首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cilia-driven rotational behavior displayed by embryos of the pond snail Helisoma trivolvis was characterized in terms of its behavioral subcomponents, developmental changes, and response to exogenous serotonin. Rotation was found to be a complex behavior characterized by four parameters; rotational direction, rotation rate, rotational surges, and periods of inactivity. These parameters all exhibited characteristic developmental changes from embryonic stage E15 through stage E30. Notably, both rotation rate and frequency of rotational surges increased from stage E15 to E25 and declined to an intermediate level by stage E30. It appeared that the developmental increase in overall rotation rate was caused primarily by an increase in surge frequency, rather than an increase in the rate of nonsurge rotation. Immersion of embryos inserotonin-containing pond water resulted in a dose-dependent, reversible increase in rotation rate as well as a dose-dependent, reversible decrease in surge frequency. The serotonin antagonist, mianserin, abolished the excitatory effect of exogenous serotonin. Furthermore, application of mianserin alone reduced rotation rate and virtually abolished rotational surges. Taken together, these pharmacological results suggest that endogenous serotonin is responsible for generating rotational surges. Given that early embryos contain only a single pair of serotonergic neurons (Goldberg and Kater, 1989) during the stages when rotational surges are expressed, these results also prompt the hypothesis that these neurons, embryonic neurons C1, act as cilioexcitatory motor neurons during embryonic development.  相似文献   

2.
Bilaterally symmetrical pair of serotonergic cells, named C1 in Clione, has been described in the cerebral ganglia of all gastropod species. Here we describe a new role of C1 cells in gastropod mollusks: control of activity of ciliated epithelium in the foregut. Detailed morphological investigation of C1 neurons in the pteropod mollusk Clione limacina revealed that these cells among other destinations send their neurites into foregut where they produce intense arborization with large varicosities along the processes. Intracellular stimulation of a single C1 induced pronounced activation (often followed by inhibition) of cilia lining the foregut. This activation was substantially reduced by serotonin antagonist mianserin. Bath application of serotonin also induced transient increase in ciliary transport rate, followed by inhibition of ciliary activity up to its full cessation in some areas of isolated foregut. These data suggest that C1 in Clione may use serotonin to influence cilia in the foregut. Taking into account high homology of serotonergic cerebral cells across studied species we can speculate that these cells may be involved in the neural control of cilia in the foregut in other gastropod mollusks.  相似文献   

3.
Early in embryonic development, the pond snail Helisoma trivolvis exhibits a rotational behavior that is generated by beating of cilia in the dorsolateral and pedal bands. Although previous anatomical and pharmacological studies provided indirect evidence that a pair of serotonergic neurons, Embryonic Neurons C1 (ENC1s), is involved in regulating embryonic rotation, direct evidence linking ENC1 to ciliary function is still lacking. In the present study, we used laser microbeams to perturb ENC1 in vivo while monitoring ciliary activity in identified ciliary bands. A laser treatment protocol to specifically ablate ENC1 without damaging the surrounding cells was established. Unilateral laser treatment of ENC1 caused transient increases in the activity of the pedal and ipsidorsolateral cilia, lasting 30-50 min. In contrast, activity of cilia that were not anatomically associated with ENC1 was unaffected by laser treatment. Mianserin, an effective serotonin antagonist in Helisoma ciliated cells, decreased the overall CBF of pedal and dorsolateral cilia by reducing the occurrence of spontaneous CBF surges in these cilia. Finally, the cilioexcitatory action of ENC1 laser treatment was mimicked by serotonin and reduced in the presence of mianserin. These results suggest that laser treatment provokes a release of serotonin from ENC1, resulting in a prolonged elevation of activity in the target ciliary cells. We conclude that, in addition to their previously established role in regulating neurodevelopment, ENC1s also function as serotonergic motor neurons to regulate ciliary activity, and therefore the rotational behavior of early embryos.  相似文献   

4.
Oxygen (O2) is one of the most important environmental factors that affects both physiological processes and development of aerobic animals, yet little is known about the neural mechanism of O2 sensing and adaptive responses to low O2 (hypoxia) during development. In the pond snail, Helisoma trivolvis, the first embryonic neurons (ENC1s) to develop are a pair of serotonergic sensory‐motor cells that regulate a cilia‐driven rotational behavior. Here, we report that the ENC1‐ciliary cell circuit mediates an adaptive behavioral response to hypoxia. Exposure of egg masses to hypoxia elicited a dose‐dependent and reversible acceleration of embryonic rotation that mixed capsular fluid, thereby facilitating O2 diffusion to the embryo. The O2 partial pressures (Po2) for threshold, half‐maximal, and maximal rotational response were 60, 28, and 13 mm Hg, respectively. During hypoxia, embryos relocated to the periphery of the egg masses where higher Po2 levels occurred. Furthermore, intermittent hypoxia treatments induced a sensitization of the rotational response. In isolated ciliary cells, ciliary beating was unaffected by hypoxia, suggesting that in the embryo, O2 sensing occurs upstream of the motile cilia. The rotational response of embryos to hypoxia was attenuated by application of the serotonin receptor antagonist, mianserin, correlated to the development of ENC1‐ciliary cell circuit, and abolished by laser‐ablation of ENC1s. Together, these data suggest that ENC1s are unique oxygen sensors that may provide a good single cell model for the examination of mechanistic, developmental, and evolutionary aspects of O2 sensing. © 2002 Wiley Periodicals, Inc. J Neurobiol 52: 73–83, 2002  相似文献   

5.
Clonal cell line NCB-20 (a hybrid of mouse neuroblastoma N18TG2 and Chinese hamster 18-day embryonic brain expiant) expressed both high- (KD 180 nM) and low-affinity (>3000 nM) binding sites for [3H]serotonin (5-HT) which were absent from the parent neuroblastoma. The low-affinity binding site was eliminated by 1 μM spiperone. The order of drug potency for inhibition of high-affinity [3H]5-HT binding was consistent with a 5-HT1 receptor (5,6 - dihydroxytryptamine = 5-HT = methysergide = 5-methoxytryptamine > cyproheptadine = clozapine = mianserin > spiperone > dopamine = morphine = ketanserin = norepinephrine). [3H]5-HT binding was inhibited by guanine nucleotides (e.g., GTP and Gpp(NH)p), whereas antagonist binding was not; as-corbate was also inhibitory. A 30-min exposure of cells to 1—2 μM 5-HT or other agonists produced a three- to fivefold stimulation of cyclic AMP levels. The order of potency for 5-HT agonist stimulation of basal cyclic AMP levels and 5-HT antagonist reversal of agonist-stimulated levels was the same as the order of drug potency for inhibition of high-affinity [3H]5-HT binding, suggesting linkage of the 5-HT1 receptor to adenylate cyclase in NCB-20 cells.  相似文献   

6.
Structure and functional expression of cloned rat serotonin 5HT-2 receptor.   总被引:28,自引:5,他引:23  
A complementary DNA (cDNA) encoding a serotonin receptor with 51% sequence identity to the 5HT-1C subtype was isolated from a rat brain cDNA library by homology screening. Transient expression of the cloned cDNA in mammalian cells was used to establish the pharmacological profile of the encoded receptor polypeptide. Membranes from transfected cells showed high-affinity binding of the serotonin antagonists spiperone, ketanserin and mianserin, low affinity for haloperidol (a dopamine D2 receptor antagonist), 8-OH-DPAT as well as MDL-72222 and no detectable binding of [3H]serotonin. This profile is consonant with the 5HT-2 subtype of serotonin receptors. In agreement with this assignment, serotonin increased the intracellular Ca2+ concentration and activated phosphoinositide hydrolysis in transfected mammalian cells. The agonist also elicited a current flow, blocked by spiperone, in Xenopus oocytes injected with in vitro synthesized RNA containing the cloned nucleotide sequences.  相似文献   

7.
Chemical LTD (CLTD) of synaptic transmission is triggered by simultaneously increasing presynaptic [cGMP] while inhibiting PKA. Here, we supply evidence that class II, but not III, metabotropic glutamate receptors (mGluRs), and A1 adenosine receptors, both negatively coupled to adenylate cyclase, play physiologic roles in providing PKA inhibition necessary to promote the induction of LTD at Schaffer collateral‐CA1 synapses in hippocampal slices. Simultaneous activation of group II mGluRs with the selective agonist (2S,2′R,3′R)‐2‐(2′,3′‐dicarboxy‐cyclopropyl) glycine (DCGIV; 5 μM), while raising [cGMP] with the type V phosphodiesterase inhibitor, zaprinast (20 μM), resulted in a long‐lasting depression of synaptic strength. When zaprinast (20 μM) was combined with a cell‐permeant PKA inhibitor H‐89 (10 μM), the need for mGluR IIs was bypassed. DCGIV, when combined with a “submaximal” low frequency stimulation (1 Hz/400 s), produced a saturating LTD. The mGluR II selective antagonist, (2S)‐alpha‐ethylglutamic acid (EGLU; 5 μM), blocked induction of LTD by prolonged low frequency stimulation (1 Hz/900 s). In contrast, the mGluR III selective receptor blocker, (RS)‐a‐Cyclopropyl‐[3‐3H]‐4‐phosphonophenylglycine (CPPG; 10 μM), did not impair LTD. The selective adenosine A1 receptor antagonist, 1,3‐dipropyl‐8‐cyclopentylxanthine (DPCPX; 100 nM), also blocked induction of LTD, while the adenosine A1 receptor agonist N6‐cyclohexyl adenosine (CHA; 50 nM) significantly enhanced the magnitude of LTD induced by submaximal LFS and, when paired with zaprinast (20 μM), was sufficient to elicit CLTD. Inhibition of PKA with H‐89 rescued the expression of LTD in the presence of either EGLU or DPCPX, confirming the hypothesis that both group II mGluRs and A1 adenosine receptors enhance the induction of LTD by inhibiting adenylate cyclase and reducing PKA activity. © 2005 Wiley Periodicals, Inc. J Neurobiol, 2006  相似文献   

8.
Much evidence demonstrates the antinociceptive effect of magnetic fields (MFs). However, the analgesic action mechanism of the electromagnetic field (EMF) is not exactly understood. The aim of the present study was to investigate the effects of 5‐HT1 and 5‐HT2 receptor agonists (serotonin HCl and 2,5‐dimethoxy‐4‐iodoamphetamine [DOI] hydrochloride) on EMF‐induced analgesia. In total, 66 adult male Wistar albino rats with an average body mass of 225 ± 13 g were used in this study. The animals were subjected to repeated exposures of alternating 50 Hz and 5 mT EMF for 2 h a day for 15 days. Prior to analgesia tests, serotonin HCl (5‐HT1 agonist) 4 mg/kg, WAY 100635 (5‐HT1 antagonist) 0.04 mg/kg, DOI hydrochloride (5‐HT2 receptor agonist) 4 mg/kg, and SB 204741 (5‐HT2 antagonist) 0.5 mg/kg doses were injected into rats. For statistical analysis of the data, analysis of variance was used and multiple comparisons were determined by Tukey’s test. Administration of serotonin HCl MF (5 mT)‐exposed rats produced a significant increase in percent maximal possible effect (% MPE) as compared with EMF group (P < 0.05). On the contrary, injection of WAY 100635 to MF‐exposed rats produced a significant decrease in analgesic activity (P < 0.05). Similarly, the administration of DOI hydrochloride significantly increased % MPE values as compared with the EMF group while SB 204741 reduced it (P < 0.05). In conclusion, our results suggested that serotonin 5‐HT1 and 5‐HT2 receptors play an important role in EMF‐induced analgesia; however, further research studies are necessary to understand the mechanism. Bioelectromagnetics. 2019;40:319–330. © 2019 Bioelectromagnetics Society.  相似文献   

9.
Cilia-driven rotational behavior displayed by embryos of the pond snail Helisoma trivolvis was characterized in terms of its behavioral subcomponents, developmental changes, and response to exogenous serotonin. Rotation was found to be a complex behavior characterized by four parameters; rotational direction, rotation rate, rotational surges, and periods of inactivity. These parameters all exhibited characteristic developmental changes from embryonic stage E15 through stage E30. Notably, both rotation rate and frequency of rotational surges increased from stage E15 to E25 and declined to an intermediate level by stage E30. It appeared that the developmental increase in overall rotation rate was caused primarily by an increase in surge frequency, rather than an increase in the rate of nonsurge rotation. Immersion of embryos inserotonin-containing pond water resulted in a dose-dependent, reversible increase in rotation rate as well as a dose-dependent, reversible decrease in surge frequency. The serotonin antagonist, mianserin, abolished the excitatory effect of exogenous serotonin. Furthermore, application of mianserin alone reduced rotation rate and virtually abolished rotational surges. Taken together, these pharmacological results suggest that endogenous serotonin is responsible for generating rotational surges. Given that early embryos contain only a single pair of serotonergic neurons (Goldberg and Kater, 1989) during the stages when rotational surges are expressed, these results also prompt the hypothesis that these neurons, embryonic neurons C1, act as cilioexcitatory motor neurons during embryonic development.  相似文献   

10.
Computer-assisted quantitative analysis of radioligand binding to rat cortical S2 serotonin receptors indicates the existence of two affinity states of the same receptor population. Monophasic antagonist competition curves for [3H]ketanserin-labelled sites suggest a uniform population of receptors with one affinity state for antagonists. Biphasic competition curves of agonists suggest that agonists discriminate high- and low-agonist-affinity forms of the S2 receptors. The affinities of agonists for the high- and low-affinity states, and the apparent percentages of high agonist-affinity forms varies with different agonists. The guanine nucleotides GTP and guanyl-5'-imido-diphosphate [Gpp(NH)p], as well as divalent cations, modulate the proportion of the sites with high affinity for agonists as evidenced by their ability to shift the agonist competition curves for [3H]ketanserin-labelled S2 receptors. GTP and Gpp(NH)p effects appear to be agonist-specific, as they do not affect antagonist competition for [3H]ketanserin-labelled S2 receptors, or [3H]ketanserin binding to S2 receptors. ATP and ADP have little or no effect on the binding properties of S2 serotonin receptors, whereas GDP is less potent than GTP. The presence of these specific nucleotide effects are the first evidence suggesting involvement of a guanine nucleotide-binding protein in the mechanism of agonist interaction with the S2 serotonin receptor. In general, the binding properties of [3H]ketanserin-labelled S2 serotonin receptors strongly resemble those of adenylate-cyclase coupled receptors such as the beta-adrenergic, the alpha 2-receptor, and the D-2 dopamine receptor. This may indicate the S2 serotonin receptor is coupled to adenylate cyclase activity, through a GTP binding protein.  相似文献   

11.
Summary

The zebra mussel, Dreissena polymorpha, is a freshwater biofouling bivalve unintentionally introduced in the 1980s into North America from Europe. Oocyte maturation (germinal vesicle breakdown, GVBD) and spawning of the zebra mussel can be triggered with serotonin (5-hydroxytryptamine, 5-HT). In pharmacological experiments to characterize the receptor mediating spawning, the serotonin receptor agonists 8-OH-DPAT, TFMPP, and 1-(1-naphthyl)piperazine were effective at stimulating spawning; whereas, 2-methylserotonin and alpha-methylserotonin had no effect. In experiments with antagonists of serotonin receptors ketanserin and propranolol had no effect; mianserin, NAN-190, and cyproheptadine had partial inhibitory effects; and methiothepin was a very effective antagonist. Metergoline had mixed agonist/antagonist properties. Ergotamine was the most effective activator of spawning in females. Compared to serotonergic receptors in other organisms, the receptors that activate spawning in zebra mussels resemble 5HTlym, 5HTdro2 and human 5HT1Dβ, which are receptors that may act both by inhibiting adenylyl cyclase and by activating phospholipase C. In zebra mussels, 5-HT and 8-OH-DPAT activate GVBD in gonad fragments, a process also initiated by manual dissection of gonad fragments. GVBD can be inhibited by pre-treatment of ovaries with forskolin and theophylline, suggesting an inhibitory role for cyclic AMP. The Ca2+ ionophore A23187 can trigger GVBD and polar body formation. Thus, oocyte maturation in zebra mussels may be initiated via serotonergic receptors simultaneously inhibiting adenylyl cyclase and activating Ca2+ mechanisms.  相似文献   

12.
Abstract: We have assessed the ability of the serotonergic antagonist mianserin to modulate the number and functional activity of human 5-hydroxytryptamine2A (5-HT2A) and 5-HT2C receptors stably expressed in the human neuroblastoma cell line SH-SY5Y. Incubation of cells expressing the 5-HT2A receptor with mianserin (100 n M ) for 24 h caused a significant decrease (48%) in the binding capacity of [3H]ketanserin. This receptor down-regulation was associated with a corresponding decrease in the maximal production of inositol phosphates induced by 5-HT but not by carbachol. Exposure of cells expressing the 5-HT2C receptor to mianserin (100 n M ) for 72 h but not for 24 h similarly resulted in a significant reduction (44%) in [3H]mesulergine binding. Corresponding analysis of inositol phosphate production by 5-HT at the 5-HT2C receptor after incubation with mianserin showed no change in maximal response after 24 h. No change in the binding capacity of either radioligand was seen after incubation with mianserin for 1 h. A decrease in the binding affinity of both radioligands was also observed after mianserin treatment, but this decrease was similar after 1 h of incubation to that seen after 24 or 72 h, and was probably due to the retention of mianserin within the tissue. We conclude that antagonist down-regulation is evident at human 5-HT2A and 5-HT2C receptors stably expressed in a human neuroblastoma cell line and is probably mediated by a direct action of mianserin at the receptor.  相似文献   

13.
In recent years, there has been increasing evidence that serotonergic neurotransmission modulates a wide variety of experimentally induced seizures. Generally, agents that elevate extracellular serotonin (5-HT) levels, such as 5-hydroxytryptophan and serotonin reuptake blockers, inhibit both focal and generalized seizures, although exceptions have been described, too. Conversely, depletion of brain 5-HT lowers the threshold to audiogenically, chemically and electrically evoked convulsions. Furthermore, it has been shown that several anti-epileptic drugs increase endogenous extracellular 5-HT concentration. 5-HT receptors are expressed in almost all networks involved in epilepsies. Currently, the role of at least 5-HT(1A), 5-HT(2C), 5-HT(3) and 5-HT(7) receptor subtypes in epileptogenesis and/or propagation has been described. Mutant mice lacking 5-HT(1A) or 5-HT(2C) receptors show increased seizure activity and/or lower threshold. In general, hyperpolarization of glutamatergic neurons by 5-HT(1A) receptors and depolarization of GABAergic neurons by 5-HT(2C) receptors as well as antagonists of 5-HT(3) and 5-HT(7) receptors decrease the excitability in most, but not all, networks involved in epilepsies. Imaging data and analysis of resected tissue of epileptic patients, and studies in animal models all provide evidence that endogenous 5-HT, the activity of its receptors, and pharmaceuticals with serotonin agonist and/or antagonist properties play a significant role in the pathogenesis of epilepsies.  相似文献   

14.
Embryos of Helisoma trivolvis exhibit cilia-driven rotation within the egg capsule during development. In this study we examined whether nitric oxide (NO) is a physiological regulator of ciliary beating in cultured ciliary cells. The NO donor S-nitroso-N-acetylpenicillamine (SNAP; 1-1,000 microM) produced a dose-dependent increase in ciliary beat frequency (CBF). In contrast, the nitric oxide synthase (NOS) inhibitor 7-nitroindazole (10 and 100 microM) inhibited the basal CBF and blocked the stimulatory effects of serotonin (100 microM). NO production in response to serotonin was investigated with 4,5-diaminofluorescein diacetate imaging. Although SNAP (100 microM) produced a rise in NO levels in all cells, only 22% of cells responded to serotonin with a moderate increase. The cGMP analog 8-bromo-cGMP (8-Br-cGMP; 0.2 and 2 mM) increased CBF, and the soluble guanylate cyclase inhibitor LY-83583 (10 microM) blocked the cilioexcitatory effects of SNAP and serotonin. These data suggest that NO has a constitutive cilioexcitatory effect in Helisoma embryos and that the stimulatory effects of serotonin and NO work through a cGMP pathway. It appears that in Helisoma cilia, NO activity is necessary, but not sufficient, to fully mediate the cilioexcitatory action of serotonin.  相似文献   

15.
The Merkel cell–neurite (MCN) complex generates slowly adapting type 1 (SA1) response when mechanically stimulated. Both serotonin (5-HT) and glutamate have been implicated in the generation of normal SA1 responses, but previous studies have been inconclusive as to what their roles are or how synaptic transmission occurs. In this study, excised dorsal skin patches from common water frogs (Rana ridibunda) were stimulated by von Frey hairs during perfusion in a tissue bath, and single-unit spike activity was recorded from SA1 fibres. Serotonin had no significant effect on the SA1 response at low (10?µM) concentration, significantly increased activity in a force-independent manner at 100?µM, but decreased activity with reduced responsiveness to force at 1?mM. Glutamate showed no effect on the responsiveness to force at 100?µM. MDL 72222 (100?µM), an ionotropic 5-HT3 receptor antagonist, completely abolished the responsiveness to force, suggesting that serotonin is released from Merkel cells as a result of mechanical stimulation, and activated 5-HT3 receptors on the neurite. The metabotropic 5-HT2 receptor antagonist, ketanserin, greatly reduced the SA1 fibre's responsiveness to force, as did the non-specific glutamate receptor antagonist, kynurenic acid. This supports a role for serotonin and glutamate as neuromodulators in the MCN complex, possibly by activation and/or inhibition of signalling cascades in the Merkel cell associated with vesicle release. Additionally, it was observed that SA1 responses contained a force-independent component, similar to a dynamic response observed during mechanical vibrations.  相似文献   

16.
(R,S)-trans-8-Hydroxy-2-[N-n-propyl-N-(3′-iodo-2′-propenyl)amino]tetralin 7 , a new radioiodinated ligand based on 8-OH-DPAT, was reported as a potential ligand for 5-HT1A receptors. The optically active (+)-(R)- and (?)-(S)- 7 were prepared to investigate the stereoselectivity of (R,S)- 7 . Racemic intermediate 8-methoxy-2-N-n-propyltetralin was reacted with the acyl chloride of (?)-(R)-O-methylmandelic acid to form a mixture of (S,R)- and (R,R)-diastereoisomers, which were separated by flash column chromatography. After removing the N-acyl group from the diastereoisomers, the desired (+)-(R)-or (?)-(S)- 7 was obtained by adding an N-iodopropenyl group. In vitro homogenate binding studies showed the stereoselectivity of this new compound for 5-HT1A receptors. (+)-(R)- 7 isomer displayed 100-fold higher affinity than the (?)-(S)- 7 isomer. Biochemical study indicated that (+)-(R)- 7 potently inhibited forskolin-stimulated adenylyl cyclase activity in hippocampal membranes (Emax and EC50 were 24.5% and 5.4 nM, respectively), while (?)-(S)- 7 showed no effect at 1 μM. The radioiodinated (+)-(R)- and (?)-(S)-[125I] 7 were confirmed by coelution with the resolved unlabeled compound on HPLC (reverse phase column PRP-1, acetonitrile/pH 7.0 buffer, 80/20). The active isomer, (+)-(R)-[125I] 7 , displayed high binding affinity to 5-HT1A receptors (Kd = 0.09 ± 0.02 nM). In contrast, the (?)-(S)- 7 isomer displayed a significantly lower affinity to the 5-HT1A receptor (Kd > 10 nM). Thus, (+)-(R)-[125I]trans-8-OH-PIPAT, (+)-(R)- 7 , an iodinated stereoselective 5-HT1A receptor agonist, is potentially useful for study of in vivo and in vitro function and pharmacology of 5-HT1A receptors in the central nervous system. © 1995 Wiley-Liss, Inc.  相似文献   

17.
Oxygen (O(2)) is one of the most important environmental factors that affects both physiological processes and development of aerobic animals, yet little is known about the neural mechanism of O(2) sensing and adaptive responses to low O(2) (hypoxia) during development. In the pond snail, Helisoma trivolvis, the first embryonic neurons (ENC1s) to develop are a pair of serotonergic sensory-motor cells that regulate a cilia-driven rotational behavior. Here, we report that the ENC1-ciliary cell circuit mediates an adaptive behavioral response to hypoxia. Exposure of egg masses to hypoxia elicited a dose-dependent and reversible acceleration of embryonic rotation that mixed capsular fluid, thereby facilitating O(2) diffusion to the embryo. The O(2) partial pressures (Po(2)) for threshold, half-maximal, and maximal rotational response were 60, 28, and 13 mm Hg, respectively. During hypoxia, embryos relocated to the periphery of the egg masses where higher Po(2) levels occurred. Furthermore, intermittent hypoxia treatments induced a sensitization of the rotational response. In isolated ciliary cells, ciliary beating was unaffected by hypoxia, suggesting that in the embryo, O(2) sensing occurs upstream of the motile cilia. The rotational response of embryos to hypoxia was attenuated by application of the serotonin receptor antagonist, mianserin, correlated to the development of ENC1-ciliary cell circuit, and abolished by laser-ablation of ENC1s. Together, these data suggest that ENC1s are unique oxygen sensors that may provide a good single cell model for the examination of mechanistic, developmental, and evolutionary aspects of O(2) sensing.  相似文献   

18.
Abstract: The synaptic convergence of the eyes and the vestibular hair cells in the nudibranch mollusc Hermissenda has been shown previously to mediate the learning of simple visual-vestibular associations. The neurotransmitter mediating this interaction between the visual and vestibular organs was characterized. HPLC chromatography, confirmed by mass spectroscopic analysis, demonstrated endogenous GABA in the statocysts, in a concentration approximately 150 times greater than in the whole CMS. Additional confirmation was provided by immunocytochemical localization of GABA in hair cell axons and branches that converge with photoreceptor terminal branches. Depolarization of the hair cells in the caudal region of the statocyst in response to positive current injection or vibratory stimulation caused a hyperpolarization and a cessation of the type B photoreceptor impulse activity. The inhibition of the B cell was unaffected by addition to the artificial sea water bath of the adrenergic antagonist yohimbine (250 μM), the cholinergic antagonist atropine (250 μM), and the serotonergic antagonist imipramine (50 μM). In contrast, the GABAA antagonist bicuculline (250 μM) significantly reduced the inhibitory interaction. Moreover, the GABA reuptake inhibitor guvisine (250 μM)M) increased the hyperpolarization. Pressure microapplication of GABA (12.5 or 25 μM) onto the terminal branches of the B cell resulted in a concentration-dependent hyperpolarization and cessation of spikes in the B cell. Depolarization of the caudal hair cell, or direct GABA application, decreased input resistance across the B cell soma membrane. Moreover, removal of chloride from the extracellular solution reduced inhibition of the B cell induced by GABA application or hair cell stimulation. Furthermore, application of the GABAB agonist baclofen hyperpolarized the type B cell and reduced or eliminated spontaneous impulse activity at the resting membrane potential. The reversal potentials for inhibition induced in all three procedures ranged from ?70 to ?80 mV and were consistent with mixed Cl- and K+ conductances. These results implicate GABA as the endogenous neurotransmitter mediating visual-vestibular interactions in this animal, and suggest a possible role of GABA in visual-vestibular associative learning.  相似文献   

19.
Cross-talk between cannabinoid CB1 and serotonin 5-HT receptors in rat cerebellar membranes was investigated using radioligand binding. In competition against the CB1 antagonist, [3 H]SR141716A, the agonist, WIN 55,212-2 yielded a biphasic isotherm. The majority of binding was to a high-affinity state that was significantly reduced by the GTP analogue, Gpp(NH)p. Interestingly, 5-HT enhanced the high-affinity binding constant of WIN 55,212-2 while attenuating the proportion of high-affinity binding. 5-HT also significantly reduced the proportion of high-affinity binding of the cannabinoid agonist, HU 210, but had no effect on the agonist, CP 55,940. The effect of 5-HT on WIN 55,212-2 binding was inhibited by the 5-HT2 receptor antagonist ritanserin as well as Gpp(NH)p, suggesting a dependence on the 5-HT2 receptor and on G protein-receptor interactions, respectively. Subsequent [3 H]WIN 55,212-2 dissociation kinetic experiments revealed that 5-HT promoted a slower-dissociating species of radiolabelled agonist-receptor complex. Our findings support a membrane-delimited cross-talk between two G protein-coupled receptors that are co-localized in certain cells of the central nervous system. Intriguingly, the cannabinoid agonist dependence of the 5-HT modulatory effect suggests that agonist-specific conformations of the CB1 receptor may also be important in determining the extent of this cross-talk.  相似文献   

20.
Abstract: We investigated changes in the extracellular levels of acetylcholine (ACh) following local application of serotonergic agents to the dorsal hippocampus of freely moving rats by means of perfusion using a microdialysis technique. Perfusion of serotonin (5-HT; 10 μM, for 30 min at a rate of 3 μl/min), dissolved in Ringer's solution containing 10 μM eserine, showed no marked effect on the extracellular levels of ACh. 8-Hydroxy-2-(di-n-propylamino)tetralin (8-OH-DPAT; 20 μM), a 5-HT1A agonist, increased ACh levels, whereas 7-trifluoromethyl-4-(4-methyl-1 -piperazinyl)-pymoto[1,2-a]quinoxaline (CGS-12066B; 100 μM), a 5-HT1B agonist, decreased it. Clomipramine (2 μM), an uptake inhibitor of 5-HT, had no effect on ACh levels. Following perfusion of 1-(2-methoxyphenyl)-4-[4- (2-phthalimido)butyl]piperazine (NAN-190; 10 μM), which is a selective 5-HT1A antagonist, the effect of 8-OH-DPAT was totally abolished, whereas CGS-12066B decreased extracellular ACh levels. 5-HT, as well as Clomipramine, had a decreasing effect on ACh levels after pretreatment with NAN-190. These results indicate that the 5-HT1A receptor, which exists in the dorsal hippocampus, enhances the spontaneous ACh release, and that the mechanism of serotonergic modulation of ACh release partly depends on both the stimulatory control via the 5-HT1A receptor and the suppressive one via the 5-HT1B receptor in the dorsal hippocampus of rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号