首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
To confirm the position and timing of meiosis in Porphyra yezoensis Ueda, the nuclear division of vegetative cells, conchosporangial cells and conchospores was observed. An improved staining method using modified carbol fuchsin was introduced to stain the chromosomes of Porphyra. Pit‐connections between conchosporangial cells also stained well with this method. Leptotene, zygotene, pachytene, diplotene, diakinesis, metaphase, anaphase and telophase were observed in the conchosporangial cells. During the germination of conchospores, no characteristics of meiosis I were found. No difference between the nuclear division of vegetative cells and that of conchospores was observed, and 2–3 days were needed for the first cell division both in vegetative cells and conchospores. Therefore, the cell division that occurs during conchospore germination is not meiosis I. Our results indicate that the prophase of meiosis I begins during the formation of conchosporangial branches, and metaphase I, anaphase I and telophase I take place during the maturation of conchosporangial branches. Then the three‐bivalent nucleate sporangia complete cell division to form two individual conchospores, each with one three‐univalent nucleus. The conchospores released from the sporangia are at meiotic interphase. Meiosis II occurs at the first nuclear division during conchospore germination, which is a possible explanation for the observation of mosaic thalli in mutant germlings of P. yezoensis. The mosaic thalli might also arise from gene conversion/post meiotic segregation events, comparable to those in Sordaria fimicola (Roberge ex Desm.) Ces. & De Not. and Neurospora crassa Shear & B.O. Dodge.  相似文献   

2.
A modified enzyme digestion technique of ovary isolation followed by staining and squash preparation has allowed us to observe female meiosis in normal maize meiotically dividing megaspore mother cells (MMCs). The first meiotic division in megasporogenesis of maize is not distinguishable from that in mi-crosporogenesis. The second female meiotic division is characterized as follows: (1) the two products of the first meiotic division do not simultaneously enter into the second meiotic division; as a rule, the chalazal-most cell enters division earlier than the micropylar one, (2) often the second of the two products does not proceed with meiosis, but degenerates, and (3) only a single haploid meiotic product of the tetrad remains alive, and this cell proceeds with three rounds of mitoses without any intervening cell wall formation to produce the eight-nucleate embryo sac. This technique has allowed us to study the effects of five meiotic mutations (aml, aml-pral, afdl, dsy *-9101, and dvl) on female meiosis in maize. The effects of the two alleles of the aml gene (aml and aml-pral) and of the afdl and dsy *-9101mutations are the same in both male and female meiosis. The aml allele prevents the entrance of MMCs into meiosis and meiosis is replaced by mitosis; the aml-pral permits MMCs to enter into meiosis, but their progress is stopped at early prophase I stages. The afdl gene is responsible for substitution of the first meiotic (reductional) division by an equational division including the segregation of sister chromatid centromeres at anaphase I. The dsy * -9101 gene exhibits abnormal chromosome pairing; paired homologous chromosomes are visible at pachytene, but only univalents are observed at diakinesis and metaphase I stages. These mutation specific patterns of abnormal meiosis are responsible for the bisexual sterility of these meiotic mutants. The abnormal divergent shape of the spindle apparatus and the resulting abnormal segregation of homologous chromosomes observed in micro-sporogenesis in plants homozygous for the dv1 mutation have not been found in meiosis of megasporogenesis. Only male sterility is induced by the dv1 gene in the homozygous condition. © 1993 Wiley-Liss, Inc.  相似文献   

3.
Nuclear divisions of carpospores, conchocelis and conchospores of Porphyra yezoensis, P. haitanensis, P. katadai var. hemiphylla and P. oligospermatangia from China were investigated. The observations showed diploid chromosome numbers of 2n = 6 for P. yezoensis and P. oligospermatangia, and 2n = 10 for P. haitanensis and P. katadai var. hemiphylla. For all four species, somatic pairing of chromosome sets was observed in late prophase. Sister chromosomes separated at anaphase as mitosis took place in carpospores, conchocelis filamentous cells, conchosporangial branch cells and sporangial cells (conchospore formation). Chromosome configurations of tetrad and ring-shaped in conchospore germination were observed, demonstrating the occurrence of meiosis. The characteristics of diploid nuclear division in 2n = 6 species are the same as those of 2n = 10 species. The influence of somatic pairing on nuclear division of diploid cells in Porphyra was discussed.  相似文献   

4.
Crossing experiments were carried out between artificial pigmentation mutants and the wild type in Porphyra haitanensis Chang et Zheng to ascertain where meiosis occurs in its life history by confirming whether the color segregation and the color-sectored blades appear in F1 gametophytic blades developed from conchospores which are released from heterozygous conchocelis. Two red-type pigmentation mutants (R-10 and SPY-1) were used as the female parent. Their blades are red or red orange in color, thinner than the wild type and weak in elasticity, and have no denticles on their margins. The wild type (W) was used as the male parent; its blades are light brown in color, thick and good in elasticity, and have many marginal denticles. The F1 gametophytic blades developed from conchospores which were released from heterozygous conchocelis produced in the crosses of R-10(♀)×W(♂) and SPY-1(♀)×W(♂) showed two parental colors (R and W) and two new colors (R', lighter in color than R; W', wild-type-like color and redder than W). Linear segregation of colors occurred in the F1 blades, forming color-sectored blades with 2–4 sectors. In the color-sectored blades, R and R' sectors were thinner than W and W' sectors, and had weak elasticity and no denticles on their margins, whereas W and W' sectors were thick and had good elasticity and many marginal denticles. Of the F1 gametophytic blades, 95.2–96.7% were color-sectored and only 3.3–4.8% were unsectored. These results indicate that meiosis of P. haitanensis occurs during the first two cell divisions of a germinating conchospore, and thus it is considered that the initial four cells of a developing conchosporeling constitute a linear genetic tetrad leading to the formation of a color-sectored blade. The new colors of R' and W' were recombinant colors due to the chromosome recombination during the first cell division in meiosis. It is considered that color phenotypes of the two mutants used in this paper were result of two (or more) recessive mutations in different genes, and that they also have mutations concerned with blade thickness and formation of marginal denticles, which are linked with the color mutations.  相似文献   

5.
Pigment mutants were used as genetic markers to study the early development and morphogenesis of blades in four species of Porphyra. In Porphyra haitanensis, P. yezoensis, and P. oligospermatangia, the first two divisions are transverse during conchospore germination, yielding four cells arranged in a line. These species are representative of linear development pattern in Porphyra. Resulting in blades with color sectors vertically arranged. In P. katadai var. hemiphylla, the first division is transverse and the upper cell divides vertically forming two side-by-side cells, and its blades are derived mostly from the upper cell showing a bilateral development pattern with two lateral parts of different colors. In this type of germination, most or the entire blade is derived from the upper cells. Some fronds of P. katadai var. hemiphylla developed in linear pattern. In addition, 9.3% of the conchospore germlings of linear development were produced at 10°C, 15.3% at 15°C, and 38.0% at 20°C for conchospore germlings of P. katadai var. hemiphylla. More linear development occurred at higher temperatures. The results revealed general trends of early developmental patterns and morphogenesis of blades within the genus of Porphyra. Developmental patterns and morphogenesis of blades are under the influence of temperatures.  相似文献   

6.
The color mutations in Bangiaceae were investigated by treating the blades, conchocelis and conchospores phase of Bangia sp., Porphyra yezoensis, and P. haitanensis sampled in China with mutagen N-methyl-N′-nitro-N-nitrosoguanidine (MNNG). A high percentage of mutation in different expression characteristics in all three phases were shown within optimum mutagen concentrations. Among mutagenized blades, mutations occurred on single cells, which is a direct outcome of mutation of haploid cells. The mutation of mutagenized conchocelis resulted in a two-step process: low-level expression in conchocelis phase, and high-level expression in progeny, explaining that mutation took place in diploid cells. The mutations of conchospores were expressed immediately at germination of spores, indicating a change in ploidy. This paper reports the process of meiosis and its effect on frond development, and the relation between color mutations and morphological characteristics expressed by mutations in Bangiaceae.  相似文献   

7.
Female meiosis in Arabidopsis has been analysed cytogenetically using an adaptation of a technique previously applied to male meiosis. Meiotic progression was closely correlated with stages of floral development, including the length and morphology of the gynoecium. Meiosis in embryo sac mother cells (EMCs) occurs later in development than male meiosis, in gynoecia that range in size between 0.3 and 0.8 mm. The earliest stages in EMCs coincide with the second division to tetrad stages in pollen mother cells. However, the details of meiotic chromosome behaviour in EMCs correspond closely to the observations we have previously made in male meiosis. In addition, BrdU labelling coupled with an immunolocalisation detection system was used to mark the S phase in cells preceding their entry into prophase I. These techniques allow female meiotic stages of Arabidopsis to be analysed in detail, from the S-phase through to the tetrad stage, and are shown to be equally applicable to the analysis of female meiosis in meiotic mutants. Received: 3 April 2000 / Revision accepted: 2 August 2000  相似文献   

8.
Details of oospore germination, including meiosis, are described and illustrated as they appear in the homothallic Oedogonium foveolatum. Unequivocal meiotic division is demonstrated to occur within 12 hr prior to the liberation of the motile tetrad cells. The development and liberation of the meiotic products are described as are instances of anomalous oospore germination. In some cases, meiosis apparently fails to occur, and a single, diploid germling invariably results. Various factors influencing oospore germination are discussed, including an apparent absolute light requirement.  相似文献   

9.
The conserved protein ZW10 is found in various organisms. It is localized on the kinetochores or spindle microtubules during cell division. ZW10 regulates not only the segregation of homologous chromosomes, each consisting of attached sister chromatids (during the first meiotic division), but also the separation of individual chromatids (during mitosis and the second meiotic division). ZW10 is required for proper chromosome segregation during both mitosis and meiosis. The effects of zwl0 mutations are similar for both equational and reductional divisions, giving rise to anaphases with lagging chromosomes and/or unequal numbers of chromosomes at the two poles. The localization of ZW10 is similar during mitosis, meiosis I, and meiosis II. In interphase the distribution of ZW10 changes; it is localized in the endoplasmic reticulum, Golgi apparatus, and in the cytosol and is involved in membrane trafficking between the endoplasmic reticulum and Golgi apparatus. ZW10 forms a subcomplex with RINT-1 and p31 which are involved in a larger complex comprising syntaxin 18, an endoplasmic reticulum-localized t-SNARE that is implicated in membrane trafficking. The text was submitted by the authors in English.  相似文献   

10.
Nonrandom segregation during meiosis: the unfairness of females   总被引:8,自引:0,他引:8  
Most geneticists assume that chromosome segregation during meiosis is Mendelian (i.e., each allele at each locus is represented equally in the gametes). The great majority of reports that discuss non-Mendelian transmission have focused on systems of gametic selection, such as the mouse t-haplotype and Segregation distorter in Drosophila, or on systems in which post-fertilization selection takes place. Because the segregation of chromosomes in such systems is Mendelian and unequal representation of alleles among offspring is achieved through gamete dysfunction or embryonic death, there is a common perception that true disturbances in the randomness of chromosome segregation are rare and of limited biological significance. In this review we summarize data on nonrandom segregation in a wide variety of genetic systems. Despite apparent differences between some systems, the basic requirements for nonrandom segregation can be deduced from their shared characteristics: i) asymmetrical meiotic division(s); ii) functional asymmetry of the meiotic spindle poles; and iii) functional heterozygosity at a locus that mediates attachment of a chromosome to the spindle. The frequency with which all three of these requirements are fulfilled in natural populations is unknown, but our analyses indicate that nonrandom segregation occurs with sufficient frequency during female meiosis, and in exceptional cases of male meiosis, that it has important biological, clinical, and evolutionary consequences. Received: 28 December 2000 / Accepted: 23 January 2001  相似文献   

11.
Mitosis and meiosis are two distinct cell division programs. During mitosis, sister chromatids separate, whereas during the first meiotic division, homologous chromosomes pair and then segregate from each other. In most organisms, germ cells do both programs sequentially, as they first amplify through mitosis, before switching to meiosis to produce haploid gametes. Here, we show that autosomal chromosomes are unpaired at their centromeres in Drosophila germline stem cells, and become paired during the following four mitosis of the differentiating daughter cell. Surprisingly, we further demonstrate that components of the central region of the synaptonemal complex are already expressed in the mitotic region of the ovaries, localize close to centromeres, and promote de novo association of centromeres. Our results thus show that meiotic proteins and meiotic organization of centromeres, which are key features to ensure reductional segregation, are laid out in amplifying germ cells, before meiosis has started.  相似文献   

12.
Emphasis is placed on three aspects of meiosis in the moss Amblystegium riparium (Hedw.) BSG: 1***) nature of the sporogenous layer; 2) prophasic microtubules and polarity; and 3) cleavage pattern. Spore tetrads develop while still encased by archesporial cell walls. The cellular nature of the sporogenous layer differs from the more usual occurrence of free sporocytes released into a common spore sac. Two important events mark the establishment of sporocyte polarity during meiotic prophase: 1) migration of the four plastids to the distal tetrad poles (telophase II poles); and 2) ingrowth of the sporocyte wall in eventual cleavage planes between the tetrad poles. An extensive, plastid-based microtubule system is associated with organelle migration during the establishment of sporocyte polarity in meiotic prophase. Disruption of the nuclear envelope in prometaphase I occurs at sites opposite the four plastids where microtubules extend from plastid envelope to nuclear envelope. Formation of a cell plate following the first meiotic division results in a dyad, whereas in many mosses meiosis is completed in the undivided sporocyte and is followed by simultaneous cleavage into a spore tetrad. Spore cleavage is accomplished by vesicular coalescence resulting in septa that coincide with the prophasic wall ingrowths.  相似文献   

13.
Research over the last two decades has identified a group of meiosis-specific proteins, consisting of budding yeast Spo13, fission yeast Moa1, mouse MEIKIN, and Drosophila Mtrm, with essential functions in meiotic chromosome segregation. These proteins, which we call meiosis I kinase regulators (MOKIRs), mediate two major adaptations to the meiotic cell cycle to allow the generation of haploid gametes from diploid mother cells. Firstly, they promote the segregation of homologous chromosomes in meiosis I (reductional division) by ensuring that sister kinetochores face towards the same pole (mono-orientation). Secondly, they safeguard the timely separation of sister chromatids in meiosis II (equational division) by counteracting the premature removal of pericentromeric cohesin, and thus prevent the formation of aneuploid gametes. Although MOKIRs bear no obvious sequence similarity, they appear to play functionally conserved roles in regulating meiotic kinases. Here, the known functions of MOKIRs are reviewed and their possible mechanisms of action are discussed. Also see the video abstract here https://youtu.be/tLE9KL89bwk .  相似文献   

14.
A meiotic time-course for Arabidopsis pollen mother cells has been established based on BrdU pulse-labelling of nuclear DNA in the meiotic S-phase. Labelled flower buds were sampled at intervals and the progress of labelled cells through meiosis assessed by anti-BrdU antibody detection. The overall duration of meiosis from the end of meiotic S-phase to the tetrad stage, at 18.5°C, was 33 h, which is about three times longer than the mitotic cell cycle in seedlings. The onset of leptotene was defined by reference to the loading of the axis-associated protein Asy1, and this permitted the detection of a definite G2 stage, having a maximum duration of 9 h. It is likely, from two independent sources of evidence, that the meiotic S-phase has a duration similar to that of G2. The durations of leptotene and zygotene/pachytene are 6 h and 15.3 h, respectively, but the remaining meiotic division stages are completed very rapidly, within 3 h. The establishment of a meiotic time-course provides a framework for determining the relative timing and durations of key molecular events of meiosis in Arabidopsis in relation to cytologically defined landmarks. In addition, it will be important in a broader developmental context for determining the timing of epigenetic mechanisms that are known or suspected to occur during meiosis.  相似文献   

15.
Multinucleate protoplasts were produced from meiotic cells at the zygotene and pachytene stages in a lily andTrillium, and their meiotic divisions were followed during subsequent culture. In each multinucleate, a complete synchrony of nuclear division was maintained throughout the meiotic process, and chromosome behavior appeared normal up to the metaphase stage. In most dinucleates, chromosome segregation movement was organized in a common spindle, and the daughter nuclei at the telophase appeared to envelope each other in the newly formed nuclear membrane. The cell was divided into two daughter cells by a common cell plate. Trinucleates were similarly converted to two cells with a hexaploid number of chromosomes. Some of the di- and trinucleates subsequently completed the second meiotic division with the formation of typical tetrad configurations. In giant cells with more than several nuclei, chromosomes separated at random but reaggregated into one giant resting nucleus, with no later cytokinesis. The rate of meiotic development in multinucleates was relatively slower in cells which contained greater numbers of nuclei.  相似文献   

16.
A new species of Porphyra, Porphyra lilliputiana, is described for the New Zealand region. This species is very small ([5] 10–20 [35] mm) and is found growing epiphytically, epilithically and epizoically on upper inter-tidal shores of moderate exposure. Field-collected material of P. lilliputiana possessed archeosporangia, endosporangia, spermatangia and zygotosporangia. In culture, archeospores vi/ere released and germinated to form thalli. Endosporangia either developed directly into thalli or released endospores which individually formed thalli. Zygotospores developed into the concho-celis phase, which formed conchosporangia. Released conchospores formed thalli. This species is distinguished by its small size, arrangement of reproductive cells, occurrence of endosporangia, dentate margin and habitat.  相似文献   

17.
This is the second of two papers which together are the first comprehensive ultrastructural report of meiosis in a red alga. Many details of the meiotic process in Dasya baillouviana (Gmelin) Montagne are the same as those reported previously for mitotic cells in ceramialian red algae, but several characteristics seem unique to meiotic cells. The nucleus and nucleolus of meiotic cells are larger than those of mitotic cells and large accumulations of smooth ER are often found at the division poles during meiosis 1. The function of the ER accumulations is unknown. Importantly, both interkinesis and a simultaneous division of two separate nuclei during meiosis II was demonstrated. These new observations fail to support earlier speculation on higher red algae for a “uninuclear” meiosis (both nuclear divisions within the same nuclear envelope). However, following meiosis II the four nuclei migrate centripetally and possibly fuse in the center of the tetrasporangium. This post-division nuclear maneuvering is not understood, but our interpretation accounts for the earlier and erroneous impression of “uninuclear” meiosis. Perhaps the most important aspect of meiosis observed in Dasya is its basic adherence to the pattern commonly seen in higher plants and animals. This conservatism of the meiotic process lends further skepticism to the belief that red algae are extremely “primitive” organisms, although they undoubtedly represent a very “ancient” group of eukaryotic plants.  相似文献   

18.
ORD protein is required for accurate chromosome segregation during male and female meiosis in Drosophila melanogaster. Null ord mutations result in random segregation of sister chromatids during both meiotic divisions because cohesion is completely abolished prior to kinetochore capture of microtubules during meiosis I. Previous analyses of mutant ord alleles have led us to propose that the C-terminal half of the ORD protein mediates protein-protein interactions that are essential for sister-chromatid cohesion. To identify proteins that interact with ORD, we conducted a yeast two-hybrid screen using an ORD bait and isolated dRING, a core subunit of the Drosophila Polycomb repressive complex 1. We show that a missense mutation in ORD completely ablates the two-hybrid interaction with dRING and prevents nuclear retention of the mutant ORD protein in male meiotic cells. Using affinity-purified antibodies generated against full-length recombinant dRING, we demonstrate that dRING protein is expressed in the male and female gonads and colocalizes extensively with ORD on the chromatin of primary spermatocytes during G2 of meiosis. Our results suggest a novel role for the Polycomb group protein dRING and are consistent with the model that interaction of dRING and ORD is required to promote the proper segregation of meiotic chromosomes.Communicated by R. Paro  相似文献   

19.
The reduction of chromosome number during meiosis is achieved by two successive rounds of chromosome segregation, called meiosis I and meiosis II. While meiosis II is similar to mitosis in that sister kinetochores are bi-oriented and segregate to opposite poles, recombined homologous chromosomes segregate during the first meiotic division. Formation of chiasmata, mono-orientation of sister kinetochores and protection of centromeric cohesion are three major features of meiosis I chromosomes which ensure the reductional nature of chromosome segregation. Here we show that sister chromatids frequently segregate to opposite poles during meiosis I in fission yeast cells that lack both chiasmata and the protector of centromeric cohesion Sgo1. Our data are consistent with the notion that sister kinetochores are frequently bi-oriented in the absence of chiasmata and that Sgo1 prevents equational segregation of sister chromatids during achiasmate meiosis I.Key words: meiosis, chromosome segregation, recombination, kinetochore, Sgo1, fission yeast  相似文献   

20.
The simple sequence repeat (SSR) marks were employed to identify the stage at which meiosis occurs in the life cycle of Porphyra haitanensis T. J. Chang et B. F. Zheng. More than 90% of F1 blades of heterozygous conchocelis produced by the cross between a red mutant (R, ♀) and the wildtype (W, ♂) were color sectored. Two parental colors (R and W) and two new colors (R′ and W′) appeared in linear sectors in the color‐sectored F1 blades. Two SSR primer pairs selected from a total of 52 primer pairs generated a specific paternal and maternal fragment, respectively. Co‐occurrence of these two bands was detected in heterozygous conchocelis and in the color‐sectored F1 blades with two to four sectors, such as R + W, R′ + W′, and R′ + R + W + W′. However, the single‐colored F1 blades exhibited only one band. In the sectors isolated from the color‐sectored F1 blades, R and R′ were the same, showing the maternal pattern, whereas W and W′ were the same, showing the paternal pattern. These data suggested that the two different bands from heterozygous conchocelis originated from the parents and segregated in the F1 blades, whereas the two new colors, R′ and W′, in the F1 blades were produced by the exchange and recombination of alleles of the parental colors during meiosis. These results indicated that meiosis of P. haitanensis occurs during the first two cell divisions of a germinating conchospore, and, therefore, the initial four cells constitute a linear genetic tetrad, leading to the formation of a color‐sectored blade.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号