fluid, but proteins of similar electrophoretic mobility in sperm extracts bind only one or two of the lectins. These data show that glycoproteins of similar mobility are present in caudal fluid and in Triton-X-100 sperm extracts, implying a potential interaction between caudal fluid components and epididymal sperm.  相似文献   

18.
A block to polyspermy is required for successful fertilisation and embryo survival in mammals. A higher incidence of polyspermy is observed during in vitro fertilisation (IVF) compared with the in vivo situation in several species. Two groups of mechanisms have traditionally been proposed as contributing to the block to polyspermy in mammals: oviduct‐based mechanisms, avoiding a massive arrival of spermatozoa in the proximity of the oocyte, and egg‐based mechanisms, including changes in the membrane and zona pellucida (ZP) in reaction to the fertilising sperm. Additionally, a mechanism has been described recently which involves modifications of the ZP in the oviduct before the oocyte interacts with spermatozoa, termed “pre‐fertilisation zona pellucida hardening”. This mechanism is mediated by the oviductal‐specific glycoprotein (OVGP1) secreted by the oviductal epithelial cells around the time of ovulation, and is reinforced by heparin‐like glycosaminoglycans (S‐GAGs) present in oviductal fluid. Identification of the molecules contributing to the ZP modifications in the oviduct will improve our knowledge of the mechanisms of sperm‐egg interaction and could help to increase the success of IVF systems in domestic animals and humans.  相似文献   

19.
Gametes alter the oviductal secretory proteome   总被引:1,自引:0,他引:1  
The mammalian oviduct provides an optimal environment for the maturation of gametes, fertilization, and early embryonic development. Secretory cells lining the lumen of the mammalian oviduct synthesize and secrete proteins that have been shown to interact with and influence the activities of gametes and embryos. We hypothesized that the presence of gametes in the oviduct alters the oviductal secretory proteomic profile. We used a combination of two-dimensional gel electrophoresis and liquid chromatography-tandem mass spectrometry to identify oviductal protein secretions that were altered in response to the presence of gametes in the oviduct. The oviductal response to spermatozoa was different from its response to oocytes as verified by Western blotting. The presence of spermatozoa or oocytes in the oviduct altered the secretion of specific proteins. Most of these proteins are known to have an influence on gamete maturation, viability, and function, and there is evidence to suggest these proteins may prepare the oviductal environment for arrival of the zygote. Our findings suggest the presence of a gamete recognition system within the oviduct capable of distinguishing between spermatozoa and oocytes.  相似文献   

20.
The notion of a gamete recognition system that alerts females to the presence of gametes in their reproductive tract profoundly influences our understanding of the physiology of events leading to conception and the bearing of offspring. Here, we show that the female responds to gametes within her tract by modulating the environment in which pregnancy is initially established. We found distinct alterations in oviductal gene expression as a result of sperm and oocyte arrival in the oviduct, which led directly to distinct alterations to the composition of oviductal fluid in vivo. This suggests that either gamete activates a cell-type-specific signal transduction pathway within the oviduct. This gamete recognition system presents a mechanism for immediate and local control of the oviductal microenvironment in which sperm transport, sperm binding and release, capacitation, transport of oocytes, fertilization, and early cleavage-stage embryonic development occur. This may explain the mechanisms involved in postcopulatory sexual selection, where there is evidence suggesting that the female reproductive tract can bias spermatozoa from different males in the favour of the more biologically attractive male. In addition, the presence of a gamete recognition system explains the oviduct's ability to tolerate spermatozoa while remaining intolerant to pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号