共查询到20条相似文献,搜索用时 15 毫秒
1.
The rat lumbar spinal cord contains the steroid-sensitive spinal nucleus of the bulbocavernosus (SNB), whose motoneurons innervate perineal muscles involved in copulatory reflexes. In normal males, SNB motoneuron dendrites grow exuberantly through postnatal (P) day 28. This growth is steroid dependent: Dendrites fail to grow in males castrated at P7, but grow normally in castrates treated with testosterone or its metabolites, dihydrotestosterone combined with estrogen. Treatment with either metabolite alone supports dendritic growth, but not to the level of testosterone-treated or intact males. In this study, we tested the hypothesis that aromatization of androgens to estrogens was involved in the masculine development of SNB dendrites. Motoneuron morphology was assessed in normal males and males treated daily (P7-28) with fadrozole, a potent aromatase inhibitor (0.25 mg/kg, subcutaneously) or saline vehicle (n = 4-6/group). SNB motoneurons were retrogradely labeled with cholera toxin-horseradish peroxidase at P28 (when dendritic length is normally maximal) and reconstructed in three dimensions. Comparable labeling was seen across groups; it was equivalent in both the rostrocaudal and radial extents. However, dendritic lengths in fadrozole-treated males were significantly below those of intact or saline-treated males. Neither SNB somata size nor target muscle weight differed across groups. These results suggest that aromatization of androgens to estrogens is necessary for development of masculine SNB dendritic morphology. 相似文献
2.
Tom Verhovshek Katherine E. Buckley Melissa A. Sergent Dale R. Sengelaub 《Developmental neurobiology》2010,70(4):206-221
The lumbar spinal cord of rats contains the sexually dimorphic, steroid‐sensitive spinal nucleus of the bulbocavernosus (SNB). Androgens are necessary for the development of the SNB neuromuscular system, and in adulthood, continue to influence the morphology and function of the motoneurons and their target musculature. However, estrogens are also involved in the development of the SNB system, and are capable of maintaining function in adulthood. In this experiment, we assessed the ability of testosterone metabolites, estrogens and nonaromatizable androgens, to maintain neuromuscular morphology in adulthood. Motoneuron and muscle morphology was assessed in adult normal males, sham‐castrated males, castrated males treated with testosterone, dihydrotestosterone, estradiol, or left untreated, and gonadally intact males treated with the 5α‐reductase inhibitor finasteride or the aromatase inhibitor fadrozole. After 6 weeks of treatment, SNB motoneurons were retrogradely labeled with cholera toxin‐HRP and reconstructed in three dimensions. Castration resulted in reductions in SNB target muscle size, soma size, and dendritic morphology. Testosterone treatment after castration maintained SNB soma size, dendritic morphology, and elevated target muscle size; dihydrotestosterone treatment also maintained SNB dendritic length, but was less effective than testosterone in maintaining both SNB soma size and target muscle weight. Treatment of intact males with finasteride or fadrozole did not alter the morphology of SNB motoneurons or their target muscles. In contrast, estradiol treatment was completely ineffective in preventing castration‐induced atrophy of the SNB neuromuscular system. Together, these results suggest that the maintenance of adult motoneuron or muscle morphology is strictly mediated by androgens. © 2009 Wiley Periodicals, Inc. Develop Neurobiol 70: 206–221, 2010. 相似文献
3.
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens. 相似文献
4.
Maternal licking in rats affects the development of the spinal nucleus of the bulbocavernosus (SNB), a sexually dimorphic motor nucleus that controls penile reflexes involved with copulation. Reduced maternal licking results in decreased motoneuron number, size, and dendritic length in the adult SNB, as well as deficits in adult male copulatory behavior. Our previous findings that licking-like tactile stimulation influences SNB dendritic development and upregulates Fos expression in the lumbosacral spinal cord suggest that afferent signaling is changed by differences in maternal stimulation. Oxytocin afferents from the hypothalamus are a possible candidate, given previous research that has shown oxytocin is released following sensory stimulation, oxytocin modulates excitability in the spinal cord, and is a pro-erectile modulator of male sex behavior. In this experiment, we used immunofluorescence and immediate early gene analysis to assess whether licking-like tactile stimulation of the perineum activated parvocellular oxytocinergic neurons in the hypothalamus in neonates. We also used enzyme immunoassay to determine whether this same stroking stimulation produced an increase in spinal oxytocin levels. We found that stroking increased Fos immunolabeling in small oxytocin-positive cells in the paraventricular nucleus of the hypothalamus, in comparison to unstroked or handled control pups. In addition, 60 s of licking-like perineal stimulation produced a transient 89% increase in oxytocin levels in the lumbosacral spinal cord. Together, these results suggest that oxytocin afferent activity may contribute to the effects of early maternal care on the masculinization of the SNB and resultant male copulatory behavior. 相似文献
5.
Differential effects of the perinatal steroid environment on three sexually dimorphic parameters of the rat brain 总被引:1,自引:0,他引:1
R J Handa P Corbier J E Shryne J N Schoonmaker R A Gorski 《Biology of reproduction》1985,32(4):855-864
Gonadectomy of male rats was performed at 0, 6-7 (6h), 12-13 (12h), or 24 h postnatally in order to examine the influence of testosterone exposure on sexual differentiation of the brain. The indices examined were: the volume of the sexually dimorphic nucleus of the preoptic area (SDN-POA) and luteinizing hormone (LH) and follicle-stimulating hormone (FSH) titers following estradiol benzoate (EB) and progesterone (P) administration. Control animals were sham-operated at 0 h and gonadectomized at 29 days of age (sham). A decrease in the percentage of males with elevated plasma LH levels following P was found with increasing delay before gonadectomy. Significant (P less than 0.001) differences existed in the amplitude of plasma LH titers 5 h following P administration between sham, 0 h, and 6 h groups. Follicle-stimulating hormone was also elevated in all neonatally gonadectomized male groups following P administration, but there was no difference between the groups. Volume of the SDN-POA was significantly (P less than 0.001) smaller in all gonadectomized males when compared to that of sham-operated males, but no differences existed between males gonadectomized at the different hours postpartum. In female rats gonadectomized at 0 h (F0h), LH levels were elevated 5 h following P, but only to a magnitude of 36% of that of sham-operated controls (P less than 0.001). Volume of the SDN-POA of the F0h group was significantly reduced (P less than 0.05) when compared to that of sham females. Thus, in males, the presence of the tests prenatally may be responsible for the initiation of masculinization of LH release mechanisms and the SDN-POA, but both require further androgen exposure for their completion. In addition, the LH and FSH regulating systems show a differential sensitivity to the steroid hormone environment during development that shapes the animal's response to steroid as an adult. 相似文献
6.
In Xenopus laevis, the laryngeal motor nucleus (n. of cranial nerves IX-X) is part of a sexually differentiated, androgen sensitive neuromuscular system devoted to vocalization. Adult males have more n. IX-X neurons than females; however, during development of n. IX-X, the rate of neurogenesis does not appear to differ between the sexes. In this study, we explored the role of naturally occurring cell death in the development of this nucleus and asked whether cell death might be involved in establishing the sex difference in neuron number. Counts of n. IX-X neurons reveal that at tadpole stage 56, males and females have similar numbers of n. IX-X neurons, but by stage 64 male neuron numbers are greater. This sex difference arises owing to a greater net loss of neurons in females-males lose approximately 25% of their n. IX-X neurons between stages 56 and 64, while females lose approximately 47%. Sexual differentiation of n. IX-X neuron number coincides with a period of developmental cell death, as evidenced by terminal transferase-mediated dUTP nick-end labeling and the presence of pyknotic nuclei in n. IX-X. A role for gonadal hormones in controlling cell number was examined by treating tadpoles with exogenous androgen and determining the number of n. IX-X neurons at stage 64. Dihydrotestosterone (DHT) treatment from the beginning of the cell death period (stage 54) until stage 64 had no effect on the number of n. IX-X neurons in males but did significantly increase n. IX-X neuron number in females. This increase was sufficient to abolish the sex difference normally observed at stage 64. Although DHT induced increases in female neuron number, it did not induce increases in cell proliferation or addition of newly born neurons to n. IX-X. DHT may therefore have increased neuron number by protecting cells from death. We conclude that androgens can influence the survival of n. IX-X neurons during a period of naturally occurring cell death, and that this action of androgen is critical to the development of sex differences in n. IX-X neuron number. 相似文献
7.
The lumbar spinal cord of rats contains the sexually dimorphic, steroid-sensitive spinal nucleus of the bulbocavernosus (SNB). In males, the growth of SNB dendrites is steroid-dependent: dendrites fail to grow after castration, but grow in castrates treated with androgens or estrogens. Blocking estradiol synthesis or estrogen receptors in gonadally intact males attenuates SNB dendritic growth, suggesting that estrogens are required and must be able to act at their receptors to support normal masculine dendritic growth. However, SNB motoneurons do not accumulate estrogens, suggesting that estrogens act indirectly to support SNB dendritic growth. In this experiment, we examined whether local estrogen action in the neuromuscular periphery was involved in the postnatal development of SNB motoneurons. Motoneuron morphology was assessed in gonadally intact and castrated males. Gonadally intact males were left untreated or given either blank or tamoxifen implants sutured to the target musculature, or tamoxifen interscapular implants. Castrated males were left untreated or were given estradiol by muscle or interscapular implants or systemic injection during the period of SNB dendritic growth. At postnatal day 28, when SNB dendritic length is normally maximal, SNB motoneurons were retrogradely labeled with cholera toxin-HRP and reconstructed in three dimensions. While interscapular tamoxifen implants were ineffective, blocking estrogen receptors at the target musculature resulted in attenuation of SNB dendritic growth. In contrast, while interscapular implants of estradiol were ineffective, local treatment with estradiol at the target musculature in castrated males resulted in masculinization of dendritic growth. Thus, estrogens may act by an indirect action in the neuromuscular periphery to support SNB dendritic growth. 相似文献
8.
The spinal nucleus of the bulbocavernosus (SNB) is a sexually dimorphic motor nucleus in the rat lumbar spinal cord. SNB motoneurons and their perineal target muscles are present in adult males but reduced or absent in females. This sexual dimorphism is due to the presence of androgen during development; females treated with testosterone (T) perinatally have a masculine SNB system. To assess whether masculinization of the SNB could involve the conversion of testosterone into its active metabolites, dihydrotestosterone (DHT) and estrogen, we examined the development of the SNB in females treated perinatally with estrogen alone or in combination with dihydrotestosterone. Counts of motoneurons in the developing SNB in all groups showed the typical prenatal increase followed by a differential postnatal decline; the incidence of degenerating cells reflected this decline. Motoneuron numbers and the frequency of degenerating cells in females treated with estrogen (E) alone did not differ from those of normal females, with both groups losing large numbers of motoneurons and having a high incidence of degenerating cells. In contrast, females treated with both estrogen and dihydrotestosterone did not show the female-typical decline in motoneuron number and had a low, masculine incidence of degenerating cells. By postnatal day 10, females treated with estrogen and dihydrotestosterone had a fully masculine SNB motoneuron number, suggesting that dihydrotestosterone alone or in conjunction with estrogen may be involved in the development of the sexually dimorphic SNB system. 相似文献
9.
Stefania Casagrande Cor Dijkstra James Tagliavini Vivian C. Goerlich Ton G. G. Groothuis 《Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology》2011,197(1):1-13
Recent studies have demonstrated that carotenoid-based traits are under the control of testosterone (T) by up-regulation of
carotenoid carriers (lipoproteins) and/or tissue-specific uptake of carotenoids. T can be converted to dihydrotestosterone
(DHT) and estradiol (E2), and variation in conversion rate may partly explain some contradictory findings in the literature.
Moreover, most studies on the effect of T on sexual signals have focused on the male sex only, while in many species females
show the same signal, albeit to a lesser extent. We studied the effects of T, DHT, and E2 treatment in male and female diamond
doves Geopelia cuneata in which both sexes have an enlarged red eye ring, which is more pronounced in males. We first showed that this periorbital
ring contains very high concentration of carotenoids, of which most are lutein esters. Both T and DHT were effective in enhancing
hue, UV-chroma and size in both sexes, while E2 was ineffective. However, E2 dramatically increased the concentration of circulating
lipoproteins. We conclude that in both sexes both color and size of the secondary sexual trait are androgen dependent. The
action of androgens is independent of lipoproteins regulation. Potential mechanisms and their consequences for trade-off are
discussed. 相似文献
10.
This study examined the effect of testosterone and two of its metabolites on the size of motoneurons in the sexually dimorphic spinal nucleus of the bulbocavernosus (SNB) in adult male rats. Treatment of castrates with either testosterone or dihydrotestosterone maintained SNB cell size, although testosterone was more effective in this regard. However, estradiol, either alone or in conjunction with dihydrotestosterone treatment, had no effect on the size of the somata or nuclei of SNB motoneurons. These results indicate that testosterone affects SNB cell size by interacting with androgen receptors and that aromatized metabolites of testosterone are not involved in this aspect of motoneuronal plasticity in adulthood. Because the penile reflexes mediated by the SNB neuromuscular system are also sensitive to androgen but not estrogen treatment, morphological changes in SNB cells may contribute to the androgenic modulation of these reflexes. 相似文献
11.
Specific forelimb muscles in anurans are sexually dimorphic and underlie the androgen-dependent clasping response of males during amplexus. Previous studies have reported that androgen treatment slows the contractile properties of these sexually dimorphic forelimb muscles. In amphibians, the expression of functionally distinct acetycholine (ACh) receptors, the levels of acetylcholinesterase (AChE), the extent of multiple innervation, and the structure of individual end plates vary with the contractile properties of the muscle fibers. In higher vertebrates, androgens have been reported to alter the expression of ACh receptors, AChE, and the neuromodulator, calcitonin gene-related peptide (CGRP). To determine whether the known androgen-dependent changes in contraction of androgen-sensitive forelimb muscles are accompanied by concomitant changes in synaptic structure or function, we have compared functional neuromuscular transmission, the pattern of innervation, and CGRP immunoreactivity in nerve or muscle preparation from castrated (C) and castrated and testosterone-treated (CT) adult male Xenopus laevis. CGRP expression in androgen receptor (AR)-immunopositive neurons was increased in CT animals. However, no significant differences were found in ACh-mediated single channel or macroscopic currents, the extent of multiple end plates, or end plate morphology for forelimb fibers isolated from C and CT Xenopus. In contrast, analysis of forelimb fibers from gonadally intact adult females and juvenile animals of both sexes revealed that macroscopic synaptic currents were significantly shorter in these animals than in either C or CT adult males. Our data suggest that forelimb fibers in sexually dimorphic muscles of Xenopus do show significant differences in synaptic transmission; however, neither end-plate organization nor functional neuromuscular transmission are subject to activational effects of androgens in adult male frogs. © 1995 John Wiley & Sons, Inc. 相似文献
12.
In Xenopus laevis, the laryngeal motor nucleus (n. of cranial nerves IX‐X) is part of a sexually differentiated, androgen sensitive neuromuscular system devoted to vocalization. Adult males have more n. IX‐X neurons than females; however, during development of n. IX‐X, the rate of neurogenesis does not appear to differ between the sexes. In this study, we explored the role of naturally occurring cell death in the development of this nucleus and asked whether cell death might be involved in establishing the sex difference in neuron number. Counts of n. IX‐X neurons reveal that at tadpole stage 56, males and females have similar numbers of n. IX‐X neurons, but by stage 64 male neuron numbers are greater. This sex difference arises owing to a greater net loss of neurons in females—males lose ∼25% of their n. IX‐X neurons between stages 56 and 64, while females lose ∼47%. Sexual differentiation of n. IX‐X neuron number coincides with a period of developmental cell death, as evidenced by terminal transferase‐mediated dUTP nick‐end labeling and the presence of pyknotic nuclei in n. IX‐X. A role for gonadal hormones in controlling cell number was examined by treating tadpoles with exogenous androgen and determining the number of n. IX‐X neurons at stage 64. Dihydrotestosterone (DHT) treatment from the beginning of the cell death period (stage 54) until stage 64 had no effect on the number of n. IX‐X neurons in males but did significantly increase n. IX‐X neuron number in females. This increase was sufficient to abolish the sex difference normally observed at stage 64. Although DHT induced increases in female neuron number, it did not induce increases in cell proliferation or addition of newly born neurons to n. IX‐X. DHT may therefore have increased neuron number by protecting cells from death. We conclude that androgens can influence the survival of n. IX‐X neurons during a period of naturally occurring cell death, and that this action of androgen is critical to the development of sex differences in n. IX‐X neuron number. © 1999 John Wiley & Sons, Inc. J Neurobiol 40: 375–385, 1999 相似文献
13.
Reproduction and development are highly dependent on apoptosis to balance the proliferation that necessarily occurs during these processes. How the absence of two apoptotic factors in mice would affect reproduction and development was examined. Given previous reports of increased neural tube defects in p53-/- female fetuses, decreased fertility in gld female mice, and altered spermatogenesis in both p53 and gld male mice, the possibility that these phenotypes might be enhanced by the elimination of a second apoptotic factor was investigated. The reproductive vigor and the health of offspring were monitored during the production of the new double-deficient strain (FasL-/-p53-/-) for any changes from the reported phenotypes. Thus, any unusual phenotypes that could lead to new models for studying mechanisms of health and disease would be identified. Double-deficient male offspring appeared healthy and occurred at expected frequencies. Additionally, spermatogenesis and male fertility were unaffected by the gene deficiencies. On the other hand, FasL+/+p53-/- and FasL-/-p53-/- female mice were susceptible to increased malformations and post-natal death. These abnormalities were consistent with previous reports of neural tube defects in p53-/- female mice. Fertility rates were also significantly decreased in p53-/- female mice that lived to be adults, an observation not previously reported. Finally, the absence of both FasL and p53 led to dystocia in pregnant female mice, suggesting that the two genes play complementary roles in parturition. Therefore, although male mouse development and reproduction remained unaffected by p53 and FasL deficiencies, female mouse development was adversely affected by the absence of p53, and no live litters were born to female mice with the combined absence of both FasL and p53. In this report, we suggest a potential mechanism involving corpora luteal regression to explain this defect in parturition in FasL-/-p53-/- female mice. 相似文献
14.
Nancy G. Forger Lynn L. Hodges Sarah L. Roberts S. Marc Breedlove 《Developmental neurobiology》1992,23(9):1192-1203
A sexual dimorphism in the number of motoneurons in the spinal nucleus of the bulbocavernosus (SNB) of rats is engendered by a sex difference in ontogenetic cell death. Testicular secretions, specifically androgenic steroids, reduce SNB motoneuron death in males. The fate of the target muscles generally mirrors that of the motoneurons, and androgens appear to exert their effects upon the target muscles, sparing the motoneurons as a secondary consequence. Treatment with ciliary neurotrophic factor can also spare SNB motoneurons in newborn females, raising the possibility that this factor normally mediates androgen's effect upon motoneuron survival. The ontogeny of calcitonin gene-related peptide immunoreactivity is delayed in SNB cells compared with other motoneurons and is further delayed in the SNB cells of females. In both sexes, calcitonin gene-related peptide is detected after the period of SNB motoneuron death is complete. A sex difference in motoneuron number is also seen in the human homologue of the SNB and, because ontogenetic death of motoneurons in humans overlaps the period of androgen secretion, may arise in a manner similar to that in the rat SNB. © 1992 John Wiley & Sons, Inc. 相似文献
15.
Hormonally mediated plasticity of motoneuron morphology in the adult rat spinal cord: a cholera toxin-HRP study. 总被引:1,自引:0,他引:1
The dorsolateral nucleus (DLN) and the spinal nucleus of the bulbocavernosus (SNB) of the rat lumbar spinal cord are sexually dimorphic groups of motoneurons that innervate striated perineal muscles involved in male copulatory behavior. Androgens control the development of these motoneurons and their target muscles, and continue to influence the system in adulthood. Given that several features of SNB motoneuron morphology have been shown to be androgen sensitive in adult male rats, we examined the effects of androgen manipulations on the morphology of motoneurons in the DLN in adult rats. Adult male rats were castrated and implanted with testosterone-filled or blank implants, or were subjected to a sham-castration procedure. Six weeks after treatment, motoneurons in the DLN were retrogradely labeled with cholera toxin-horseradish peroxidase (HRP) after injection into the ischiocavernosus (IC) muscle and their morphology assessed. Measures of the radial extent and coverage of the dendritic arbor of DLN motoneurons projecting to the IC (DLN-IC motoneurons) were similar across the groups, indicating comparable degrees of HRP transport. However, DLN-IC motoneurons in castrates with blank implants possessed both shorter dendritic lengths and smaller somas than those of castrates treated with testosterone. Castrates with testosterone implants had DLN-IC motoneurons that were significantly larger than those of sham castrates in dendritic length and soma area. These results suggest that motoneurons in the DLN, like those in the SNB, possess a significant degree of structural plasticity in adulthood which is influenced by androgens. 相似文献
16.
Sex differences, laterality, and hormonal regulation of androgen receptor (AR) immunoreactivity in rat hippocampal CA1 pyramidal cells were examined using the PG21 antibody. Adult male rats were either castrated or sham-operated at least 2 weeks prior to sacrifice. Gonadally intact females were sacrificed on the day of proestrus. Animals received an injection of either testosterone propionate (TP) or vehicle 2 h prior to sacrifice. Within CA1, both the intensity of staining and the number of AR+ cells were assessed. AR immunostaining was detected in all the groups with marked variation among them. The overall ranking of staining intensity was: gonadally intact males > females given TP > castrated males given TP > females > castrated males given vehicle. The number of AR+cells within subregions of CA1 showed the same basic pattern: among control-treated animals, gonadally intact males have more than females, but castrated males have the least, and acute TP treatment increases the number in both sexes. The increased level of AR immunoreactivity in CA1 of castrated males following acute TP treatment suggests that testicular androgens in adulthood normally increase AR immunoreactivity there, producing a sex difference favoring males in gonadally intact animals. We also found a higher number of AR+ CA1 cells on the left than on the right, but only in gonadally intact males and in females given TP. These results suggest that a laterality of AR distribution in the rat hippocampus may lead to lateralities in hippocampal structure and function. 相似文献
17.
Mate search plays a central role in hypotheses for the adaptive significance of extreme female-biased sexual size dimorphism (SSD) in animals. Spiders (Araneae) are the only free-living terrestrial taxon where extreme SSD is common. The gravity hypothesis states that small body size in males is favoured during mate search in species where males have to climb to reach females, because body length is inversely proportional to achievable speed on vertical structures. However, locomotive performance of males may also depend on relative leg length. Here we examine selection on male body size and leg length during mate search in the highly dimorphic orb-weaving spider Argiope aurantia, using a multivariate approach to distinguish selection targeted at different components of size. Further, we investigate the scaling relationships between male size and energy reserves, and the differential loss of reserves. Adult males do not feed while roving, and a size-dependent differential energy storage capacity may thus affect male performance during mate search. Contrary to predictions, large body size was favoured in one of two populations, and this was due to selection for longer legs. Male size was not under selection in the second population, but we detected direct selection for longer third legs. Males lost energy reserves during mate search, but this was independent of male size and storage capacity scaled isometrically with size. Thus, mate search is unlikely to lead to selection for small male size, but the hypothesis that relatively longer legs in male spiders reflect a search-adapted morphology is supported. 相似文献
18.
Summary The location, number and size of the motoneurons innervating the ischiocavernosus muscle, identified by means of horseradish-peroxidase (HRP) retrograde transport, were studied (1) in adult untreated male rats, (2) in adult male rats castrated before puberty, and (3) in adult male rats castrated before puberty and injected with testosterone from the day of castration. After injection of HRP into the ischiocavernosus muscle, labeled motoneurons were found in the dorsolateral and dorsomedial columns of the lamina IX, at the level of L6 and S1 segments of the spinal cord. Morphometric analysis demonstrated that prepubertal castration induces a statistically significant reduction in the somatic and nuclear areas (40% and 35%, respectively, if compared to those of the control rats) of both the dorsolateral and dorsomedial motoneurons, but does not affect their number. The effects of castration are prevented by exogenous testosterone.Preliminary results were presented at the International Conference on Hormones, Brain and Behaviour, Liège, Belgium, August, 1989 相似文献
19.
NELL2 participates in formation of the sexually dimorphic nucleus of the pre-optic area in rats 总被引:1,自引:0,他引:1
Jeong JK Ryu BJ Choi J Kim DH Choi EJ Park JW Park JJ Lee BJ 《Journal of neurochemistry》2008,106(4):1604-1613
Formation of the sexually dimorphic nucleus of the pre-optic area (SDN-POA) in the rat hypothalamus shows a sexually differential development of neurons. Volume of the SDN-POA in males is much bigger than that in females which is because of a neuroprotective effect of estradiol converted from circulating testosterone during a critical period of brain development. We found that neural epidermal growth factor-like like-2 (NELL2), a neural tissue-enriched protein, is a potential downstream target of estrogen. In this study, we examined a possible role of NELL2 in the development of the SDN-POA and in the normalcy of sexual behavior in the male rats. NELL2 was expressed and co-localized with estrogen receptor alpha in the SDN-POA. A blockade of NELL2 synthesis in the brain during postnatal day 0 (d0) to d4 by an intracerebroventricular injection of an antisense NELL2 oligodeoxynucleotide, resulted in a decrease in volume of the SDN-POA in males. Interestingly, it reduced some components of the male sexual behavior such as mounting and intromission, but not the sexual partner preference in adulthood. In vitro study using the hippocampal neuroprecursor HiB5 cells showed that NELL2 has a protective effect from a cell death condition. These data suggest that a relevant expression of NELL2 in the neonatal brain is important for the estrogen-induced normal development of the SDN-POA and the normalcy of sexual behavior in male rats. 相似文献
20.
The plainfin midshipman fish (Porichthys notatus) has a caudal hindbrain vocal motor circuit that has been proposed to share a common embryonic origin with the hindbrain vocal networks of other vertebrates. In midshipman, this vocal circuit includes three groups of neurons: sonic motor, pacemaker, and ventral medullary. Here, transneuronal transport of biocytin or neurobiotin was used to delineate the early ontogeny of the three hindbrain vocal nuclei and their pattern of connectivity. The organization of the vocal nuclei was studied in animals beginning soon after hatching until the nuclei have the adult phenotype at the time fish become free-swimming. There is a clear sequence of events whereby motoneurons establish their connections with the sonic muscle prior to establishing connections with premotor neurons; developmental milestones of the vocal pathway parallel those of the sonic muscle. The results also indicate that sexual differentiation of the vocal motor system in midshipman begins early in development, well before any evidence of sexual maturation. Embryonic males and females differ in the relationship between soma size and body length for the three hindbrain nuclei. Males are also more variable than females in body mass, volume of the sonic motor nucleus, and motoneuron cell size. 相似文献