首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The asymmetric “punch and suck” mouthparts of larval Haplothrips verbasci develop from paired appendages in the late, post-anatrepsis embryo similar to those of other insects. Later, the labrum flexes ventrally over the stomodaeum, the right mandibular appendage degenerates, the maxillary appendages divide into inner (lacinial) and outer (stipital) lobes, and the hypopharynx arises from the venters of the mandibular and maxillary segments. All cephalic segments consolidate anteriorly prior to katatrepsis, their appendages flex ventrally, and the labial appendages fuse medially to form the labium and the primordia of the salivary glands and valve. The left mandible and the lacinial lobes of the maxillae invaginate into the head during and after katatrepsis to form the mandibular and maxillary stylet-secreting organs and these later deposit the cuticle of their respective stylets. Cuticle of the mandibular lever is deposited by labral cells at the apex of the mandibular sheath during and after hatching. That of each maxillary lever is secreted simultaneously into the lumen of a ventrally-directed diverticulum developing from stipital cells at the apex of each maxillary sheath. Shortly after katatrepsis, the maxillary and labial palpi originate respectively from cells in the outer wall of each stipital lobe and at the apex of the labium. Muscles of the mouthparts arise after katatrepsis from cephalic mesoderm and are fully-differentiated before cuticle of the mandibular and maxillary levers has been deposited. Gnathal morphogenesis in embryos of H. verbasci resembles that occurring in bug embryos and provides additional evidence that Thysanoptera and Hemiptera evolved from a common psocopteroid stem species having small, paired, biting and chewing mandibles and well developed lacinial stylets.  相似文献   

2.
The external features of the developing embryos of the springtail, Tomocerus ishibashii, are described. The clypeolabral anlage arises as a single, unpaired swelling. The entognathy is completed by the ventral growth of the tergal anlagen of mandibular, maxillary, and labial segments. These anlagen also form the posterior part of the cranium. The palpi of maxilla and labium are homologous with the telopodites, and proximal parts of these head appendages are homologous with the coxopodites. The sternal element of the labial segment does not participate in the postmentum formation. The anlagen of abdominal appendages appear in the first to the fourth abdominal segments. The first, third, and fourth appendage anlagen form the ventral tube, tenaculum, and furcula, respectively. The fused proximal parts of the first, third, and fourth appendage anlagen are homologous with the coxopodites, and the distal parts which do not fuse are homologous with the telopodites. The anlagen of the second abdominal appendages become flattened and spread over the ventral side of this segment. The ventral structures of the first four abdominal segments are appendicular in origin.  相似文献   

3.
Divisional morphogenesis in the freshwater spirotrichous ciliate, Trichototaxis songi Chen et al., 2007, was investigated. The main morphogenetic events are characterised as follows: (1) the parental oral apparatus is completely renewed by the independently formed oral primordium in the proter; (2) the oral primordium in the opisthe is formed on the cell surface; (3) several left cirri of the midventral pairs participate in the formation of the oral primordium in the opisthe; (4) FVT-anlage I forms the leftmost pair of the bicorona; (5) the macronuclear nodules fuse into many masses rather than a single or branched mass as described in most pseudokeronopsids; and (6) usually, two marginal anlagen develop within each left marginal row separately. However, the number of left marginal anlagen is highly variable, even differing between the proter and opisthe of the same divider. The increase in the number of left marginal anlagen is by de novo generation of small anlagen to the left of the intrakinetal left marginal anlage, whereas the decrease in number is by resorption of the old marginal row(s). We posit that Trichototaxis is an intermediate form between the Pseudourostylidae and Pseudokeronopsidae as it shares morphogenetic features with both. Additionally, as in Uroleptopsis (Uroleptopsis), FVT-anlage I forms the leftmost pair of the bicorona in Trichototaxis indicating these genera may be closely related.  相似文献   

4.
SUMMARY The insect upper lip—the labrum—is a lobe-like structure anterior to the mouth opening. Whether the labrum represents a fused pair of segmental appendages or evolved independently is heavily debated. Here, we identify additional similarities of the regulatory gene network active in labrum and trunk appendages. However, we do not find a labral parasegment boundary and we show that labral Tc-Dll expression is independent of Tc-wg and Tc-hh signals. In contrast, Tc-Dll expression in all trunk appendages does require these signals. Finally, we identify crucial differences between the location of the labrum and trunk appendages: the labrum develops in median rather than lateral tissues and is part of an anterior nonsegmental tissue marked by and dependent on Tc-six3 activity. To reconcile these seeming contradictory results, we propose that the genetic network evolved in either labrum or trunk appendages and became redeployed at a novel location to form the other structure.  相似文献   

5.
Our analysis of head segmentation in the locust embryo reveals that the labrum is not apical as often interpreted but constitutes the topologically fused appendicular pair of appendages of the third head metamere. Using molecular, immunocytochemical and retrograde axonal staining methods we show that this metamere, the intercalary segment, is innervated by the third brain neuromere-the tritocerebrum. Evidence for the appendicular nature of the labrum is firstly, the presence of an engrailed stripe within its posterior epithelium as is typical of all appendages in the early embryo. Secondly, the labrum is innervated by a segmental nerve originating from the third brain neuromere (the tritocerebrum). Immunocytochemical staining with Lazarillo and horseradish peroxidase antibodies reveal that sensory neurons on the labrum contribute to the segmental (tritocerebral) nerve via the labral nerve in the same way as for the appendages immediately anterior (antenna) and posterior (mandible) on the head. All but one of the adult and embryonic motoneurons innervating the muscles of the labrum have their cell bodies and dendrites located completely within the tritocerebral neuromere and putatively derive from engrailed expressing tritocerebral neuroblasts. Molecular evidence (repo) suggests the labrum is not only appendicular but also articulated, comprising two jointed elements homologous to the coxa and trochanter of the leg.  相似文献   

6.
As part of a larger project examining and comparing the ontogeny of all major taxa of the Branchiopoda in a phylogenetic context, the larval development of Caenestheriella gifuensis (Ishikawa, 1895), a Japanese spinicaudatan ‘conchostracan’, is described by scanning electron microscopy. Seven different larval stages are recognised, in most cases based on significant morphological differences. They range in length from about 200 to 850 μm. Nauplius 1 has a plumb and lecithotrophic appearance with a rounded hind body and a labrum with an incipient medial spine. Limb segmentation is mostly unclear but the second antennae have more putative segments delineated than are expressed in the later stages. Feeding structures such as the mandibular coxal process and antennal coxal spine are only weakly developed. Nauplius 2 is very different from nauplius 1 and has three large spines on the labral margin and two long caudal spines. Feeding structures such as the mandibular coxal process and various spines and setae are developed, but whether feeding begins at this stage was not determined. The mandible has developed an ‘extra’ seta on endopod segment 1, absent in Nauplius 1. The segmentation of the second antenna has changed significantly due to fusions of various early segments. Nauplius 3 is like nauplius 2 in morphological detail, but larger and more elongate. Nauplius 4 has developed a pair of small anlagen of the carapace and rudiments of the first five pairs of trunk limbs, and the coxal spine of the antenna has become distally bifid. Nauplius 5 has a larger carapace anlage, externally visible enditic portions of the elongate trunk limbs, and a pair of primordial dorsal telson setae. Nauplius 6 has a larger and partly free carapace and better-developed, partly free trunk limbs with incipient enditic, endopodal, and exopodal setation. A pair of caudal spines, dorsal to the large caudal spines, has appeared. Nauplius 7 is quite similar to nauplius 6 but is larger and has slightly longer caudal and labral spines; also, the setation of the most anterior trunks limbs is better developed. The larval development is largely similar to that of other spinicaudatans. The larval mandible, which is evolutionarily conservative within the Branchiopoda, reveals a setation pattern similar to that of the Anostraca and Notostraca (two setae on mandibular endopod segment 1). Most other spinicaudatans and all examined laevicaudatans share another setal pattern (one seta on mandibular endopod segment 1), which could indicate a close relationship among these taxa. The second antenna undergoes a special development, which provides an insight into the evolution of this limb within the Branchiopoda. In nauplius 1 the basipod, endopod, and exopod are all superficially divided into a relatively high number of segments. In later nauplii some of these have fused, forming fewer but larger segments. We suggest that this ontogeny reflects the evolution of antennae in the conchostracans. Various aspects of the morphology of the antennae are discussed as possible synapormorphies for either the Diplostraca or subgroups of the Conchostraca.  相似文献   

7.
The clypeo-labrum, or upper lip, of insects is intimately involved in feeding behavior and is accordingly endowed with a rich sensory apparatus. In the present study we map the temporal appearance of all major clusters of sensory cells on this structure in the locust during the first half of embryogenesis. The identities of these sensory cell clusters were defined according to the origin of the branching point of their axons from the labral sensory nerve as seen at mid-embryogenesis. The first sensory cells to differentiate from the labral epithelium do so at stereotypic sites beginning at around 32% of embryogenesis. Bilaterally symmetrical clusters of differentiated neurons rapidly appear and pioneering of the labral sensory nerve on each side is performed by a specific cell from each cluster. This cell directs its axon anteriorly towards a bilaterally symmetrical pair of cells, the frontal commissure pioneers, on either side of the developing frontal ganglion. The final trajectory of the sensory nerve within the labrum closely matches the pattern of Repo-expressing glial cells. The majority of the sensory cell clusters differentiate during embryogenesis, but the number of sensory cells in some clusters are modified significantly during postembryonic development. Comparing the innervation pattern of the clypeo-labrum with that of other mouthparts and the leg at mid-embryogenesis, we find a striking similarity in organization which we interpret as support for the homologous appendage hypothesis.  相似文献   

8.
We report our investigations on the embryonic development of Gryllus assimilis, with particular attention to the head. Significant findings revealed with scanning electron microscopy (SEM) images include: (1) the pre-antennal lobes represent the anterior-most segment that does not bear any appendages; (2) each of the lobes consists of central and marginal regions; (3) the central region thereof develops into the protocerebrum and the optic lobes, whereas the marginal region thereof becomes the anterior portion of the head capsule; (4) the initial position of the antennal segment is posterior to the mouth region; (5) appendage anlagen are transitorily present in the intercalary segment, and they later vanish together with the segment itself; (6) a bulged sternum appears to develop from the ventral surface of the mandibular, maxillary and labial segments. Embryonic features are then compared across the Insecta and further extended to the embryos of a spider (Araneae, Chelicerata). Striking similarities shared by the anterior-most region of the insect and spider embryos lead the authors to conclude that such comparison should be further undertaken to cover the entire Euarthropoda. This will help us to understand the embryology and evolution of the arthropod head.  相似文献   

9.
10.
The ontogeny of the insect labrum, or upper lip, has been debated for nearly a century. Recent molecular data suggest a segmental appendage origin of this structure. Here we report the first arthropod mutation associated with a homeotic transformation of the labrum. Antennagalea-5 (Ag(5)) transforms both antennal and labral structures to resemble those of gnathal appendages in Tribolium castaneum. This labral transformation suggests that the labrum is a fused structure composed of two pairs of appendage endites, and is serially homologous to the gnathal appendages.  相似文献   

11.
Embryonal development of the spinal column cervical part has been studied in 100 series of sagittal, transversal, frontal sections; time of the main structural elements anlagen (vertebral bodies, arches, joints, ligaments) is noted. The prenatal development of the spinal column cervical part is divided into 3 stages--mesenchymal, cartilagenous, osseous. The first stage lasts up to 16 days of development; during this period anlagen of vertebral bodies, arches, joints, ligaments are formed. The second stage--cartilagenous; mesenchyma is substituted for cartilagenous tissue, cartilagenous cells are differentiated. This stage lasts from the 16th up to the 18th day of embryogenesis. The third stage--osseous--lasts from the 18th up to the 21st day of embryogenesis. During this period structures of the spinal column cervical part acquire a definitive form, the cartilagenous tissue is substituted for the osseous one.  相似文献   

12.
在25℃条件下,冠突伪尾柱虫接合生殖全程历时10天左右。接合生殖过程中的核器演化包括:①数十枚老的大核逐步瓦解。电镜观察表明,老的大核是以一种类似于食物泡消化的方式被吸收的,并在此过程中伴有大量溶酶体出现。②仅8枚左右小核中的一枚参与新核器的发生。首先,位于胞口后部的一枚小核膨大并进行一次预备分裂,接着发生三次成熟分裂。每一接合体内形成一枚雄原核和一枚雌原核。雄原核互向对方迁移并与其雌原核融合成为合子核。合子核分裂两次,四枚子核之一发育为大核原基,另一枚发育为小核原基,其余两枚退化。预备分裂和前两次成熟分裂各自产生的两枚子核中,仅一枚进入下一次分裂,另一枚解体消失。在第一次成熟分裂前期,“降落伞”的形成和发展经历着复杂的结构变化,持续一小时以上。③大核原基经过长时间的发育,伴有多线染色体的形成和解体等一系列变化,方达成熟状态。成熟的大核原基以伸长断裂、分叉断裂和哑铃形缢缩三种方式进行分裂,小核原基亦随之分裂,逐步形成具60枚左右大核、8枚左右小核的正常营养体。其后,大核融合,开始配后第一次无性分裂。值得注意的是,大核原基发育到将成熟时,最初的迹象是染色质向大核原基中央集结成团,染色质团与核膜之间充满着匀质的核液。当中央染色质团伸长时,又将  相似文献   

13.
During Tetrahymena conjugation gamic nuclei (pronuclei) are produced, reciprocally exchanged, and fused in each mate. The synkaryon divides twice; the two anterior nuclei develop into new macronuclei while the two posterior nuclei become micronuclei. The postzygotic divisions were blocked with the antitubulin drug nocodazole (ND). Then pronuclei (gamic nuclei) developed directly into macronuclear anlagen (primordial macronuclei), inducing amicronucleate cells with two anlagen, or, rarely, cells with one anlagen and one micronucleus. ND had a similar effect on cells that passed the first postzygotic division inducing amicronucleate cells with two anlagen, while cells treated with ND at the synkarya stage produced only one large anlage. Different intracytoplasmic positioning of the nuclei treated with ND (pronuclei, synkarya and two products of the first division) shows that most of cell cytoplasm is competent for inducing macronuclear development. Only posteriorly positioned nuclei--products of the second postzygotic division--remain micronuclei. The total cell DNA content, measured cytophotometrically in control and in ND-induced amicronucleate conjugant cells with one and two anlagen, was similar in all three samples at 12 h of conjugation. Eventually, at 24 h this content was about 2 pg (8 C) per anlagen both in nonrefed control and in amicronucleate exconjugants. Therefore "large" nuclei developing in the presence of ND were true macronuclear anlagen.  相似文献   

14.

Background  

During vertebrate embryogenesis the initial stages of bone formation by endochondral ossification involve the aggregation and proliferation of mesenchymal cells into condensations. Continued growth of the condensations and differentiation of the mesenchymal cells into chondrocytes results in the formation of cartilage templates, or anlagen, which prefigure the shape of the future bones. The chondrocytes in the anlagen further differentiate by undergoing a complex sequence of maturation and hypertrophy, and are eventually replaced by mineralized bone. Regulation of the onset of chondrogenesis is incompletely understood, and would be informed by comprehensive analyses of in vivo gene expression.  相似文献   

15.
Prior developmental genetic analyses have shown that labial (lab) and Deformed (Dfd) are homeotic genes that function in the development of the embryonic (larval) and adult head. Using antibody probes to reveal the spatial distribution of the lab and Dfd proteins in embryonic and imaginal tissues, we have assessed the respective roles of these genes through an analysis of the correspondence of their expression patterns with their mutant phenotypes. With regard to imaginal development, lab and Dfd occupy adjacent non-overlapping expression domains in the peripodial cell layer of the eye-antennal disc, in patterns that are consistent with their adult mutant phenotypes and published fate maps. During embryogenesis, lab and Dfd exhibit limited overlapping expression in areas that are of no obvious significance to the development of larval head structures, but also in areas that may have consequences for imaginal development. The head of Drosophila and other cyclorrhaphous Dipterans is characterized by an extreme morphological difference between the larval and adult stages. Given this unique ontogenetic and phylogenetic history and the observation that homeotic transformations produced by the lab, Dfd, and proboscipedia (pb) loci are manifested only in the adult, we suggest that distinct regulatory paradigms evolved for homeotic gene function in the development of the larval versus adult head. Finally, a detailed examination of the engrailed (en) expression pattern in the embryonic head strengthens the view of insect morphologists that the clypeolabrum evolved from the fusion of paired labral appendages.  相似文献   

16.
The phylogenetic position of the enigmatic Pycnogonida (sea spiders) is still controversial. This is in part due to a lack of detailed data about the morphology and ontogenesis of this, in many aspects, aberrant group. In particular, studies on the embryonic development of pycnogonids are rare and in part contradictory. Here, we present the first embryological study of a pycnogonid species using scanning electron microscopy (SEM). We describe the late embryogenesis of Pycnogonum litorale from the first visible appendage anlagen to the hatchling in 11 embryonic stages. The three pairs of appendage anlagen gain in length by growth, as well as by extension of furrows into the embryo. The opening of the stomodaeum is located far in front of the anlagen of the chelifores and has a Y‐shaped lumen from the onset. During further embryogenesis, the position of the mouth shifts ventrally, until it is located between the chelifores. The proboscis anlage grows out as a circumoral wall‐like structure, which is initially more pronounced ventrally. Hypotheses about the evolution of the proboscis by fusion of originally separated components are critically discussed, because the proboscis anlage of P. litorale shows no indications of a composite nature. In particular, a participation of post‐cheliforal elements in proboscis formation is rejected by our data. Further, no preoral structure and no stage in proboscis formation was found, which could plausibly be homologized with the labrum of othereuarthropods. Thus, our study supports the assumption of a complete lack of a labrum in Pycnogonida. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
The development of two of the cranial lateral line canals is described in the cichlid, Archocentrus nigrofasciatus. Four stages of canal morphogenesis are defined based on histological analysis of the supraorbital and mandibular canals. "Canal enclosure" and "canal ossification" are defined as two discrete stages in lateral line canal development, which differ in duration, an observation that has interesting implications for the ontogeny of lateral line function. Canal diameter in the vicinity of individual neuromasts begins to increase before ossification of the canal roof in each canal segment; this increase in canal diameter is accompanied by an increase in canal neuromast size. The mandibular canal generally develops later than the supraorbital canal in this species, but in both of these canals development of the different canal segments contained within a single dermal bone is asynchronous. These observations suggest that a dynamic process requiring integration and interaction among different tissues, in both space and time, underlies the development of the cranial lateral line canal system. The supraorbital and mandibular canals appear to demonstrate a "one-component" pattern of development in Archocentrus nigrofasciatus, where the walls of each canal segment grow up from the underlying dermal bone and then fuse to form the bony canal roof. This is contrary to numerous published reports that describe a "two-component" pattern of development in teleosts where the bony canal ossifies separately and then fuses with an underlying dermal bone. A survey of the literature in which lateral line canal development is described using histological analysis suggests that the occurrence of two different patterns of canal morphogenesis ("one-component" and "two-component") may be due to phylogenetic variation in the pattern of the development of the lateral line canals.  相似文献   

18.
19.
峨眉凤丫蕨配子体发育及卵发生的研究   总被引:1,自引:0,他引:1  
用显微观察及透射电镜技术对峨眉凤丫蕨的配子体发育及卵发生过程进行了观察研究,以探讨其卵发生细胞学机制及蕨类植物演化关系。结果表明:(1)峨眉凤丫蕨孢子接种7~9d萌发,经丝状体和片状体阶段发育为心形原叶体,成熟原叶体雌雄同株,在原叶体基部产生精子器,在原叶体生长点下方产生颈卵器。(2)卵发生研究表明,峨眉凤丫蕨颈卵器产生于生长点下方的表面细胞,该细胞经2次分裂形成3层细胞,中间者为初生细胞,它经2次不等分裂产生卵细胞、腹沟细胞和颈沟细胞;新产生的卵与腹沟细胞间连接紧密,有发达的胞间连丝,随着发育,卵细胞与腹沟细胞之间产生分离腔,而腹沟细胞与卵细胞始终通过孔区相连;发育中期,卵核形成大量核外突;发育后期,在卵细胞外侧形成卵膜,孔区演变为受精孔,核外突数量减少。  相似文献   

20.
In previous studies, an unusual pattern of development which resembles the "long germ band" development of some insects has been described in the onychophoran Opisthopatus cinctipes. This pattern has been proposed to be a characteristic of the genus Opisthopatus. To test this assumption, the ultrastructure of embryos of O. roseus, the sister species of O. cinctipes, was examined. Two kinds of paired, segmentally arranged coelomic cavities were found in the embryos studied: 1) dorsolateral coelomic cavities lined by extremely thin epithelia, and 2) ventral coelomic cavities situated within the anlagen of ventrolateral body appendages. Only the dorsolateral coelomic cavities can be considered "somites," since they occur earlier during embryogenesis. This is in contrast with the previous view that suggested a ventral position of "somites" in O. cinctipes. In addition, an anterior-to-posterior gradient occurs in the development of O. roseus. Based on our findings, we reevaluated the previous data on O. cinctipes. From this survey, no evidence in support of a "long germ band" hypothesis in Opisthopatus was found. Instead, the embryogenesis in representatives of Opisthopatus is more similar to that in other onychophorans than expected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号