首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
CyrA is a novel cysteine-rich protein with four EGFL repeats that was isolated using the calmodulin (CaM) binding overlay technique (CaMBOT), suggesting it is a CaM-binding protein (CaMBP). The full-length 63 kDa cyrA is cleaved into two major C-terminal fragments, cyrA-C45 and cyrA-C40. A putative CaM-binding domain was detected and both CaM-agarose binding and CaM immunoprecipitation verified that cyrA-C45 and cyrA-C40 each bind to CaM in both a Ca2+-dependent and -independent manner. cyrA-C45 was present continuously throughout growth and development but was secreted at high levels during the multicellular slug stage of Dictyostelium development. At this time, cyrA localizes to the extracellular matrix (ECM). ECM purification verified the presence of cyrA-C45. An 18 amino acid peptide (DdEGFL1) from the first EGFL repeat sequence of cyrA (EGFL1) that is present in both cyrA-C45 and -C40 enhances both random cell motility and cAMP-mediated chemotaxis. Here we reveal that the dose-dependent enhancement of motility by DdEGFL1 is related to the time of cell starvation. Addition of DdEGFL1 also inhibits cyrA proteolysis. The status of cyrA as an extracellular CaMBP was further clarified by the demonstration that CaM is secreted during development. Antagonism of CaM with W7 resulted in enhanced cyrA proteolysis suggesting a functional role for extracellular CaM in protecting CaMBPs from proteolysis. cyrA is the first extracellular CaMBP identified in Dictyostelium and since it is an ECM protein with EGF-like repeats that enhance cell motility and it likely also represents the first matricellular protein identified in a lower eukaryote.  相似文献   

2.
Jang DJ  Ban B  Lee JA 《Molecules and cells》2011,32(6):511-518
IQ motif-containing GTPase-activating protein 1 (IQGAP1), which is a well-known calmodulin (CaM) binding protein, is involved in a wide range of cellular processes including cell proliferation, tumorigenesis, adhesion, and migration. Interaction of IQGAP1 with CaM is important for its cellular functions. Although each IQ domain of IQGAP1 for CaM binding has been characterized in a Ca2+-dependent or -independent manner, it was not clear which IQ motifs are physiologically relevant for CaM binding in the cells. In this study, we performed immunoprecipitation using 3xFLAGhCaM in mammalian cell lines to characterize the domains of IQGAP1 that are key for CaM binding under physiological conditions. Interestingly, using this method, we identified two novel domains, IQ(2.7–3) and IQ(3.5–4.4), within IQGAP1 that were involved in Ca2+-independent or -dependent CaM binding, respectively. Mutant analysis clearly showed that the hydrophobic regions within IQ(2.7–3) were mainly involved in apoCaM binding, while the basic amino acids and hydrophobic region of IQ(3.5–4.4) were required for Ca2+/CaM binding. Finally, we showed that IQ(2.7–3) was the main apoCaM binding domain and both IQ(2.7–3) and IQ(3.5–4.4) were required for Ca2+/CaM binding within IQ(1-2-3-4). Thus, we identified and characterized novel direct CaM binding motifs essential for IQGAP1. This finding indicates that IQGAP1 plays a dynamic role via direct interactions with CaM in a Ca2+-dependent or -independent manner.  相似文献   

3.
Recently we have shown that the peptidyl-prolyl cis/trans isomerase parvulin 17 (Par17) interacts with tubulin in a GTP-dependent manner, thereby promoting the formation of microtubules. Microtubule assembly is regulated by Ca2+-loaded calmodulin (Ca2+/CaM) both in the intact cell and under in vitro conditions via direct interaction with microtubule-associated proteins. Here we provide the first evidence that Ca2+/CaM interacts also with Par17 in a physiologically relevant way, thus preventing Par17-promoted microtubule assembly. In contrast, parvulin 14 (Par14), which lacks only the first 25 N-terminal residues of the Par17 sequence, does not interact with Ca2+/CaM, indicating that this interaction is exclusive for Par17. Pulldown experiments and chemical shift perturbation analysis with 15N-labeled Par17 furthermore confirmed that calmodulin (CaM) interacts in a Ca2+-dependent manner with the Par17 N terminus. The reverse experiment with 15N-labeled Ca2+/CaM demonstrated that the N-terminal Par17 segment binds to both CaM lobes simultaneously, indicating that Ca2+/CaM undergoes a conformational change to form a binding channel between its two lobes, apparently similar to the structure of the CaM-smMLCK796–815 complex. In vitro tubulin polymerization assays furthermore showed that Ca2+/CaM completely suppresses Par17-promoted microtubule assembly. The results imply that Ca2+/CaM binding to the N-terminal segment of Par17 causes steric hindrance of the Par17 active site, thus interfering with the Par17/tubulin interaction. This Ca2+/CaM-mediated control of Par17-assisted microtubule assembly may provide a mechanism that couples Ca2+ signaling with microtubule function.  相似文献   

4.
5.
6.
7.
The cell cycle is controlled by regulators functioning at the right time and at the right place. We have found that calmodulin (CaM) has specific distribution patterns during different cell-cycle stages. Here, we identify cell-cycle-specific binding proteins of CaM and examine their function during cell-cycle progression. We first applied immunoprecipitation methods to isolate CaM-binding proteins from cell lysates obtained at different cell-cycle phases and then identified these proteins using mass spectrometry methods. A total of 41 proteins were identified including zinc finger proteins, ribosomal proteins, and heat shock proteins operating in a Ca2+-dependent or independent manner. Fifteen proteins were shown to interact with CaM in a cell-phase-specific manner. The association of the selected proteins and CaM were confirmed with in vitro immunoprecipitation and immunostaining methods. One of the identified proteins, heat shock protein 70 (Hsp70), was further studied with respect to its cell-cycle-related function. In vivo fluorescence resonance energy transfer (FRET) analysis showed that the interaction of CaM and Hsp70 was found in the nucleus during the S phase. Overexpression of Hsp70 is shown to arrest cells at S phase and, thus, induce cell apoptosis. When we disrupted the CaM-Hsp70 association with HSP70 truncation without the CaM-binding domain, we found that S-phase arrest and apoptosis could be rescued. The results suggest that the spatial and temporal association of CaM and Hsp70 can regulate cell-cycle progression and cell apoptosis.  相似文献   

8.
Calmodulin (CaM) is a Ca2+ signal transducing protein that binds and activates many cellular enzymes with physiological relevance, including the mammalian nitric oxide synthase (NOS) isozymes: endothelial NOS (eNOS), neuronal NOS (nNOS), and inducible NOS (iNOS). The mechanism of CaM binding and activation to the iNOS enzyme is poorly understood in part due to the strength of the bound complex and the difficulty of assessing the role played by regions outside of the CaM-binding domain. To further elucidate these processes, we have developed the methodology to investigate CaM binding to the iNOS holoenzyme and generate CaM mutant proteins selectively labeled with fluorescent dyes at specific residues in the N-terminal lobe, C-terminal lobe, or linker region of the protein. In the present study, an iNOS CaM coexpression system allowed for the investigation of CaM binding to the holoenzyme; three different mutant CaM proteins with cysteine substitutions at residues T34 (N-domain), K75 (central linker), and T110 (C-domain) were fluorescently labeled with acrylodan or Alexa Fluor 546 C5-maleimide. These proteins were used to investigate the differential association of each region of CaM with the three NOS isoforms. We have also N-terminally labeled an iNOS CaM-binding domain peptide with dabsyl chloride in order to perform FRET studies between Alexa-labeled residues in the N- and C-terminal domains of CaM to determine CaM's orientation when associated to iNOS. Our FRET results show that CaM binds to the iNOS CaM-binding domain in an antiparallel orientation. Our steady-state fluorescence and circular dichroism studies show that both the N- and C-terminal EF hand pairs of CaM bind to the CaM-binding domain peptide of iNOS in a Ca2+-independent manner; however, only the C-terminal domain showed large Ca2+-dependent conformational changes when associated with the target sequence. Steady-state fluorescence showed that Alexa-labeled CaM proteins are capable of binding to holo-iNOS coexpressed with nCaM, but this complex is a transient species and can be displaced with the addition of excess CaM. Our results show that CaM does not bind to iNOS in a sequential manner as previously proposed for the nNOS enzyme. This investigation provides additional insight into why iNOS remains active even under basal levels of Ca2+ in the cell.  相似文献   

9.
A clone for a novel Arabidopsisthaliana calmodulin (CaM)-binding protein of 25 kDa (AtCaMBP25) has been isolated by using a radiolabelled CaM probe to screen a cDNA expression library derived from A. thaliana cell suspension cultures challenged with osmotic stress. The deduced amino acid sequence of AtCaMBP25 contains putative nuclear localization sequences and shares significant degree of similarity with hypothetical plant proteins only. Fusion of the AtCaMBP25 coding sequence to reporter genes targets the hybrid protein to the nucleus. Bacterially expressed AtCaMBP25 binds, in a calcium-dependent manner, to a canonical CaM but not to a less conserved isoform of the calcium sensor. AtCaMBP25 is encoded by a single-copy gene, whose expression is induced in Arabidopsis seedlings exposed to dehydration, low temperature or high salinity. Transgenic plants overexpressing AtCaMBP25 exhibits an increased sensitivity to both ionic (NaCl) and non-ionic (mannitol) osmotic stress during seed germination and seedling growth. By contrast, transgenic lines expressing antisense AtCaMBP25 are significantly more tolerant to mannitol and NaCl stresses than the wild type. Thus, the AtCaMBP25 gene functions as a negative effector of osmotic stress tolerance and likely participates in stress signal transduction pathways.  相似文献   

10.
We recently demonstrated that the activation of ceramide kinase (CERK) and the formation of its product, ceramide 1-phosphate (C1P), are necessary for the degranulation pathway in mast cells and that the kinase activity of this enzyme is completely dependent on the intracellular concentration of Ca(2+) (Mitsutake, S., Kim, T.-J., Inagaki, Y., Kato, M., Yamashita, T., and Igarashi, Y. (2004) J. Biol. Chem. 279, 17570-17577). Despite the demonstrated importance of Ca(2+) as a regulator of CERK activity, there are no apparent binding domains in the enzyme and the regulatory mechanism has not been well understood. In the present study, we found that calmodulin (CaM) is involved in the Ca(2+)-dependent activation of CERK. The CaM antagonist W-7 decreased both CERK activity and intracellular C1P formation. Additionally, exogenously added CaM enhanced CERK activity even at low concentrations of Ca(2+). The CERK protein was co-immunoprecipitated with an anti-CaM antibody, indicating formation of intracellular CaM.CERK complexes. An in vitro CaM binding assay also demonstrated Ca(2+)-dependent binding of CaM to CERK. These results strongly suggest that CaM acts as a Ca(2+) sensor for CERK. Furthermore, a CaM binding assay using various mutants of CERK revealed that the binding site of CERK is located within amino acids 422-435. This region appears to include a type 1-8-14B CaM binding motif and is predicted to form an amphipathic helical wheel, which is utilized in CaM recognition. The expression of a deletion mutant of CERK that contained the CaM binding domain but lost CERK activity inhibited the Ca(2+)-dependent C1P formation. These results suggest that this domain could saturate the CaM and hence block Ca(2+)-dependent activation of CERK. Finally, we reveal that in mast cell degranulation CERK acts downstream of CaM, similar to CaM-dependent protein kinase II, which had been assumed to be the main target of CaM in mast cells.  相似文献   

11.
Calcium (Ca2+) is an ion vital in regulating cellular function through a variety of mechanisms. Much of Ca2+ signaling is mediated through the calcium-binding protein known as calmodulin (CaM)1,2. CaM is involved at multiple levels in almost all cellular processes, including apoptosis, metabolism, smooth muscle contraction, synaptic plasticity, nerve growth, inflammation and the immune response. A number of proteins help regulate these pathways through their interaction with CaM. Many of these interactions depend on the conformation of CaM, which is distinctly different when bound to Ca2+ (Ca2+-CaM) as opposed to its Ca2+-free state (ApoCaM)3.While most target proteins bind Ca2+-CaM, certain proteins only bind to ApoCaM. Some bind CaM through their IQ-domain, including neuromodulin4, neurogranin (Ng)5, and certain myosins6. These proteins have been shown to play important roles in presynaptic function7, postsynaptic function8, and muscle contraction9, respectively. Their ability to bind and release CaM in the absence or presence of Ca2+ is pivotal in their function. In contrast, many proteins only bind Ca2+-CaM and require this binding for their activation. Examples include myosin light chain kinase10, Ca2+/CaM-dependent kinases (CaMKs)11 and phosphatases (e.g. calcineurin)12, and spectrin kinase13, which have a variety of direct and downstream effects14.The effects of these proteins on cellular function are often dependent on their ability to bind to CaM in a Ca2+-dependent manner. For example, we tested the relevance of Ng-CaM binding in synaptic function and how different mutations affect this binding. We generated a GFP-tagged Ng construct with specific mutations in the IQ-domain that would change the ability of Ng to bind CaM in a Ca2+-dependent manner. The study of these different mutations gave us great insight into important processes involved in synaptic function8,15. However, in such studies, it is essential to demonstrate that the mutated proteins have the expected altered binding to CaM.Here, we present a method for testing the ability of proteins to bind to CaM in the presence or absence of Ca2+, using CaMKII and Ng as examples. This method is a form of affinity chromatography referred to as a CaM pull-down assay. It uses CaM-Sepharose beads to test proteins that bind to CaM and the influence of Ca2+ on this binding. It is considerably more time efficient and requires less protein relative to column chromatography and other assays. Altogether, this provides a valuable tool to explore Ca2+/CaM signaling and proteins that interact with CaM.  相似文献   

12.
Tokumoto T 《Steroids》2012,77(10):1013-1016
One of the most extensively investigated and well characterized models of non-genomic steroid actions initiated at the cell surface is the induction of oocyte maturation (OM) in fish and amphibians by progestin. Gonadotropin induces the final phase of oocyte maturation indirectly by inducing the synthesis of maturation inducing steroids (MIS) by the ovarian follicles via its membrane receptor, membrane progestin receptor (mPR). Three mPR subtypes (α, β and γ) have been identified by cDNA cloning or by in silico analysis of genome sequence databases. Previously, we described the cloning of the mPRα cDNA from a goldfish ovarian cDNA library and obtained experimental evidence that the mPRα protein is an intermediary in MIS induction of OM in goldfish. Then we cloned one β and two γ subtypes (hereafter referred to as γ-1 and γ-2) from a goldfish ovarian cDNA library. RT-PCR showed different tissue expression patterns of the mRNAs for these mPR subtypes. However, in addition to mPRα, the β, γ-1 and γ-2 subtypes were also expressed in follicle-enclosed oocytes. Microinjection of goldfish oocytes with a morpholino antisense oligonucleotide to mPRβ blocked the induction of oocyte maturational competence, whereas injection of antisense oligonucleotides to mPRγ-1 and γ-2 were ineffective. These results suggest that goldfish mPRβ protein acts as an intermediary during MIS induction of OM in goldfish, in a manner similar to mPRα. We are establishing mutant strains of Medaka fish to investigate the roles of mPR proteins in vivo produced by Targeting Induced Local Lesions in Genomes (Tilling) strategy. By the screening, we have selected three strains in which a point mutation was induced in each strain at the coding sequence of mPRα. In near future results of phenotypic analysis of mPRα defective fish will be introduced.  相似文献   

13.
Changes in myosin light chain kinase (MLCK) and calmodulin (CaM) mRNAs have been evaluated during estrogen-mediated differentiation of the chicken oviduct. Also examined were acute changes that occur in oviduct RNA from animals stimulated with estrogen, withdrawn from hormone and then injected for 1, 2, and 4 days with synthetic estrogen [diethylstilbestrol (DES)], progesterone (P), or testosterone (T). Small changes were noted in both CaM and MLCK RNAs during primary stimulation when oviduct cells are actively dividing. On the other hand no significant changes were observed during secondary stimulation regardless of the steroid hormone injected. These data support the contention that CaM and MLCK are constitutively expressed but vary as a function of cell cycle. The MLCK mRNA is 5.5 kilobases (kb) but the MLCK cDNA also hybridizes to an oviduct RNA 2.7 kb long. This RNA species is acutely regulated by estrogen, P, and T but in a manner different from that of ovalbumin mRNA. The magnitude of stimulation of the 2.7 kb mRNA by diethylstilbestrol and T is greater than that of ovalbumin whereas changes in response to P are similar. The 12- to 16-fold increase of the 2.7 kb mRNA in response to T is the largest effect reported for this hormone acting on oviduct. The 2.7 kb mRNA encodes an unknown protein yet contains a 520 nucleotide segment that is highly homologous with the COOH-terminal coding portion of the MLCK mRNA. Since this homology does not include either catalytic or CaM-binding domains of MLCK, it is unlikely that the 2.7 kb mRNA encodes a CaM-dependent protein kinase.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
The myristoylated alanine-rich C kinase substrate (MARCKS) and the MARCKS-related protein (MRP) are members of a distinct family of protein ki-nase C (PKC) substrates that bind calmodulin (CaM) in a manner regulated by Ca2+ and phosphorylation by PKC. The CaM binding region overlaps with the PKC phosphorylation sites, suggesting a potential coupling between Ca2+-CaM signalling and PKC-mediated phosphorylation cascades. We have studied Ca2+ binding of CaM complexed with CaM binding peptides from MARCKS and MRP using flow dialysis, NMR and circular dichroism (CD) spectroscopy. The wild-type MARCKS and MRP peptides induced significant increases in the Ca2+ affinity of CaM (pCa 6.1 and 5.8, respectively, compared to 5.2, for CaM in the absence of bound peptides), whereas a modified MARCKS peptide, in which the four serine residues susceptible to phosphorylation in the wild-type sequence have been replaced with aspartate residues to mimic phosphorylation, had smaller effect (pCa 5.6). These results are consistent with the notions that phosphorylation of MARCKS reduces its binding affinity for CaM and that the CaM binding affinity of the peptides is coupled to the Ca2+ affinity of CaM. All three MARCKS/MRP peptides perturbed the backbone NMR resonances of residues in both the N- and C-terminal domains of CaM and, in addition, the wild-type MARCKS and the MRP peptides induced strong positive cooperativity in Ca2+ binding by CaM, suggesting that the peptides interact with the amino- and carboxy-terminal domains of CaM simultaneously. NMR analysis of the Ca2+-CaM-MRP peptide complex, as well as CD measurements of Ca2+-CaM in the presence and absence of MARCKS/MRP peptides suggest that the peptide bound to CaM is non-helical, in contrast to the α-helical conformation found in the CaM binding regions of myosin light-chain kinase and CaM-dependent protein kinase II. The adaptation of the CaM molecule for binding the peptide requires disruption of its central helical linker between residues Lys-75 and Glu-82. Received: 26 September 1996 / 22 October 1996  相似文献   

15.
16.
17.
Reactive oxygen intermediates (ROI) have been viewed traditionally as damaging to the cell. However, a predominance of evidence has shown that ROI can also function as important activators of key cellular processes, and ROI have been shown to play a vital role in cell signaling networks. The calcium/calmodulin-dependent protein kinases (CaM kinases) are a family of related kinases that are activated in response to increased intracellular calcium concentrations. In this report we demonstrate that hydrogen peroxide treatment results in the activation of both CaM kinase II and IV in Jurkat T lymphocytes. Surprisingly, this activation occurs in the absence of any detectable calcium flux, suggesting a novel means for the activation of these kinases. Treatment of Jurkat cells with phorbol 12-myristate 13-acetate (PMA), which does not cause a calcium flux, also activated the CaM kinases. The addition of catalase to the cultures inhibited PMA-induced activation of the CaM kinases, suggesting that similar to hydrogen peroxide, PMA also activates the CaM kinases via the production of ROI. One mechanism by which this likely occurs is through oxidation and consequential inactivation of cellular phosphatases. In support of this concept, okadaic acid and microcystin-LR, which are inhibitors of protein phosphatase 2A (PP2A), induced CaM kinase II and IV activity in these cells. Overall, these results demonstrate a novel mechanism by which ROI can induce CaM kinase activation in T lymphocytes.  相似文献   

18.
Calmodulin (CaM) binds to the FERM domain of 80 kDa erythrocyte protein 4.1R (R30) independently of Ca2+ but, paradoxically, regulates R30 binding to transmembrane proteins in a Ca2+-dependent manner. We have previously mapped a Ca2+-independent CaM-binding site, pep11 (A264KKLWKVCVEHHTFFR), in 4.1R FERM domain and demonstrated that CaM, when saturated by Ca2+ (Ca2+/CaM), interacts simultaneously with pep11 and with Ser185 in A181KKLSMYGVDLHKAKD (pep9), the binding affinity of Ca2+/CaM for pep9 increasing dramatically in the presence of pep11. Based on these findings, we hypothesized that pep11 induced key conformational changes in the Ca2+/CaM complex. By differential scanning calorimetry analysis, we established that the C-lobe of CaM was more stable when bound to pep11 either in the presence or absence of Ca2+. Using nuclear magnetic resonance spectroscopy, we identified 8 residues in the N-lobe and 14 residues in the C-lobe of pep11 involved in interaction with CaM in both of presence and absence of Ca2+. Lastly, Kratky plots, generated by small-angle X-ray scattering analysis, indicated that the pep11/Ca2+/CaM complex adopted a relaxed globular shape. We propose that these unique properties may account in part for the previously described Ca2+/CaM-dependent regulation of R30 binding to membrane proteins.  相似文献   

19.
Wu LJ  Xu LR  Liao JM  Chen J  Liang Y 《PloS one》2011,6(7):e21929

Background

Ras protein, as one of intracellular signal switches, plays various roles in several cell activities such as differentiation and proliferation. There is considerable evidence showing that calmodulin (CaM) binds to K-RasB and dissociates K-RasB from membrane and that the inactivation of CaM is able to induce K-RasB activation. However, the mechanism for the interaction of CaM with K-RasB is not well understood.

Methodology/Principal Findings

Here, by applying fluorescence spectroscopy and isothermal titration calorimetry, we have obtained thermodynamic parameters for the interaction between these two proteins and identified the important elements of K-RasB for its interaction with Ca2+/CaM. One K-RasB molecule interacts with one CaM molecule in a GTP dependent manner with moderate, micromolar affinity at physiological pH and physiologic ionic strength. Mutation in the polybasic domain of K-Ras decreases the binding affinity. By using a chimera in which the C-terminal polylysine region of K-RasB has been replaced with that of H-Ras and vice versa, we find that at physiological pH, H-Ras-(KKKKKK) and Ca2+/CaM formed a 1∶1 complex with an equilibrium association constant around 105 M−1, whereas no binding reaction of K-RasB-(DESGPC) with Ca2+/CaM is detected. Furthermore, the interaction of K-RasB with Ca2+/CaM is found to be enhanced by the farnesylation of K-RasB.

Conclusions/Significance

We demonstrate that the polylysine region of K-RasB not only contributes importantly to the interaction of K-RasB with Ca2+/CaM, but also defines its isoform specific interaction with Ca2+/CaM. The farnesylation of K-RasB is also important for its specific interaction with Ca2+/CaM. Information obtained here can enhance our understanding of how CaM interacts with K-RasB in physiological environments.  相似文献   

20.
We have previously proposed a role for calmodulin (CaM) in the regulation of initiation of Ca2+ entry in Jurkat T cells, as well as in the regulation of the current that mediates Ca2+ entry, IT. In this report, we provide evidence for the mechanism of CaM action. We have previously shown that activation-induced Ca 2+ entry into Jurkat T cells is mediated by a current we have called IT. In the whole cell variation, but not the perforated patch variation, of the patch clamp technique, this current is short-lived (under 6 min) suggesting that the current is under the control of a diffusible component of the cytosol. Addition of CaM to the whole cell recording pipette solution maintained IT for up to 20 min, suggesting that CaM may be this diffusible component. Pharmacological inhibitors of CaM blocked the augmentation of IT normally induced by an activating stimulus. Cells electroporated in the presence of anti-CaM antibodies had reduced influx of extracellular Ca2+, with no change in release of Ca2+ from the internal stores. These observations suggest that T cell receptor engagement initiates Ca2+ influx by a pathway that likely includes CaM, which may in turn regulate IT. Influx of extracellular Ca2+ is required for cellular proliferation, and inhibition of CaM by pharmacological inhibitors reduced cellular proliferation. This same inhibition of proliferation was seen in cells electroporated with anti-CaM antibodies. This suggests that inhibition of CaM and/or IT may be a target for therapeutic inhibition of inappropriate T cell proliferation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号