首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this study, the proliferative effects of retinoids were examined in the MC-26 and LoVo colon adenocarcinoma cell lines. The proliferation of the LoVo cell line was not altered in the presence of the retinoidsall trans-retinoic acid (atRA) and 9-cis-retinoic acid (9-cis-RA). Both retinoids, however, stimulated the growth, as measured by cell proliferation, of MC-26 cells.atRA and 9-cis-RA were equipotent in increasing MC-26 cell proliferation, suggesting that the growth stimulation is mediated by one or more retinoic acid receptors (RARs). To determine the RAR which might be responsible for this growth stimulatory effect, we characterized the RAR subtypes which were present in both cell lines. mRNA for the RARα, RARβ, and RARγ were detected in the MC-26 cell. Of the RARs present in MC-26 cells, the RARα does not mediate the growth stimulatory effects of retinoids, for a selective RARα antagonist was unable to prevent the retinoid-induced increase in MC-26 cell growth. RARα, RARβ, and RARγ mRNA are also expressed in the LoVo cell line; the lack of growth-stimulation by retinoids in LoVo cells, therefore, does not seem to be due to the absence of RARs. The results obtained in these experiments demonstrate that the growth response elicited by retinoids can vary between colon cancer cells and that the differences in response may not be solely determined by the RAR subtypes which are expressed in a colon cancer cell line.  相似文献   

2.
All-trans-retinoic acid (all-trans-RA) and 13-cis-retinoic acid (13-cis-RA), due to their effects on cell differentiation, proliferation and angiogenesis, improved treatment results in some malignancies. Pharmacokinetic studies of all-trans-RA and 13-cis-RA along with monitoring of retinoic acid metabolites may help to optimize retinoic acid therapy and to develop new effective strategies for the use of retinoic acids in cancer treatment. Therefore, we developed a HPLC method for the simultaneous determination in human plasma of the physiologically important retinoic acid isomers, all-trans-, 13-cis- and 9-cis-retinoic acid, their 4-oxo metabolites, 13-cis-4-oxoretinoic acid (13-cis-4-oxo-RA) and all-trans-4-oxoretinoic acid (all-trans-4-oxo-RA), and vitamin A (all-trans-retinol). Analysis performed on a silica gel column with UV detection at 350 nm using a binary multistep gradient composed on n-hexane, 2-propanolol and glacial acetic acid. For liquid-liquid extraction a mixture of n-hexane, dichloromethane and 2-propanolol was used. The limits of detection were 0.5 ng/ml for retinoic acids and 10 ng/ml for all-trans-retinol. The method showed good reproducibility for all components (within-day C.V.: 3.02–11.70%; day-to-day C.V.: 0.01–11.34%. Furthermore, 9-cis-4-oxoretinoic acid (9-cis-4-oxo-RA) is separated from all-trans-4-oxo-RA and 13-cis-4-oxo-RA. In case of clinical use of 9-cis-retinoic acid (9-cis-RA) the pharmacokinetics and metabolism of this retinoic acid isomer can also be examined.  相似文献   

3.
4.

Background

Cellular retinol binding-protein I (CRBPI) and cellular retinol binding-protein II (CRBPII) serve as intracellular retinoid chaperones that bind retinol and retinal with high affinity and facilitate substrate delivery to select enzymes that catalyze retinoic acid (RA) and retinyl ester biosynthesis. Recently, 9-cis-RA has been identified in vivo in the pancreas, where it contributes to regulating glucose-stimulated insulin secretion. In vitro, 9-cis-RA activates RXR (retinoid × receptors), which serve as therapeutic targets for treating cancer and metabolic diseases. Binding affinities and structure–function relationships have been well characterized for CRBPI and CRBPII with all-trans-retinoids, but not for 9-cis-retinoids. This study extended current knowledge by establishing binding affinities for CRBPI and CRBPII with 9-cis-retinoids.

Methods

We have determined apparent dissociation constants, K′d, through monitoring binding of 9-cis-retinol, 9-cis-retinal, and 9-cis-RA with CRBPI and CRBPII by fluorescence spectroscopy, and analyzing the data with non-linear regression. We compared these data to the data we obtained for all-trans- and 13-cis-retinoids under identical conditions.

Results

CRBPI and CRBPII, respectively, bind 9-cis-retinol (K′d, 11 nM and 68 nM) and 9-cis-retinal (K′d, 8 nM and 5 nM) with high affinity. No significant 9-cis-RA binding was observed with CRBPI or CRBPII.

Conclusions

CRBPI and CRBPII bind 9-cis-retinol and 9-cis-retinal with high affinities, albeit with affinities somewhat lower than for all-trans-retinol and all-trans-retinal.

General significance

These data provide further insight into structure–binding relationships of cellular retinol binding-proteins and are consistent with a model of 9-cis-RA biosynthesis that involves chaperoned delivery of 9-cis-retinoids to enzymes that recognize retinoid binding-proteins.  相似文献   

5.
We report an ultrahigh-performance liquid chromatography tandem mass spectrometry (UHPLC–MS/MS) method to quantify all-trans-retinal in biological samples of limited size (15–35 mg), which is especially advantageous for use with adipose. To facilitate recovery, retinal and the internal standard 3,4-didehydroretinal were derivatized in situ into their O-ethyloximes. UHPLC resolution combined with high sensitivity and specificity of MS/MS allowed quantification of retinal-O-ethyloximes with a 5-fmol lower limit of detection and a linear range from 5 fmol to 1 pmol. This assay revealed that extraocular concentrations of retinal range from approximately 2 to 40 pmol/g in multiple tissues—the same range as all-trans-retinoic acid. All-trans-retinoic acid has high affinity (kd ? 0.4 nM) for its nuclear receptors (RARα, -β, and -γ), whereas retinal has low (if any) affinity for these receptors, making it unlikely that these retinal concentrations would activate RAR. We also show that the copious amount of vitamin A used in chow diets increases retinal in adipose depots 2- to 5-fold relative to levels in adipose of mice fed a vitamin A-sufficient diet, as recommended for laboratory rodents. This assay also is proficient for quantifying conversion of retinol into retinal in vitro and, therefore, provides an efficient method to study metabolism of retinol in vivo and in vitro.  相似文献   

6.
Three subtypes of retinoic acid receptors (RAR), termed RAR alpha, RAR beta, and RAR gamma, have been described. They are composed of different structural domains, including distinct domains for DNA and ligand binding. RARs specifically bind all-trans-retinoic acid (RA), 9-cis-RA, and retinoid analogs. In this study, we examined the functional role of cysteine and arginine residues in the ligand-binding domain of hRAR alpha (hRAR alpha-LBD, amino acids 154 to 462). All conserved cysteine and arginine residues in this domain were mutated by site-directed mutagenesis, and the mutant proteins were characterized by blocking reactions, ligand-binding experiments, transactivation assays, and protease mapping. Changes of any cysteine residue of the hRAR alpha-LBD had no significant influence on the binding of all-trans RA or 9-cis RA. Interestingly, residue C-235 is specifically important in antagonist binding. With respect to arginine residues, only the two single mutations of R-276 and R-394 to alanine showed a dramatic decrease of agonist and antagonist binding whereas the R272A mutation showed only a slight effect. For all other arginine mutations, no differences in affinity were detectable. The two mutations R217A and R294A caused an increased binding efficiency for antagonists but no change in agonist binding. From these results, we can conclude that electrostatic interactions of retinoids with the RAR alpha-LBD play a significant role in ligand binding. In addition, antagonists show distinctly different requirements for efficient binding, which may contribute to their interference in the ligand-inducible transactivation function of RAR alpha.  相似文献   

7.
8.
We have used conformationally restricted retinoids to investigate the role of individual RAR subtypes and RXR in mediating the growth response of ovarian tumor cells to retinoids. Our results show that treatment of all-trans-RA-sensitive CAOV-3 cells with retinoids that bind and activate a single RAR or RXR led to a partial inhibition of growth. Treatment of all-trans-RA- resistant SKOV-3 cells did not alter growth. Maximum inhibition of growth, comparable to that observed following treatment with natural retinoids such as all-trans-RA and 9-cis-RA, was obtained only following treatment with a combination of an RAR-selective compound and an RXR-selective one. These results suggest that activation of both RAR and RXR classes is required in order to obtain maximum inhibition of ovarian tumor cell growth by retinoids. In addition, one compound, AHPN, was found to inhibit both RA-sensitive CAOV-3 and RA-resistant SKOV-3 cells. Further study of the effects of this retinoid showed that AHPN acts through an apoptotic pathway. Taken together, our results suggest that retinoids may serve as effective anti-proliferative agents in the treatment of ovarian cancer. J. Cell. Biochem. 68:378–388, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

9.
10.
In the present work, we have investigated the role of all-trans-retinoic acid (all-transRA), and several other natural and synthetic retinoids, in the development of adrenergic cells in quail neural crest cultures. Dose response studies using all-transRA and 13-cisRA revealed a dose-dependent increase in the number of adrenergic cells in neural crest cultures. Similar dose response studies using RA isomers and other natural retinoids did not result in the same increases. In order to determine the receptor mediating the effects of all-transRA in the neural crest, we tested several synthetic analogs which specifically bind to a particular RA receptor (RAR) subtype. We found that the compound AM 580, which activates the RAR-α, produced an increase in adrenergic cells similar to that seen with all-transRA. The compound TTNPB, which activates all RAR subtypes, also resulted in an increase in adrenergic cells. We conclude that the increase in adrenergic cells seen with all-transRA is mediated by RAR-α and possibly RAR-β. To further define the actions of all-transRA on the neural crest we incubated cultures with 5-bromo-2′-deoxyuridine (BrdU) to determine whether all-transRA could affect the rate of proliferation. The results show that while all-transRA did not increase the fraction of cells incorporating BrdU into their nuclei at early time points (24 h), it did increase BrdU incorporation by tyrosine hydroxylase (TH) positive cells at 5 days in culture. These findings demonstrate that the increase in adrenergic cells seen with all-transRA in neural crest cultures is likely due to an increase in the proliferation of cells already expressing TH.  相似文献   

11.
An isocratic reversed-phase high-performance liquid chromatographic procedure for the determination of all-trans-retinoic acid (all-trans-RA) and its metabolites, all-trans-4-oxo-RA, 5,6-epoxy-RA, 9-cis-RA and13-cis-RA, in mouse plasma and embryo and in new in vitro potential test systems for development toxicology has been developed. These compounds, their biological precursor retinol (vitamin A) and the internal standard were resolved on a Spherisorb ODS-2 (5 μm) column (250×4.6 mm I.D.) with acetonitrile-water-methanol-n-butyl alcohol (56:37:4:3, v/v) containing 100 mM ammonium acetate and 70 mM acetic acid as the elution system with a total run time of 23 min. The assay was linear over a wide range, with a lower limit of quantitation of 50 ng/ml or 10 ng/ml of protein for all-trans-RA, 13-cis-RA and 9-cis-RA and of 25 ng/ml or 5 ng/ml protein for the 4-oxo- and 5,6-epoxy-metabolites. At these concentrations, intra-assay coefficients of variation (C.V.) of the retinoids were 3–9%. Mean intra-assay C.V. averaged 5–7% in the tissues studied. Its use is discussed for RA measurements in some of the new test systems — Drosophila melanogaster, sea urchin embryos and cultured human keratinocytes — that have to be evaluated in toxicological testing, supplementary to standard assays in mammals.  相似文献   

12.
A new method of high-performance liquid chromatography (HPLC) analysis to quantify isomers of retinol, retinal and retinoic acid simultaneously was established. The HPLC system consisted of a silica gel absorption column and a linear gradient with two kinds of solvents containing n-Hexane, 2-propanol, and glacial acetic acid in different ratios. It separated six retinoic acid isomers (13-cis, 9-cis, all-trans, all-trans-4-oxo, 9-cis-4-oxo, 13-cis-4-oxo), three retinal isomers (13-cis-, 9-cis-, and all-trans) and two retinol isomers (13-cis- and all-trans). Human serum samples were subjected to this HPLC analysis and at least, all-trans retinol, 13-cis retinol, and all-trans retinoic acid were detectable. This HPLC system is useful for evaluating retinoic acid formation from retinol via a two-step oxidation pathway. Moreover, it could be applied to monitoring the concentrations of various retinoids, including all-trans retinoic acid in human sera.  相似文献   

13.
We prepared single cell clones from two ovarian carcinoma cell lines, CA-OV3 and SK-OV3, and analyzed the effect of all-trans-RA treatment on cell division, DNA synthesis, and cell cycle stage distribution of these single cell clones. Our results show that despite the well-known heterogeneous nature of these cell lines, all single cell clones of SK-OV3 cells are resistant to the growth inhibitory effects of all-trans-RA. In contrast, all single cell clones of CA-OV3 cells were growth inhibited by all-trans-RA. However, the extent of growth inhibition did vary somewhat from clone to clone. Additional studies employing flow cytometry showed that all-trans-RA blocked CA-OV3 cell cycle progression in the G1stage. Finally, all-trans-RA was able to inhibit G1progression in growth-arrested CA-OV3 cells following stimulation with fetal bovine serum, insulin, IGF-1, or estrogen. Since each of these growth factors is known to act via distinct signal transduction pathways, our results suggest that all-trans-RA blocks G1progression by targeting a downstream process or event which occurs at a point after the insulin/IGF-1, estrogen, and serum signal transduction pathways converge.  相似文献   

14.
P19 embryonal carcinoma (EC) cells differentiate when treated with retinoic acid (RA). The P19 EC-derived mutant cell line RAC65 is resistant to the differentiation-inducing activity of RA. We show that these cells express a truncated retinoic acid receptor alpha(mRAR alpha-RAC65), probably due to the integration of a transposon-like element in the RAR alpha gene. This receptor lacks 71 C-terminal amino acids and terminates in the ligand-binding domain. In CAT assays in RAC65 cells, mRAR alpha-RAC65 fails to trans-activate the RAR beta promoter, which contains a RA-response element. In wild-type P19 EC cells mRAR alpha-RAC65 functions as a dominant-negative repressor of RA-induced RAR beta activation. Gel retardation assays demonstrate that mRAR alpha-RAC65 is still able to bind to the RA-response element of the RAR beta promoter, indicating that competition with functional RARs for the same binding site leads to the observed dominant-negative effect. In addition, in two RAC65 clones in which wild-type hRAR alpha was stably transfected RA-sensitivity was restored and in one RAR beta expression could be induced by RA. Taken together, these data show that the primary cause of RA-resistance of RAC65 cells is the expression of a defective RAR alpha, which prevents the trans-activation of RA-responsive genes and results in a loss of the ability to differentiate.  相似文献   

15.
16.
17.
The biological activity of various natural retinoids and the time "window" when vitamin A activity is required for normal cardiovascular development were examined in vitamin A-deprived Japanese quail embryos. The administration of 1 μg of retinol at the beginning of incubation resuited in normal cardiovascular development in 97% of embryos; retinoic acid was toxic at this dose level. Treatment of embryos with 0.1 μg of all-trans-retinol or 13-cis-retinoic acid at the beginning of incubation resulted in normal cardiovascular development in 47 and 12% of embryos, respectively; administration of these retinoids at other time points attenuated the percentage of embryos with normal cardiovascular development. Didehydroretinol, 0.1 μg, and 9-cis-retinoic acid, 0.1 μg, were inactive at all time points examined; 9-cis-retinoic acid did not enhance the biological activity of all-trans-retinoic acid. All-trans-retinoic acid, 0.1 μg, administered during 22-28 hr of incubation induced normal cardiovascular development in 20-34% of embryos; biological activity was optimal when it was administered at 24 hr. All retinoids tested were inactive in establishing normal cardiovascular development when administered at 36 hr of incubation or later. The studies suggest that all-trans-retinoic acid is the biologically active form of vitamin A required for normal cardiovascular development in the avian embryo. There is a critical time point within the first 22-28 hr of quail embryogenesis when all-trans-retinoic acid initiates events that lead to normal cardiovascular development.  相似文献   

18.
All-trans retinoic acid (RA) and its geometrical isomers, such as 9-cis RA, 13-cis RA, and 9,13-di-cis RA, strongly inhibited both growth and fusion of L6 myoblasts. However, illumination of white light diminished their inhibitory activity on membrane fusion with little effect on cell growth. During myogenic differentiation, the intracellular level of cAMP decreased whereas the total activity of protein kinase A as well as the protein level of its regulatory subunit I (RI) and catalytic subunit (C) increased. RAs raised the intracellular level of cAMP by over 3-fold, but decreased the total activity of protein kinase A. Like RAs, dibutyryl-cAMP inhibited myoblast fusion and reduced the expression of both RI and C subunits. These results suggest that RAs negatively modulate the differentiation of L6 myoblasts by increasing the intracellular level of cAMP, which may in turn down-regulate the expression of protein kinase A and hence its activity.  相似文献   

19.
A high-performance liquid chromatography (HPLC) method for the quantitation of 13-cis-retinoic acid (13-cis-RA) and its major metabolite, 4-oxo-13-cis-RA, in human blood has been developed. The method includes extraction of 1 ml of blood with diethyl ether at pH 6 and the analysis of the extract by reversed-phase HPLC with solvent programming and detection at 365 nm. The quantitation ranges for 13-cis-RA and 4-oxo-13-cis-RA are 10–2000 and 50–2000 ng/ml of blood, respectively. The method also provides estimates of the concentrations of all-trans-RA and 4-oxo-all-trans-RA. The mean intra- and inter-assay variabilities for all four compounds were 6% or less. The method separates 13-cis-RA and 4-oxo-13-cis-RA from 9-cis-RA, all-trans-RA, 4-oxo-all-trans-RA, and some other possible metabolites, such as hydroxy and epoxy retinoic acids. The method has been successfully applied to the analyses of over 1200 blood samples from four 13-cis-RA clinical studies.  相似文献   

20.
The role of 9-cis-β-carotene (9-cis-β-C) as a potential precursor of 9-cis-retinoic acid (9-cis-RA) has been examined in human intestinal microcosa in vitro. By using HPLC, uv spectra, and chemical derivatization analysis, both 9-cis-RA and all-trans-retinoic acid (all-trans-RA) have been identified in the postnuclear fraction of human intestinal microcosa after incubation with 9-cis-β-C at 37°C. The biosynthesis of both 9-cis-RA and all-trans-RA from 9-cis-β-C was linear with increasing concentrations of 9-cis-β-C (2-30 μM) and was linear with respect to tissue protein concentration up to 0.75 mg/ml. Retinoic acid was not detected when a boiled incubation mixture was incubated in the presence of 9-cis-β-C. The rate of synthesis of 9-cis- and all-trans-RA from 4 μM 9-cis-β-C were 16 ± 1 and 18 ± 2 pmol/hr/mg of protein, respectively. However, when 2 μM all-trans-β-C was added to the 4 μM 9-cis-β-C, the rate of all-trans-RA synthesis was increased to 38 ± 6 pmol/hr/mg of protein, whereas the rate of 9-cis-RA synthesis remained the same. These results suggest that 9-cis-RA is produced directly from 9-cis-β-C. Furthermore, incubations of either 0.1 μM 9-cis- or all-trans-retinal under the same incubation conditions showed that 9-cis-RA could also arise through oxidative conversion of 9-cis-retinal. Although only 9-cis-RA was detected when 9-cis-RA was used as the substrate, the isomerization of the all-trans-RA to 9-cis-RA cannot be ruled out, since both all-trans-RA and trace amounts of 9-cis-RA were detected when all-trans-retinal was incubated as the substrate. These data indicate that 9-cis-β-C can be a source of 9-cis-RA in the human. This conversion may have a significance in the anticarcinogenic action of β-C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号