首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The mechanism of iron transport into erythroid cells was investigated using rabbit reticulocytes and mature erythrocytes incubated with 59Fe-labelled Fe(II) in isotonic sucrose or in solutions in which the sucrose was replaced with varying amounts of isotonic NaCl or KCl. Iron uptake was inhibited at all concentrations of NaCl, in a concentration-dependent manner, but with KCl inhibition occurred only at concentrations up to 10 mM. Higher KCl concentrations stimulated iron uptake to the cytosol of the cells, but inhibited its incorporation into heme. This effect became more marked as the iron concentration was raised. It was found that KCl inhibits iron incorporation into heme and stimulates iron uptake by mature erythrocytes, as well as by reticulocytes. It is concluded that erythroid cells can take up nontransferrin-bound Fe(II) by two mechanisms. One is a high-affinity mechanism that is limited to reticulocytes, saturates at a low iron concentration, and is inhibited by metabolic inhibitors. The other is a low-affinity process that is found in both reticulocytes and erythrocytes, becomes more prominent at higher iron concentrations, and is stimulated by KCl, as well as RbCl, LiCl, CsCl, and choline Cl. The KCl stimulation is inhibited by amiloride, but not by metabolic inhibitors, and its operation is not dependent on changes in cell volume or membrane potential, but it does require the presence of a permeant extracellular anion. Iron uptake by this process appears to occur by facilitated transport and is possibly assoicated with exchange of Na+. A further aspect of this study was a comparison of iron uptake by reticulocytes from Fe(II)-sucrose and Fe(II)-ascorbate using a variety of incubation conditions. No major differences were observed. © 1995 Wiley-Liss, Inc.  相似文献   

2.
The uptake of Ca2+ and Sr2+ by the yeast Saccharomyces cerevisiae is energy dependent, and shows a deviation from simple Michaelis-Menten kinetics. A model is discussed that takes into account the effect of the surface potential and the membrane potential on uptake kinetics.The rate of Ca2+ and Sr2+ uptake is influenced by the cell pH and by the medium pH. The inhibition of uptake at low concentrations of Ca2+ and Sr2+ at low pH may be explained by a decrease of the surface potential.The inhibition of Ca2+ and Sr2+ uptake by monovalent cations is independent of the divalent cation concentration. The inhibition shows saturation kinetics, and the concentration of monovalent cation at which half-maximal inhibition is observed, is equal to the affinity constant of this ion for the monovalent cation transport system. The inhibition of divalent cation uptake by monovalent cations appears to be related to depolarization of the cell membrane.Phosphate exerts a dual effect on uptake of divalent cations: and initial inhibition and a secondary stimulation. The inhibition shows saturation kinetics, and the inhibition constant is equal to the affinity constant of phosphate for its transport mechanism. The secondary stimulation can only partly be explained by a decrease of the cell pH, suggesting interaction of intracellular phosphate, or a phosphorylated compound, with the translocation mechanism.  相似文献   

3.
It is known that heme iron and inorganic iron are absorbed differently. Heme iron is found in the diet mainly in the form of hemoglobin and myoglobin. The mechanism of iron absorption remains uncertain. This study focused on the heme iron uptake by Caco-2 cells from a hemoglobin digest and its response to different iron concentrations. We studied the intracellular Fe concentration and the effect of time, K+ depletion, and cytosol acidification on apical uptake and transepithelial transport in cells incubated with different heme Fe concentrations. Cells incubated with hemoglobin-digest showed a lower intracellular Fe concentration than cells grown with inorganic Fe. However, uptake and transepithelial transport of Fe was higher in cells incubated with heme Fe. Heme Fe uptake had a low V max and K m as compared to inorganic Fe uptake and did not compete with non-heme Fe uptake. Heme Fe uptake was inhibited in cells exposed to K+ depletion or cytosol acidification. Heme oxygenase 1 expression increased and DMT1 expression decreased with higher heme Fe concentrations in the media. The uptake of heme iron is a saturable and temperature-dependent process and, therefore, could occur through a mechanism involving both a receptor and the endocytic pathway.  相似文献   

4.
In the previous paper, we showed that the K+ channels of the mouse neuroblastoma cell (clone N-18) are closed at low concentration of external K+ ([K+]0) including the physiological concentration for the cells. In the present study, the origin of the resting membrane potential of N-18 cells has been examined. (1) The resting membrane potential of N-18 cells was depolarized by increasing concentration of the polyvalent cations (La3+, Fe3+, Co2+, Ca2+, Sr2+, Mg2+) and by decreasing the pH of the medium. The input membrane resistance was slightly increased during the depolarization. The depolarization was not explained in terms of the diffusion of the cations across the membrane, since the trivalent cations of greater ionic size were effective at much lower concentrations than the divalent cations. The results obtained from the measurements of 86Rb efflux suggested that the depolarization cannot be explained in terms of blocking of the K+ channels by the cations. (2) An increase in Ca2+ concentration from 0.3 to 1.8 mM induced depolarization of about 10 mV at low [K+]0 where the K+ channels are closed, but did not induce any depolarization at high [K+]0 where the channels are open. (3) In order to estimate the changes in the zeta-potential, the electrophoretic mobility of N-18 cells was measured under various conditions. There was a close correlation between the changes in the zeta-potential and those in the membrane potential in response to the polyvalent cations and proton. On the other hand, an increase in K+-concentration in the medium, which induced a large depolarization in the cells, did not affect the zeta-potential. (4) The results obtained were explained by an electrical circuit model for the membranes of N-18 cells. In this model, an electrical circuit for the membrane part carrying no selective ionic channels, in which changes in the surface potential directly affect the transmembrane potential, is connected in parallel to the usual circuit model representing selective ionic channel systems. It was concluded that the surface potential contributes significantly to the resting membrane potential of N-18 cells at low [K+]0 where the K+ channels are closed.  相似文献   

5.
Nonesterified long-chain fatty acids (myristic, palmitic, oleic and arachidonic), added at low amounts (around 20 nmol/mg protein) to rat liver mitochondria, energized by respiratory substrates and suspended in isotonic solutions of KCl, NaCl, RbCl or CsCl, adjusted to pH 8.0, induce a large-scale swelling followed by a spontaneous contraction. Such swelling does not occur in alkaline solutions of choline chloride or potassium gluconate or sucrose. These changes in the matrix volume reflect a net uptake, followed by net extrusion, of KCl (or another alkali metal chloride) and are characterized by the following features: (1) Lowering of medium pH from 8.0 to 7.2 results in a disappearance of the swelling-contraction reaction. (2) The contraction phase disappears when the respiration is blocked by antimycin A. (3) Quinine, an inhibitor of the K+/H+ antiporter, does not affect swelling but suppresses the contraction phase. (4) The swelling phase is accompanied by a decrease of the transmembrane potential and an increase of respiration, whereas the contraction is followed by an increase of the membrane potential and a decrease of oxygen uptake. (5) Nigericin, a catalyst of the K+/H+ exchange, prevents or partly reverses the swelling and partly restores the depressed membrane potential. These results indicate that long-chain fatty acids activate in liver mitochondria suspended in alkaline saline media the uniporter of monovalent alkali metal cations, the K+/H+ antiporter and the inner membrane anion channel. These effects are presumably related to depletion of mitochondrial Mg2+, as reported previously [Arch. Biochem. Biophys. 403 (2002) 16], and are responsible for the energy-dissipating K+ cycling. The uniporter and the K+/H+ antiporter are in different ways activated by membrane stretching and/or unfolding, resulting in swelling followed by contraction.  相似文献   

6.
Summary Conventional microelectrode techniques were combined with unilateral mucosal ionic substitutions to determine the effects of luminal pH and luminal alkali-earth cation concentrations on apical membrane cation permeability inNecturus gallbladder epithelium. Acidification of the mucosal solution caused reversible depolarization of both cell membranes and increase of transepithelial resistance. Low pH media also caused: (a) reduction of the apical membrane depolarization induced by high K, and (b) increase of the apical membrane hyperpolarization produced by Na replacement with Li or N-Methyl-d-glucamine. These results, in conjunction with estimates of cell membrane conductances, indicate that acidification of the luminal solution produces a reduction of apical membrane K permeability (P K). Addition of alkali earth cations (Mg2+, Ca2+, Sr2+, or Ba2+) produced cell membrane depolarization, increase of relative resistance of the luminal membrane and reduction of the apical membrane potential change produced by a high-K mucosal medium. These results, as those produced by low pH, can be explained by a reduction of apical membraneP K. The effects of Ba2+ on membrane potential and relative apical membraneP K were larger than those of all other four cations at all concentrations tested (1–10mm). The effect of Sr2+ was significantly larger than those of Mg2+ and Ca2+ at 10mm, but not different at 5mm. The reduction ofP K produced by mucosal acidification appears to be mediated by: (a) nonspecific titration of membrane fixed negative charges, and (b) an effect of luminal proton activity on the apical K channel. Divalent cations reduce apical membraneP K probably by screening negative surface charges. The larger magnitude of the effects of Ba2+ and Sr2+ can be explained by binding to membrane sites, in the surface or in the K channel, in addition to their screening effect. We suggest that the action of luminal pH on K secretion in some segments of the renal tubule could be mediated in part by this pH-dependent K permeability of the luminal membrane.  相似文献   

7.
The mechanism of adaptation to Fe-deficiency stress was investigated in the unicellular green alga, Chlamydomonas reinhardtii. Upon removal of nutritional Fe, the activity of a cell surface Fe(III)-chelate reductase was increased by at least 15-fold within 24 h. This increase was negatively corelated with the Fe concentration in the growth media. Incubation of cells in the presence of the Fe2+-specific chelator, bathophenanthrolinedisulphonic acid, led to an increased Fe3+ reductase activity, even when sufficient Fe was present. Growth of cells in Cu-free media for 48 h led to no statistically significant increase in Fe3+ reductase activity. The Fe(III)-chelate reductase activity in Fe-starved cells was saturable with an apparent Km of 31 M and was inhibited by uncouplers of the transmembrane proton gradient but not by SH-specific reagents.Fe uptake was only observed in Fe-deficient cells. Uptake was specific for Fe in that at 100-fold excess of a number of metal ions in the transport assay did not inhibit uptake activity. However, a 100-fold excess of Cu resulted in a 87% inhibition of Fe uptake. The Vmax for Fe3+ reduction activity was 250-fold greater than for Fe uptake; although the Km values for both processes differed by only 10-fold. Thus, the rate limiting step in Fe assimilation was transport and not reduction. These results indicate that Fe assimilation in C. reinhardtii involves a reductive step and thus resembles the mechanism of Fe uptake in Strategy I higher plants.Keywords: Ferric chelate reduction, iron assimilation, iron uptake, unicellular green algae, Chlamydomonas.   相似文献   

8.
Protein kinases dedicated to the phosphorylation of SR proteins have been implicated in the processing and nuclear export of mRNAs. Here we demonstrate in Saccharomyces cerevisiae their participation in cation homeostasis. A null mutant of the single yeast SR protein kinase Sky1p is viable but exhibits increased tolerance to diverse toxic cations such as Na+, Li+, spermine, tetramethylammonium, hygromycin B and Mn2+. This pleiotropic phenotype correlates with reduced accumulation of cations, suggesting a decrease in membrane electrical potential. Genetic analysis and Rb+ uptake measurements indicate that Sky1p modulates Trk1,2, the high-affinity K+ uptake system of yeast and a major determinant of membrane potential.  相似文献   

9.
A fast and environmentally safe procedure was used to study sugar uptake by Azotobacter vinelandii. Transport experiments were performed in a 24-well plate and aerated by rapid oscillatory vibration. Samples were washed by centrifugation and dissolved in biodegradable scintillation cocktail for counting. At cell concentrations up to 6 × 108 cells per ml, the uptake of sucrose was a function of time and was proportional to the cell concentration. This modified uptake assay was used to test the effect of cations on sugar uptake in A. vinelandii. Results showed that Ca2+ at 1 to 2 mM stimulated sucrose uptake by decreasing the apparent Km of sucrose transport. Higher Ca2+ concentrations inhibited sucrose uptake in this organism.  相似文献   

10.
We have investigated the effect of succinylacetone (4,6-dioxoheptanoic acid) on hemoglobin synthesis and iron metabolism in reticulocytes. Succinylacetone, 0.1 and 1 mM, inhibited [2-14C]glycine incorporation into heme by 91.2 and 96.4%, respectively, and into globin by 85 and 90.2%, respectively. 60 μM hemin completely prevented the inhibition of globin synthesis by succinylacetone, indicating that succinylacetone inhibits specifically the synthesis of heme. Added porphobilinogen, but not δ-aminolevulinic acid, partly overcame the inhibition of 59Fe incorporation into heme caused by succinylacetone suggesting that the drug inhibits δ-aminolevulinic acid dehydratase in reticulocytes. Succinylacetone, 10 μM, 0.1 and 1 mM, inhibited 59Fe incorporation into heme by 50, 90 and 93%, respectively, but stimulated reticulocyte 59Fe uptake by about 25–30%. In succinylacetone-treated cells 59Fe accumulates in a fraction containing plasma membranes and mitochondria as well as cytosol ferritin and an unidentified low molecular weight fraction obtained by Sephacryl S-200 chromatography. Reincubation of washed succinylacetone- and 59Fe-transferrin-pretreated reticulocytes results in the transfer of 59Fe from the particulate fraction (plasma membrane plus mitochondria) into hemoglobin and this process is considerably stimulated by added protoporphyrin. Although the nature of the iron accumulated in the membrane-mitochondria fraction in succinylacetone-treated cells is unknown some of it is utilizable for hemoglobin synthesis, while cytosolic ferritin iron would appear to be mostly unavailable for incorporation into heme.  相似文献   

11.
Summary The involvement of membrane phospholipids in the utilization of transferrinbound iron by reticulocytes was investigated using [59Fe]- and [125I]-labelled transferrin and rabbit reticulocytes which had been incubated with phospholipas A. Transferrin and iron uptake and release were all inhibited by phospholipas A which produced a marked decrease in the relative abundance of phosphatidylcholine and phosphatidylethanolamine and equivalent increases in their lyso-compounds in the reticulocyte plasma membrane. There was a close correlation between the iron uptake rate and the rate and amount of transferrin uptake and the amount of the lysophospholipids in the membrane. Incubation of the cells with exogenous lysophosphatidylethanolamine or lysophosphatidylcholine also produced inhibition of iron and transferrin uptake. The reduced uptake produced by phospholipase A could be reversed if the lyso-compounds were removed by fatty acid-free bovine serum albumin or by reincubation in medium 199. Treatment with phospholipase A was shown to increase the amount of transferrin bound by specific receptors on the reticulocyte membrane but to inhibit the entry of transferrin into the cells.The present investigation provides evidence that the phospholipid composition of the cell membrane influences the interaction of transferrin with its receptors, the processes of endocytosis and exocytosis whereby transferrin enters and leaves the cells, and the mechanism by which iron is mobilized between its binding to transferrin and incorporation into heme. In addition, the results indicate that phosphatidylethanolamine is present in the outer half of the lipid bilayer of reticulocyte membrane.  相似文献   

12.
The uptake of Ca2+ and its regulation in the cyanobacterium Nostoc MAC were investigated. Cation uptake pattern was found to be biphasic, consisting of (a) rapid binding of cations to the negatively charged cell surface and (b) its metabolism dependent on intracellular import at least up to 60 min with the saturation at 2 mM Ca2+ (K m , 1.5 mM, Vmax 42.1 nmol Ca2+ mg−1 protein min−1 ). The cellular Ca2+ uptake was light and ATP dependent, and the addition of 3(3,4-dichlorophenyl)-1,1-dimethyl urea (DCMU) or exogenous ATP proved the vital role of PS II-generated energy to drive the process. The significant inhibition of Ca2+ uptake by different metabolic inhibitors and uncouplers like p-chloromercuribenzoate (pCMB), carbonylcyanide-p-nitrofluoromethoxylphenyl hydrazone (FCCP), N′N-dicyclohexylcarbodiimide (DCCD) and azide revealed that -SH group(s), proton gradient across the cell membrane, and ATP hydrolysis were involved in the transmembrane movement of Ca2+ in Nostoc MAC cells. Verapamil showed antagonism, abscisic acid (ABA) agonism, while trifluoroperazine (TFP) and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) exerted no effect on Ca2+ uptake.  相似文献   

13.
Several mineral rhizotoxicities, including those induced by Al3+, H+, and Na+, can be relieved by elevated Ca2+ in the rooting medium. This leads to the hypothesis that the toxic cations displace Ca2+ from transport channels or surface ligands that must be occupied by Ca2+ in order for root elongation to occur. In this study with wheat (Triticum aestivum L.) seedlings, we have determined, in the case of Al3+, that (i) Ca2+, Mg2+, and Sr2+ are equally ameliorative, (ii) that root elongation does not increase as Ca2+ replaces Mg2+ or Sr2+ in the rooting media, and (iii) that rhizotoxicity is a function solely of Al3+ activity at the root-cell membrane surface as computed by a Gouy-Chapman-Stern model. The rhizotoxicity was indifferent to the computed membrane-surface Ca2+ activity. The rhizotoxicity induced by high levels of tris(ethylenediamine)cobaltic ion (TEC3+), in contrast to Al3+, was specifically relieved by Ca2+ at the membrane surface. The rhizotoxicity induced by H+ exhibited a weak specific response to Ca2+ at the membrane surface. We conclude that the Ca2+-displacement hypothesis fails in the case of Al3+ rhizotoxicity and that amelioration by cations (including monovalent cations) occurs because of decreased membrane-surface negativity and the consequent decrease in the membrane-surface activity of Al3+. However, TEC3+, but not Al3+, may be toxic because it inhibits Ca2+ uptake. The nature of the specific H+-Ca2+ interaction is uncertain.Abbreviations {Al3+ }0 chemical activity of Al3+ at the root-cell membrane surface - {Al3+ }E chemical activity of Al3+ in the external rooting medium - E0 electrical potential at the root-cell membrane surface - HXM2+ hexamethonium ion - TEC3+ tris(ethylenediamine)cobaltic ion  相似文献   

14.
The bioavailability and utilization of porphyrin-bound iron, specifically heme, by marine microorganisms have rarely been examined. This study used Ruegeria sp. strain TrichCH4B as a model organism to study heme acquisition by a member of the Roseobacter clade. Analogs of known heme transporter proteins were found within the Ruegeria sp. TrichCH4B genome. The identified heme uptake and utilization system appears to be functional, as the heme genes were upregulated under iron stress, the bacterium could grow on ferric-porphyrin complexes as the sole iron source, and internalization of 55 Fe from ferric protoporphyrin IX was observed. The potential ability to utilize heme in the Roseobacter clade appears to be common, as half of the isolates in the RoseoBase database were found to have a complete heme uptake system. A degenerate primer set was designed and successfully used to identify the putative heme oxygenase gene (hmus) in the roseobacter heme uptake system from diverse nonenriched marine environments. This study found that members of the Roseobacter clade are capable of utilizing heme as an iron source and that this capability may be present in all types of marine environments. The results of this study add a new perspective to the current picture of iron cycling in marine systems, whereby relatively refractory intracellular pools of heme-bound iron may be taken up quickly and directly reincorporated into living bacteria without previous degradation or the necessity of a siderophore intermediate.  相似文献   

15.
Summary The nature of the Ca2+ buffer sites in intact rod outer segments isolated from bovine retinas (ROS) was investigated. The predominant Ca2+ buffer in intact ROS was found to be negatively charged groups confined to the surface of the disk membranes. Accordingly, Ca2+ buffering in ROS was strongly influenced by the electrostatic surface potential. The concentration of Ca2+ buffer sites was about 30mm, 80% of which were located at the membrane surface in the intradiskal space. A comparison with observations in model systems suggests that phosphatidylserine is the major Ca2+ buffer site in ROS. Protons and alkali cations could replace Ca2+ as mobile counterions for the fixed negatively charged groups. At physiological ionic strength, the total number of these diffusible, but osmotically inactive, counterions was as large as the number of osmotically active cations in ROS. The surface potential is dependent on the concentration of cations in ROS and can be measured with the optical dye neutral red. Addition of cations to the external solution led to the release of the internally bound dye as the cations crossed the outer membrane. The chemical and spectral properties of the dye enable its use as a real-time indicator of cation transport across the outer envelope of small particles in suspension. In this study, the dye method is illustrated by the use of well-defined ionophores in intact ROS and in liposomes. In the companion paper this method is used to describe the cation permeabilities native to ROS.  相似文献   

16.
Summary Specificity of reception on 11 electrolytes in the slime moldPhysarum polycephalum was investigated in the presence of polyvalent cations in media. Membrane potential and motive force of tactic movement were examined with the aid of the double chamber method, and the zeta potential at the membrane surface of the slime mold was measured by electrophoretic mobility. The results obtained are summarized as follows: (1) The presence of polyvalent cations (e.g., Ca2+, Mg2+, Sr2+, Ba2+, La3+, Th4+) in medium led to an increase in threshold concentration,C th , determined from the potential measurements for Na- or Li-salts, and to a decrease inC th for K-, Rb-, or NH4-salts,C th for 11 electrolytes changed discontinuously when the concentration of polyvalent cations in medium exceeded their respective thresholds. (2) TheC th determined from chemotaxis agreed with that from the potential response both in the presence and absence of polyvalent cations. (3) Sequence of selectivity of univalent cations varied extensively in the presence of polyvalent cations. (4) Changes in the zeta potential induced by NaCl reception agreed with those in the membrane potential even in the presence of Ca2+ in medium. (5) TheC th for reception of NaCl changed sharply at about 12 °C in the presence of polyvalent cations, while that for KCl was independent of the temperature.Conformational changes in surface membrane of the slime mold in response to reception of polyvalent cations were then discussed in relation to the discrimination of univalent cations.  相似文献   

17.
Belgrade (b) rats have an autosomal recessive, microcytic, hypochromic anemia. Transferrin (Tf)-dependent iron uptake is defective because of a mutation in DMT1 (Nramp2), blocking endosomal iron efflux. This experiment of nature permits the present study to address whether the mutation also affects non-Tf-bound iron (NTBI) uptake and to use NTBI uptake compared to Tf-Fe utilization to increase understanding of the phenotype of the b mutation. The distribution of 59Fe2+ into intact erythroid cells and cytosolic, stromal, heme, and nonheme fractions was different after NTBI uptake vs. Tf-Fe uptake, with the former exhibiting less iron into heme but more into stromal and nonheme fractions. Both reticulocytes and erythrocytes exhibit NTBI uptake. Only reticulocytes had heme incorporation after NTBI uptake. Properly normalized, incorporation into b/b heme was ∼20% of +/b, a decrease similar to that for Tf-Fe utilization. NTBI uptake into heme was inhibited by bafilomycin A1, concanamycin, NH4Cl, or chloroquine, consistent with the endosomal location of the transporter; cellular uptake was uninhibited. NTBI uptake was unaffected after removal of Tf receptors by Pronase or depletion of endogenous Tf. Concentration dependence revealed that NTBI uptake into cells, cytosol, stroma, and the nonheme fraction had an apparent low affinity for iron; heme incorporation behaved like a high-affinity process, as did an expression assay for DMT1. DMT1 serves in both apparent high-affinity NTBI membrane transport and the exit of iron from the endosome during Tf delivery of iron in rat reticulocytes; the low-affinity membrane transporter, however, exhibits little dependence on DMT1. J. Cell. Physiol. 178:349–358, 1999. © 1999 Wiley-Liss, Inc.  相似文献   

18.
19.
When Azotobacter vinelandii was grown in the presence of low levels of iron, the addition of 20 or 40 μM ZnSO4 caused earlier production of the catechol siderophores and a dramatic increase in the amount of azotobactin. The level of cellular iron was not significantly lowered in Zn2+ -grown cells, which suggested that Zn2+ was not causing more severe, or earlier, iron limitation. Also, Zn2+ did not appear to affect production of the high-molecular-weight outer membrane iron-repressible proteins that presumably function as ferrisiderophore receptors. Spectrophotometric examination of ion binding to the siderophores revealed that while the siderophores appeared to bind Zn2+, only in the case of azotochelin was iron unable to completely overcome any Zn2+ -induced changes in the absorption spectra. This appeared to rule out direct competition of Zn2+ with iron for binding to the siderophores. 55Fe uptake was depressed both in Zn2+ -grown cells and in Zn2+ -free cells to which Zn2+ was added during the uptake assay, except with azotobactin, with which the level of 55Fe uptake by Zn2+ -grown cells was close to control levels. These results suggested two possible sites where Zn2+ could be acting, one involving the biosynthesis of siderophores and possibly the genetic regulation of the iron assimilation system and the other involving an internal point common to iron assimilation by both high- and low-affinity iron uptake.  相似文献   

20.
The kinetic plot (initial rate of Ca2+ transport versus concentration) of mitochondrial Ca2+ transport is hyperbolic in a sucrose medium. The plot becomes sigmoidal in the presence of competitive inhibitors of Ca2+ binding to low affinity sites of the membrane surface such as Mg2+ and K+. The plot also becomes sigmoidal in the presence of Ba2+. Ba2+ is a competitive inhibitor of both Ca2+ transport and Ca2+ binding to the low affinity sites. The Ki for the inhibition of Ca2+ transport by Ba2+ increases in the presence of K+ and Mg2+, which suggests a competition for the low affinity sites between the cations. The plot is still hyperbolic in the presence of La3+, which inhibits Ca2+ transport competitively. Ruthenium red which is a pure non-competitive inhibitor of mitochondrial Ca2+ transport, does not affect the shape of the kinetic plot. These results indicate that the surface potential, which depends on the ions bound to the low affinity sites, determines whether the kinetics of Ca2+ uptake in mitochondria is sigmoidal or hyperbolic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号