首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Transforming growth factor-β (TGF-β) and its related proteins regulate broad aspects of body development, including cell proliferation, differentiation, apoptosis and gene expression, in various organisms. Deregulated TGF-β function has been causally implicated in the generation of human fibrotic disorders and in tumor progression. Nevertheless, the molecular mechanisms of TGF-β action remained essentially unknown until recently. Here, we discuss recent progress in our understanding of the mechanism of TGF-β signal transduction with respect to the regulation of gene expression, the control of cell phenotype and the potential usage TGF-β for the treatment of human diseases.  相似文献   

4.
Transforming growth factor-β (TGF-β), a regulatory cytokine expressed in the kidney, plays a role in nephrogenic repair. This study utilized a chemical model of renal proximal tubule cellular injury and regeneration to investigate the effects of TGF-β1 on regeneration. Confluent monolayers of rabbit renal proximal tubular cells (RPTC) in primary culture exposed to the oxidant t-butylhydroperoxide (800 μM TBHP) for 1.5 hours were 24% confluent after 24 hours. Confluency increased to 50% 4 days after TBHP exposure. Recovery of monolayer confluency was associated with increased monolayer protein but not with DNA content. Daily treatment of injured monolayers with TGF-β1 inhibited the recovery of monolayer confluency and inhibited recovery of protein content in a concentration-dependent manner (0.02–1 ng/mL). DNA content of injured monolayers was not altered by TGF-β1. A single treatment of injured monolayers with 0.2 ng/mL (8 pM) TGF-β1 inhibited recovery of monolayer confluency and protein content without altering monolayer DNA content. These data show that a single 24 hour exposure to a low concentration (8 pM) of TGF-β1 inhibits regeneration of renal proximal tubule cell monolayers following oxidative injury by inhibiting, in part, cellular migration/spreading. © 1996 John Wiley & Sons, Inc.  相似文献   

5.
Macrophage expression of urokinase-type plasminogen activator (uPA) appears to play a role in their release of matrix-bound basic fibroblast growth factor (bFGF) and transforming growth factor-β (TGF-β). In experiments reported here, we have examined the potential regulatory effects of bFGF and TGF-β1 on macrophage uPA expression. TGF-β1 stimulated in a dose- and time-dependent manner the expression of secreted membrane and intracellular uPA activities by a macrophage cell line (RAW264.7). When examined at similar concentrations, bFGF had little effect, and interleukin-1α, tumor necrosis factor-α, and monocyte colony stimulating factor had no effect on macrophage uPA expression. Exposure of macrophages to TGF-β1 led to a rapid and sustained increase in the steady-state levels of uPA mRNA that was independent of de novo protein synthesis and was completely inhibited by actinomycin D. However, the TGF-β1-induced increase in uPA mRNA was largely unaffected by subsequent incubation of cells with actinomycin D. The protein kinase C inhibitior H7 markedly reduced the ability of TGF-β1 to stimulate expression of uPA activity. Likewise, okadaic acid and microcystin, inhibitors of serine/threonine phosphatases, potentiated the ability of TGF-β1 to upregulate macrophage uPA expression. TGF-β1 primed cells converted nearly all added plasminogen to plasmin and expressed sixfold more membrane-bound plasmin than control cells. Preincubation of TGF-β1 with either serum or methylamine-modified α2-macroglobulin did not affect its ability to induce macrophage uPA expression. When control and TGF-β1-primed macrophages were cultured on matrices containing bound125I-bFGF, their release of 125I-bFGF was increased five and tenfold, respectively, in the presence of plasminogen. The ability of TGF-β to induce macrophage uPA expression and the plasmin-dependent release of matrix-bound bFGF may provide an indirect mechanism by which TGF-β stimulates angiogenesis. © 1993 Wiley-Liss, Inc.  相似文献   

6.
Interleukin-1 (IL-1) plays an important role in cartilage destruction associated with inflammatory and degenerative arthritis because of its ability to induce matrix degrading enzymes. Previously, we have shown that the IL-1-induced chondrocyte protease activity was inhibited by transforming growth factor-β (TGF-β). In this paper, we show that TGF-β inhibits the IL-1-induced synthesis of collagenase and stromelysin by reducing the steady-state mRNA levels in rabbit articular chondrocytes. We further demonstrate that TGF-β-treated chondrocytes show reduced 125I-IL-1 binding that returns to a normal level when TGF-β is removed from the culture medium. The inhibitory effect of TGF-β is observed for both naturally occurring as well as fibroblast growth factor (FGF)-inducible binding sites (receptors). Scatchard analysis of receptor—ligand interactions demonstrate that the reduced binding is due to a reduction in the number of receptors for IL-1 and is not due to changes in affinity. Affinity cross-linking studies suggest that control chondrocytes contain two major cross-linked bands of Mr =116 and 80 kDa and a minor band of Mr =100 kDa. FGF-treated cells show enhanced levels of all the bands, plus an additional 200-kDa band. TGF-β treatment of chondrocytes results in the reduction of all of these bands in both control as well as FGF-induced cells. These observations suggest that the ability of TGF-β to down-regulate the IL-1 receptor may be a mechanism by which it exerts its effects in antagonizing the IL-1 activity on chondrocytes.  相似文献   

7.
Recent data indicate that the process of neurogenesis in the mammalian central nervous system (CNS) may be regulated by peptide growth factors, such as epidermal growth factor, transforming growth factor-alpha, and acidic or basic fibroblast growth factor. We have investigated whether members of the transforming growth factor-beta (TGFβ) family also play a role in this process and have found that TGFβ-3 is mitogenic for embryonic rat retinal cells in vitro. We also show that TGFβ-3 stimulates production of retinal amacrine cells while photoreceptor production remains unchanged. These data demonstrate that TGFβ-3 can regulate cell proliferation in the CNS during development and can also influence commitment or differentiation, or both, of neural progenitor cells to particular retinal fates. © 1995 John Wiley & Sons, Inc.  相似文献   

8.
The rate of cell division in olfactory epithelium (OE) is upregulated by ablation of the olfactory bulb (Carr and Farbman, 1992), or downregulated by occlusion of a naris. We used an organ culture assay of fetal rat olfactory mucosa to study regulation of the mitotic rate. Addition of any one of three members of the epidermal growth factor (EGF) family—EGF, transforming growth factor-α (TGF-α), or amphiregulin (AR)—to a serum-free culture medium resulted in a two- to threefold increase in the number of dividing OE cells. TGF-α elicited a maximal response in a dose of 100–200 pM culture medium and was 2 orders of magnitude more potent than the other EGF family members. Addition of TGF-β1, TGF-β2, insulinlike growth factor-1 or platelet-derived growth factor to the culture medium had slightly less effect than EGF or AR, in about the same molar dose range; addition of nerve growth factor had virtually no net effect on cell division. Immunohistochemistry on adult rat OE showed that basal cells, supporting cells, and acinar cells of Bowman's glands were immunoreactive with antibody to TGF-α but not with antibody to EGF. Most growth factors upregulated division of both olfactory neuron progenitors and supporting cells. The data suggest that several growth factors, most prominently TGF-α, may participate in the mitotic regulation of OE. © 1996 John Wiley & Sons, Inc.  相似文献   

9.
Transforming growth factor-β (TGF-β) inhibits the proliferation of T-lymphocytes in response to activation with mitogenic lectin. The influence of TGF-β on elevation of cytosolic Ca2+, induction of proliferation-associated mRNA species, and total cellular RNA content has been studied. The cells seem to exit G0 when activated in the presence of TGF-β, but they arrest in mid-G1 phase.  相似文献   

10.
Discovery of the T-helper (Th) 17 cell lineage and functions in immune responses of mouse and man prompted us to investigate the role of transforming growth factor-beta (TGF-β) and interleukin (IL)-17 in innate resistance to murine schistosomiasis mansoni. Schistosoma mansoni-infected BALB/c and C57BL/6 mice were administered with recombinant TGF-β or mouse monoclonal antibody to TGF-β to evaluate the impact of this cytokine on host immune responses against lung-stage schistosomula, and subsequent effects on adult worm parameters. Developing schistosomula elicited increase in peripheral blood mononuclear cells (PBMC) mRNA expression and/or plasma levels of IL-4, IL-17, and interferon-gamma (IFN-γ), cytokines known to antagonize each other, resulting in impaired Th1/Th2, and Th17 immune responses and parasite evasion. Mice treated with TGF-β showed elevated PBMC mRNA expression of IL-6, IL-17, TGF-β, and TNF-α mRNA and increased IL-23 and IL-17 or TGF-β plasma levels, associated with significantly (< 0.02–<0.0001) lower S. mansoni adult worm burden compared to controls in both mouse strains, thus suggesting that TGF-β led to heightened Th17 responses that mediated resistance to the infection. Mice treated with antibody to TGF-β showed increase in PBMC mRNA expression and plasma levels of IL-4, IL-12p70, and IFN-γ, and significantly (< 0.02 and <0.0001) reduced worm burden and liver worm egg counts than untreated mice, indicating that Th1/Th2 immune responses were potentiated, resulting in significant innate resistance to schistosomiasis. The implications of these observations for schistosome immune evasion and vaccination were discussed.  相似文献   

11.
Retinoic acid (RA) induces the activation of latent transforming growth factor-β (TGF-β) in bovine aortic endothelial cells (BAECs) via enhancement of cellular plasminogen activator (PA)/plasmin levels. The resultant TGF-β suppresses the excessive fibrinolytic activity by decreasing PA expression and stimulating expression of the PA inhibitor, PA inhibitor-1 (PAI-1), and inhibits cell proliferation. Here, we report that, in this regulatory system, RA simultaneously up-regulates the expression of TGF-β receptor types I and II, resulting in enhancement of TGF-β activity in the cells. RA increased the numbers of high- and low-affinity binding sites for 125I-TGF-β1 2.1-fold and 1.5-fold, respectively, without alteration of their Kd values. Affinity labeling and Western and Northern blotting studies showed that, following RA treatment, surface levels of both type I and type II receptors increased due to augmentation in their mRNA levels. The effect was dose- and time-dependent. Treatment with 1 μM RA for 15 hr increased mRNA levels of type I and II receptor threefold and eightfold, respectively. Pretreatment of BAECs with either RA or retinol lowered the concentration of TGF-β1 required to suppress PA levels, to enhance PAI-1 levels, and to inhibit cell proliferation. Thus, retinoids may regulate cellular functions of BAECs not only by inducing the formation of active TGF-β but also by stimulating TGF-β receptor expression. This regulatory mechanism may sustain TGF-β-mediated regulation of EC function at a focal site where RA is acting. J. Cell. Physiol. 176:565–573, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

12.
13.
14.
Vitamin D and retinoids cooperate to inhibit the proliferation and induce the differentiation of human myelomonocytic U937 leukemia cells. In the present work, we investigated the role of TGF-β as an endogenous mediator of this process. We found that the TGF-β1 precursor began to accumulate in cell culture supernatants soon after the addition of 1α,25 dihydroxyvitamin D3 (VD) and retinoids. We used neutralizing antibodies (AbTGF-β) and antisense oligonucleotide (AS Oligo) to inhibit its possible effects. Our data demonstrated that AbTGF-β partially inhibit the expression of the differentiated phenotype, as assessed by measurement of phagocytic activity, response to the chemotactic peptide fMLP, and lysozyme secretion. AS Oligo was also inhibitory, and the effects of AS Oligo and AbTGF-β were cumulative. Cell growth inhibition induced by VD and retinoids was completely reversed, and differentiation was reduced by about 75% when both inhibitors were associated. Time course experiments based on the delayed addition of AbTGF-β and AS Oligo showed that TGF-β1 was required for cell differentiation 24 h after the addition of inducers. Studies on TGF-β receptors revealed that, while the expression of type II receptor was stable, the level of type I TGF-β receptor mRNA and the expression of the protein began to decline early during the differentiation process. As a whole, these results support the notion that an autocrine TGF-β pathway, activated by VD and retinoids in U937 cells, is involved in the early steps of the process leading to cell growth arrest and differentiation. J Cell Physiol 178:109–119, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

15.
Freshly isolated human mucosal T lymphocytes in vitro can markedly diminish an important property of intestinal epithelium—its barrier function. On the other hand, cytokines and their cellular receptors, which maintain homeostasis of epithelia, limit epithelial permeability, and preserve barrier function, are not well characterized. Using a described human colonic epithelial cell monolayer system, we found that transforming growth factor-β1 (TGF-β1) preserved 75% or more of epithelial barrier function, quantitated electrophysiologically, even in the presence of cytokines generated by a high density of barrier-disruptive mucosa-derived mononuclear cells. In opposing the TGF-β1 effect, cytokines able to reduce barrier function were spontaneously secreted by mucosal T cells and were increased in their barrier effect after T-lymphocyte activation. Further, neutralization of individual cytokines with specific monoclonal antibodies abrogated the lymphocyte-induced reduction in epithelial barrier function, and identified interferon gamma (IFN-γ), interleukin (IL)-4, and IL-10, but not IL-6, as the primary cytokines whose barrier effects were curtailed by TGF-β1. Receptors (RI and RII) for TGF-β1 were found to be localized primarily to the apical and basal membranes of surface epithelium in colonic crypts. These findings provide the scientific basis for new strategies to pharmacologically enhance the barrier function of epithelia in mucosal organs regularly exposed to environmental antigens and to T-lymphocyte products. J. Cell. Physiol. 181:55–66, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

16.
Fibroblasts play a critical role in wound repair and in the development of fibrotic diseases, and transforming growth factor-β (TGF-β) has been shown to profoundly modulate fibroblast function. However, there is limited information on the TGF-β receptor types, isoform specificity, and complex formation in skin fibroblasts. Here, we report that normal adult human skin fibroblasts display two isoform-specific, cell surface glycosyl phosphatidylinositol (GPI)-anchored, TGF-β binding proteins in addition to the type I, II, and III TGF-β receptors. The identities of these proteins are confirmed on the basis of their affinity for TGF-β isoforms, immunoprecipitation with specific antireceptor antibodies, and other biochemical analyses. Immunoprecipitation results also indicated oligomeric complex formation between type I and II and between type II and III TGF-β receptors. Furthermore, by using affinity labeling and two-dimensional electrophoresis, we demonstrate the occurrence of type I and II heterodimers and type I homodimers of TGF-β receptors on these cells. Because the type I receptor does not bind TGF-β in the absence of type II receptor, these results indicate that one molecule of TGF-β induces the formation of a heterooligomeric complex containing more than one molecule each of type I and II TGF-β receptors on these cells. These cells respond to TGF-β by markedly down-regulating all five binding proteins and by potently augmenting DNA synthesis. These results allow the expansion of the proposed heteromeric TGF-β receptor signaling paradigm using mutantcells that are unresponsive to TGF-β and cell lines that have been transfected to overexpress these receptors, to include normal TGF-β-responsive cells. In addition, the definition of TGF-β receptor profiles in human skin fibroblasts provides important information for studying their alterations in these cells in various skin diseases. J. Cell. Physiol. 176:553–564, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
We have investigated the role of autocrine/paracrine TGF-β secretion in the regulation of cell growth by androgens as demonstrated by its inhibition by two androgen response modifiers; the nonsteroidal antiandrogen hydroxyflutamide (OHF), believed to act by inhibiting androgen binding to androgen receptors, or finasteride, an inhibitor of 5α-reductase, the enzyme necessary for the conversion of testosterone to 5α-dihydrotestosterone (DHT), using the nontumorigenic rat prostatic epithelial cell line NRP-152. Growth of these cells was stimulated three- to sixfold over control by either testosterone or DHT under serum-free culture conditions. This was accompanied by a two- to threefold decrease in the secretion rate of TGF-β1, -β2, and -β3. Finasteride reversed the ability of testosterone but not DHT to stimulate growth and downregulate expression of TGF-β1, -β2, and -β3 in a dose-dependent fashion, suggesting that this activity of testosterone required its conversion to DHT. OHF antagonized the stimulatory effects of DHT on NRP-152 cell growth but could reverse the inhibitory effects of DHT only on TGF-β2 and TGF-β3 and not TGF-β1 secretion. This suggests that either TGF-β1 regulation by DHT or the androgen antagonism of OHF occurs independent of androgen receptor binding. Neutralizing antibodies to TGF-β (pantropic and isoform-specific) were able to block the ability of finasteride to antagonize the effects of testosterone nearly completely while only partially inhibiting the antiandrogenic effects of OHF. Thus, the ability of androgens to stimulate growth of NRP-152 cells involves the downregulation of the production of TGF-β1, -β2, and -β3 in addition to other growth-stimulatory mechanisms. J. Cell. Physiol. 175:184–192, 1998. Published 1998 Wiley-Liss, Inc.
  • 1 This article is a US Government work and, as such, is in the public domain in the United States of America.
  •   相似文献   

    18.
    We have characterized a 60-kDa transforming growth factor-β (TGF-β) binding protein that was originally identified on LNCaP adenocarcinoma prostate cells by affinity cross-linking of cell surface proteins by using 125I-TGF-β1. Binding of 125I-TGF-β1 to the 60-kDa protein was competed by an excess of unlabeled TGF-β1 but not by TGF-β2, TGF-β3, activin, or osteogenic protein-1 (OP-1), also termed bone morphogenetic protein-7 (BMP-7). In addition, no binding of 125I-TGF-β2 and 125I-TGF-β3 to the 60-kDa binding protein on LNCaP cells could be demonstrated by using affinity labeling techniques. The 60-kDa TGF-β binding protein showed no immunoreactivity with antibodies against the known type I and type II receptors for members of the TGF-β superfamily. Treatment of LNCaP cells with 0.25 M NaCl, 1 μg/ml heparin, or 10% glycerol caused a release of the 60-kDa protein from the cell surface. In addition, we found that the previously described TGF-β type IV receptor on GH3 cells, which does not form a heteromeric complex with TGF-β receptors, could be released from the cell surface by these same treatments. This suggests that the 60-kDa protein and the similarly sized TGF-β type IV receptor are related proteins. The eluted 60-kDa LNCaP protein was shown to interfere with the binding of TGF-β to the TGF-β receptors. Thus, the cell surface-associated 60-kDa TGF-β binding protein may play a role in regulating TGF-β binding to TGF-β receptors. J. Cell. Physiol. 173:447–459, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

    19.
    Transforming growth factor-β1 (TGF-β) is secreted in a latent form consisting of mature TGF-β noncovalently associated with its amino-terminal propeptide, which is called latency associated peptide (LAP). Biological activity depends upon the release of TGF-β from the latent complex following extracellular activation, which appears to be the key regulatory mechanism controlling TGF-β action. We have identified two events associated with latent TGF-β (LTGF-β) activation in vivo: increased immunoreactivity of certain antibodies that specifically detect TGF-β concomitant with decreased immunoreactivity of antibodies to LAP. Macrophages stimulated in vitro with interferon-γ and lipopolysaccharide reportedly activate LTGF-β via cell membrane–bound protease activity. We show through dual immunostaining of paraformaldehyde-fixed macrophages that such physiological TGF-β activation is accompanied by a loss of LAP immunoreactivity with concomitant revelation of TGF-β epitopes. The induction of TGF-β immunoreactivity colocalized with immunoreactive betaglycan/RIII in activated macrophages, suggesting that LTGF-β activation occurs on the cell surface. Confocal microscopy of metabolically active macrophages incubated with antibodies to TGF-β and betaglycan/RIII prior to fixation supported the localization of activation to the cell surface. The ability to specifically detect and localize LTGF-β activation provides an important tool for studies of its regulation. J. Cell. Physiol. 178:275–283, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

    20.
    Transforming growth factor-α (TGF-α), a member of the epidermal growth factor (EGF) family, binds to the EGF-receptor (EGF-R). The early expression and widespread distribution of TGF-α and EGF-R in the developing central nervous system (CNS) suggest that TGF-α may play a role in the developing CNS. To study possible effects of TGF-α on cholinergic differentiation in the basal forebrain, we cultured septal nuclei with adjacent basal forebrain from embryonic rat brain in the presence and absence of TGF-α. At the highest dose of TGF-α used (100 ng/mL), activity of choline acetyltransferase (ChAT; EC 2.3.1.6) and the number of cholinergic neurons doubled. However, because protein levels tripled, specific ChAT activity actually declined. To determine the mechanism accounting for the increase in ChAT, we labeled dividing precursors present in the cultures with a replication-deficient retrovirus expressing β-galactosidase in the presence and absence of TGF-α. By staining the cultures for both LacZ and ChAT, we determined that the precursor population expanded in size (individually labeled clones contained more cells), but the percentage of cholinergic neurons present in the clones was unchanged. Therefore, while TGF-α expands the precursor pool, it does not promote cholinergic differentiation. Interleukin-9, included to prompt neuronal differentiation, did not by itself increase ChAT activity, nor did it enhance the action of TGF-α. This was true even when basic fibroblast growth factor was included. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 405–412, 1998  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号