首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Comparative modeling of mammalian aspartate transcarbamylase   总被引:1,自引:0,他引:1  
J L Scully  D R Evans 《Proteins》1991,9(3):191-206
Mammalian aspartate transcarbamylase (ATCase) is part of a 243 kDa multidomain polypeptide, called CAD, that catalyzes the first three steps in de novo pyrimidine biosynthesis. The structural organization of the mammalian enzyme is very different from E. coli ATCase, a dodecameric, monofunctional molecule comprised of six copies of separate catalytic and regulatory chains. Nevertheless, sequence similarities and other properties suggested that the mammalian ATCase domain and the E. coli ATCase catalytic chain have the same tertiary fold. A model of mammalian ATCase was built using the X-ray coordinates of the E. coli catalytic chain as a tertiary template. Five small insertions and deletions could be readily accommodated in the model structure. Following energy minimization the RMS difference in the alpha carbon positions of the mammalian and bacterial proteins was 0.93 A. A comparison of the hydrophobic energies, surface accessibility index, and the distribution of hydrophilic and hydrophobic residues of the CAD ATCase structure with correctly and incorrectly folded proteins and with several X-ray structures supported the validity of the model. The mammalian ATCase domain associates to form a compact globular trimer, a prerequisite for catalysis since the active site is comprised of residues from adjacent subunits. Interactions between the clearly defined aspartate and carbamyl phosphate subdomains of the monomer were largely preserved while there was appreciable remodeling of the trimeric interfaces. Several clusters of basic residues are located on the upper surface of the domain which account in part for the elevated isoelectric point (pI = 9.4) and may represent contact regions with other more acidic domains within the chimeric polypeptide. A long interdomain linker connects the monomer at its upper surface to the remainder of the polypeptide. The configuration of active site residues is virtually identical in the mammalian and bacterial enzymes. While the CAD ATCase domain can undergo the local conformational changes that accompany catalysis in the E. coli enzyme, the high activity, closed conformation is probably more stable in the mammalian enzyme.  相似文献   

2.
Summary Although aspartate transcarbamylase (ATCase) is an independent, monofunctional enzyme in Escherichia coli, mammalian ATCase is one of the globular enzymatic domains of the multifunctional CAD protein. We subcloned fragments of the hamster CAD cDNA and assayed polypeptide products expressed in E. coli for ATCase activity in order to isolate a stretch of cDNA which encodes only the ATCase domain. Three such expression constructs contain fragments of hamster CAD cDNA similar in length to the gene encoding the E. coli ATCase catalytic subunit (pyrB). These constructs yield stable proteins with ATCase activity, ascertained by both in vivo and in vitro assays; the clones also possess sequence homology with the pyrB gene at both the 5 and 3 ends. The clone producing the most active ATCase contains cDNA which is analogous to the entire pyrB gene, plus a small amount of CAD sequence upstream of this region. Because these constructs produce independently folded, active ATCase from a piece of cDNA the size of the E. coli pyrB gene, they open the door for the in-depth investigation of the isolated mammalian enzyme domain utilizing recombinant DNA technology. This approach is potentially useful for the analysis of domains of other multifunctional proteins.Abbreviations (EC 2.1.3.2) ATCase, aspartate transcarbamylase - CAD the trifunctional protein catalyzing the first three steps of pyrimidine biosynthesis in higher eukaryotes - (EC 6.3.5.5) CPSaseII, glutamine-dependent carbamylphosphate synthetase II - (EC 3.5.2.3) DHOase, dihydroorotase - IPTG isopropyl--d-thiogalactopyranoside  相似文献   

3.
Predictions of tertiary structures of proteins from their amino acid sequences are facilitated greatly when the structures of homologous proteins are known. On this basis, structural features of Escherichia coli ornithine transcarbamoylase (OTCase) were investigated by site-directed mutagenesis experiments based on the known tertiary structure of the catalytic (c) chain of E. coli aspartate transcarbamoylase (ATCase). In ATCase, each c chain is composed of two globular domains connected by two interdomain helices, one of which is near the C-terminus and is critical for the in vivo folding of the chains and their assembly into trimers. Each active site is located at the interface between two chains and requires the participation of residues from each of the adjacent chains. OTCase, a trimeric enzyme, has been proposed to be similar in structure to the ATCase trimer on the basis of sequence identity (32%), the nature of the reaction catalyzed by the enzyme, and secondary structure predictions. As shown here, analysis of OTCase and ATCase sequences revealed extensive evolutionary conservation in portions corresponding to the ATCase active site and the C-terminal helix. Truncations and substitutions within the predicted C-terminal helix of OTCase had effects on activity and thermal stability strikingly similar to those caused by analogous alterations in ATCase. Similarly, substitutions at either of two conserved residues, Ser 55 and Lys 86, in the proposed active site of OTCase had deleterious effects parallel to those caused by the analogous ATCase substitutions. Hybrid trimers comprised of chains from both these relatively inactive OTCase mutants exhibited dramatically increased activity, as predicted for shared active sites located at the chain interfaces. These results strongly support the hypothesis that the tertiary and quaternary structures of the two enzymes are similar.  相似文献   

4.
Summary Aspartate transcarbamoylase (ATCase, EC 2.1.3.2) is the first unique enzyme common to de novo pyrimidine biosynthesis and is involved in a variety of structural patterns in different organisms. InEscherichia coli, ATCase is a functionally independent, oligomeric enzyme; in hamster, it is part of a trifunctional protein complex, designated CAD, that includes the preceding and subsequent enzymes of the biosynthetic pathway (carbamoyl phosphate synthetase and dihydroorotase). The complete complementary DNA (cDNA) nucleotide sequence of the ATCase-encoding portion of the hamster CAD gene is reported here. A comparison of the deduced amino acid sequences of the hamster andE. coli catalytic peptides revealed an overall 44% amino acid similarity, substantial conservation of predicted secondary structure, and complete conservation of all the amino acids implicated in the active site of theE. coli enzyme. These observations led to the construction of a functional hybrid ATCase formed by intragenic fusion based on the known tertiary structure of the bacterial enzyme. In this fusion, the amino terminal half (the “polar domain”) of the fusion protein was provided by a hamster ATCase cDNA subclone, and the carboxyl terminal portion (the “equatorial domain”) was derived from a clonedpyrBI operon ofE. coli K-12. The recombinant plasmid bearing the hybrid ATCase was shown to satisfy growth requirements of transformedE. coli pyrB cells. The functionality of thisE. coli-hamster hybrid enzyme confirms conservation of essential structure-function relationships between evolutionarily distant and structurally divergent ATCases.  相似文献   

5.
Regulatory Properties of Intergeneric Hybrids of Aspartate Transcarbamylase   总被引:5,自引:0,他引:5  
THE regulatory enzyme aspartate transcarbamylase (ATCase) from Escherichia coli contains two non-identical protein sub-units, one the catalytic subunit which provides the active sites of the enzyme and the other the regulatory subunit which provides the binding sites for nucleotide inhibitors and activators1,2. The catalytic subunit is a trimer of “C” polypeptide chains, associated by three heterologous c: c domains of bonding (terminology given by Monod et al.3 and Cohlberg et al.4). The regulatory subunit is a dimer of “R” chains, associated by an isologous r: r domain. Two catalytic and three regulatory subunits interact specifically across six r: c domains of inter-subunit bonding to complete the quaternary structure of the ATCase molecule.  相似文献   

6.
The dihydrolipoamide succinyltransferase (E2o) component of the alpha-ketoglutarate dehydrogenase complex catalyzes the transfer of a succinyl group from the S-succinyldihydrolipoyl moiety to coenzyme A. E2o is normally a 24-mer, but is found as a trimer when E2o is expressed with a C-terminal [His]6 tag. The crystal structure of the trimeric form of the catalytic domain (CD) of the Escherichia coli E2o has been solved to 3.0 A resolution using the Molecular Replacement method. The refined model contains an intact trimer in the asymmetric unit and has an R-factor of 0.257 (Rfree = 0.286) for 18,699 reflections between 10.0 and 3.0 A resolution. The core of tE2oCD (residues 187-396) superimposes onto that of the cubic E2oCD with an RMS difference of 0.4 A for all main-chain atoms. The C-terminal end of tE2oCD (residues 397-404) rotates by an average of 37 degrees compared to cubic E2oCD, disrupting the normal twofold interface. Despite the alteration of quaternary structure, the active site of tE2oCD shows no significant differences from that of the cubic E2oCD, although several side chains in the active site are more ordered in the trimeric form of E2oCD. Analysis of the available sequence data suggests that the majority of E2 components have active sites that resemble that of E. coli E2oCD. The remaining E2 components can be divided into three groups based on active-site sequence similarity. Analysis of the surface properties of both crystal forms of E. coli E2oCD suggests key residues that may be involved in the protein-protein contacts that occur between the catalytic and lipoyl domains of E2o.  相似文献   

7.
Rhodaneses/sulfurtransferases are ubiquitous enzymes that catalyze the transfer of sulfane sulfur from a donor molecule to a thiophilic acceptor via an active site cysteine that is modified to a persulfide during the reaction. Here, we present the first crystal structure of a triple‐domain rhodanese‐like protein, namely YnjE from Escherichia coli, in two states where its active site cysteine is either unmodified or present as a persulfide. Compared to well‐characterized tandem domain rhodaneses, which are composed of one inactive and one active domain, YnjE contains an extra N‐terminal inactive rhodanese‐like domain. Phylogenetic analysis reveals that YnjE triple‐domain homologs can be found in a variety of other γ‐proteobacteria, in addition, some single‐, tandem‐, four and even six‐domain variants exist. All YnjE rhodaneses are characterized by a highly conserved active site loop (CGTGWR) and evolved independently from other rhodaneses, thus forming their own subfamily. On the basis of structural comparisons with other rhodaneses and kinetic studies, YnjE, which is more similar to thiosulfate:cyanide sulfurtransferases than to 3‐mercaptopyruvate:cyanide sulfurtransferases, has a different substrate specificity that depends not only on the composition of the active site loop with the catalytic cysteine at the first position but also on the surrounding residues. In vitro YnjE can be efficiently persulfurated by the cysteine desulfurase IscS. The catalytic site is located within an elongated cleft, formed by the central and C‐terminal domain and is lined by bulky hydrophobic residues with the catalytic active cysteine largely shielded from the solvent.  相似文献   

8.
BACKGROUND: Polynucleotide phosphorylase (PNPase) is a polyribonucleotide nucleotidyl transferase (E.C.2.7.7.8) that degrades mRNA in prokaryotes. Streptomyces antibioticus PNPase also assays as a guanosine 3'-diphosphate 5'-triphosphate (pppGpp) synthetase (E.C.2.7.6.5). It may function to coordinate changes in mRNA lifetimes with pppGpp levels during the Streptomyces lifecycle. RESULTS: The structure of S. antibioticus PNPase without bound RNA but with the phosphate analog tungstate bound at the PNPase catalytic sites was determined by X-ray crystallography and shows a trimeric multidomain protein with a central channel. The structural core has a novel duplicated architecture formed by association of two homologous domains. The tungstate derivative structure reveals the PNPase active site in the second of these core domains. Structure-based sequence analysis suggests that the pppGpp synthetase active site is located in the first core domain. CONCLUSIONS: This is the first structure of a PNPase and shows the structural basis for the trimer assembly, the arrangement of accessory RNA binding domains, and the likely catalytic residues of the PNPase active site. A possible function of the trimer channel is as a contribution to both the processivity of degradation and the regulation of PNPase action by RNA structural elements.  相似文献   

9.
Shi D  Yu X  Zhao G  Ho J  Lu S  Allewell NM  Tuchman M 《Proteins》2012,80(5):1436-1447
Putrescine carbamoyltransferase (PTCase) catalyzes the conversion of carbamoylputrescine to putrescine and carbamoyl phosphate (CP), a substrate of carbamate kinase (CK). The crystal structure of PTCase has been determined and refined at 3.2 Å resolution. The trimeric molecular structure of PTCase is similar to other carbamoyltransferases, including the catalytic subunit of aspartate carbamoyltransferase (ATCase) and ornithine carbamoyltransferase (OTCase). However, in contrast to other trimeric carbamoyltransferases, PTCase binds both CP and putrescine with Hill coefficients at saturating concentrations of the other substrate of 1.53 ± 0.03 and 1.80 ± 0.06, respectively. PTCase also has a unique structural feature: a long C‐terminal helix that interacts with the adjacent subunit to enhance intersubunit interactions in the molecular trimer. The C‐terminal helix appears to be essential for both formation of the functional trimer and catalytic activity, since truncated PTCase without the C‐terminal helix aggregates and has only 3% of native catalytic activity. The active sites of PTCase and OTCase are similar, with the exception of the 240′s loop. PTCase lacks the proline‐rich sequence found in knotted carbamoyltransferases and is unknotted. A Blast search of all available genomes indicates that 35 bacteria, most of which are Gram‐positive, have an agcB gene encoding PTCase located near the genes that encode agmatine deiminase and CK, consistent with the catabolic role of PTCase in the agmatine degradation pathway. Sequence comparisons indicate that the C‐terminal helix identified in this PTCase structure will be found in all other PTCases identified, suggesting that it is the signature feature of the PTCase family of enzymes Proteins 2012; © 2012 Wiley Periodicals, Inc.  相似文献   

10.
Employing 125I-polyubiquitin chain formation as a functional readout of ligase activity, biochemical and biophysical evidence demonstrates that catalytically active E6-associated protein (E6AP)/UBE3A is an oligomer. Based on an extant structure previously discounted as an artifact of crystal packing forces, we propose that the fully active form of E6AP is a trimer, analysis of which reveals a buried surface of 7508 Å2 and radially symmetric interacting residues that are conserved within the Hect (homologous to E6AP C terminus) ligase superfamily. An absolutely conserved interaction between Phe727 and a hydrophobic pocket present on the adjacent subunit is critical for trimer stabilization because mutation disrupts the oligomer and decreases kcat 62-fold but fails to affect E2∼ubiquitin binding or subsequent formation of the Hect domain Cys820∼ubiquitin thioester catalytic intermediate. Exogenous N-acetylphenylalanylamide reversibly antagonizes Phe727-dependent trimer formation and catalytic activity (Ki = 12 mm), as does a conserved α-helical peptide corresponding to residues 474–490 of E6AP isoform 1 (Ki = 22 μm) reported to bind the hydrophobic pocket of other Hect ligases, presumably blocking Phe727 intercalation and trimer formation. Conversely, oncogenic human papillomavirus-16/18 E6 protein significantly enhances E6AP catalytic activity by promoting trimer formation (Kactivation = 1.5 nm) through the ability of E6 to form homodimers. Recombinant E6 protein additionally rescues the kcat defect of the Phe727 mutation and that of a specific loss-of-function Angelman syndrome mutation that promotes trimer destabilization. The present findings codify otherwise disparate observations regarding the mechanism of E6AP and related Hect ligases in addition to suggesting therapeutic approaches for modulating ligase activity.  相似文献   

11.
The transfer of antibiotic resistance between bacteria is mediated by mobile genetic elements such as plasmids and transposons. TnpX is a member of the large serine recombinase subgroup of site‐specific recombinases and is responsible for the excision and insertion of mobile genetic elements that encode chloramphenicol resistance in the pathogens Clostridium perfringens and Clostridium difficile. TnpX consists of three structural domains: domain I contains the catalytic site, whereas domains II and III contain DNA‐binding motifs. We have solved the solution structure of residues 1–120 of the catalytic domain I of TnpX. The TnpX catalytic domain shares the same overall fold as other serine recombinases; however, differences are evident in the identity of the proposed hydrogen donor and in the size, amino acid composition, conformation, and dynamics of the TnpX active site loops. To obtain the interaction surface of TnpX1–120, we titrated a DNA oligonucleotide containing the circular intermediate joint attCI recombination site into 15N‐labeled TnpX1–120 and observed progressive nuclear magnetic resonance chemical shift perturbations using 15N HSQC spectra. Perturbations were largely confined to a region surrounding the catalytic serine and encompassed residues of the active site loops. Utilizing the perturbation map and the data‐driven docking program, HADDOCK, we have generated a model of the DNA interaction complex for the TnpX catalytic domain. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

12.
Two adenylyl cyclase genes (cyaA and cyaB) from the myxobacterium Stigmatella aurantiaca were cloned by complementation of Escherichia coli mutants defective in the cya gene. cyaA codes for a protein of 424 amino acid residues (AC1), while cyaB encodes a protein of 352 residues (AC2). Both cyclases are sensitive to adenosine: cAMP production was strongly inhibited in E coli cells and cell extracts expressing these genes. AC1 comprises a hydrophobic domain of six transmembrane helices coupled to a cytoplasmic catalytic domain endowed with adenylyl cyclase activity. A 17 amino acid residue sequence, which is a signature of G-protein coupled receptors, as well as of slime mold Dictyostelium discoideum cyclic AMP receptors, was found in the membrane domain. AC2 displays features also indicating that it is a bifunctional enzyme. The domain located upstream from the catalytic adenylyl cyclase domain shows strong similarity to receiver modules of response regulators of two-component bacterial signaling systems. In vitro mutagenesis of conserved aspartate residues in this domain was shown to interfere with cAMP synthesis.  相似文献   

13.
Each catalytic (c) polypeptide chain of Escherichia coli aspartate transcarbamoylase (ATCase) is composed of two globular domains connected by two interdomain helices. Helix 12, near the C-terminus, extends from the second domain back through the first domain, bringing the two termini close together. This helix is of critical importance for the assembly of a stable enzyme. The trimeric E. coli enzyme ornithine transcarbamoylase (OTCase) is proposed to be similar in tertiary and quaternary structure to the ATCase trimer and has a predicted alpha-helical segment near its C-terminus. In our companion paper, we have shown that this putative helix is essential for OTCase folding and assembly (Murata L, Schachman HK, 1996, Protein Sci 5:709-718). Here, the similarity between OTCase and the ATCase trimer, which are 32% identical in sequence, was tested further by the construction of several chimeras in which various structural elements were switched between the enzymes by genetic techniques. These elements included the two globular domains and regions containing the C-terminal helices. In contrast to results reported previously (Houghton J, O'Donovan G, Wild J, 1989, Nature 338:172-174), none of the chimeric proteins exhibited in vivo activity and all were insoluble when overexpressed. Attempts to make hybrid trimers composed of c chains from ATCase and OTCase were also unsuccessful. These results underscore the complexities of specific intrachain and interchain side-chain interactions required to maintain tertiary and quaternary structures in these enzymes.  相似文献   

14.
Enzymes belonging to the M1 family play important cellular roles and the key amino acids (aa) in the catalytic domain are conserved. However, C-terminal domain aa are highly variable and demonstrate distinct differences in organization. To address a functional role for the C-terminal domain, progressive deletions were generated in Tricorn interacting factor F2 from Thermoplasma acidophilum (F2) and Peptidase N from Escherichia coli (PepN). Catalytic activity was partially reduced in PepN lacking 4 C-terminal residues (PepNΔC4) whereas it was greatly reduced in F2 lacking 10 C-terminal residues (F2ΔC10) or PepN lacking eleven C-terminal residues (PepNΔC11). Notably, expression of PepNΔC4, but not PepNΔC11, in E. coliΔpepN increased its ability to resist nutritional and high temperature stress, demonstrating physiological significance. Purified C-terminal deleted proteins demonstrated greater sensitivity to trypsin and bound stronger to 8-amino 1-napthalene sulphonic acid (ANS), revealing greater numbers of surface exposed hydrophobic aa. Also, F2 or PepN containing large aa deletions in the C-termini, but not smaller deletions, were present in high amounts in the insoluble fraction of cell extracts probably due to reduced protein solubility. Modeling studies, using the crystal structure of E. coli PepN, demonstrated increase in hydrophobic surface area and change in accessibility of several aa from buried to exposed upon deletion of C-terminal aa. Together, these studies revealed that non-conserved distal C-terminal aa repress the surface exposure of apolar aa, enhance protein solubility, and catalytic activity in two soluble and distinct members of the M1 family.  相似文献   

15.
Interaction of a 70-amino acid zinc-binding polypeptide from the regulatory chain of aspartate transcarbamoylase (ATCase) with the catalytic (C) subunit leads to dramatic changes in enzyme activity and affinity for ligand binding at the active sites. The complex between the polypeptide (zinc domain) and wild-type C trimer exhibits hyperbolic kinetics in contrast to the sigmoidal kinetics observed with the intact holoenzyme. Moreover, the Scatchard plot for binding N-(phosphonacetyl)-L-aspartate (PALA) to the complex is linear with a Kd corresponding to that evaluated for the holoenzyme converted to the relaxed (R) state. Additional evidence that the binding of the zinc domain to the C trimer converts it to the R state was attained with a mutant form of ATCase in which Lys 164 in the catalytic chain is replaced by Glu. As shown previously (Newell, J.O. & Schachman, H.K., 1990, Biophys. Chem. 37, 183-196), this mutant holoenzyme, which exists in the R conformation even in the absence of active site ligands, has a 50-fold greater affinity for PALA than the free C subunit. Adding the zinc domain to the C trimer containing the Lys 164-->Glu substitution leads to a 50-fold enhancement in the affinity for the bisubstrate analog yielding a value of Kd equal to that for the holoenzyme. A different mutant ATCase containing the Gln 231 to Ile replacement was shown (Peterson, C.B., Burman, D.L., & Schachman, H.K., 1992, Biochemistry 31, 8508-8515) to be much less active as a holoenzyme than as the free C trimer. For this mutant holoenzyme, the addition of substrates does not cause its conversion to the R state. However, the addition of the zinc domain to the Gln 231-->Ile C trimer leads to a marked increase in enzyme activity, and PALA binding data indicate that the complex resembles the R state of the holoenzyme. This interaction leading to a more active conformation serves as a model of intergenic complementation in which peptide binding to a protein causes a conformational correction at a site remote from the interacting surfaces resulting in activation of the protein. This linkage was also demonstrated by difference spectroscopy using a chromophore covalently bound at the active site, which served as a spectral probe for a local conformational change. The binding of ligands at the active sites was shown also to lead to a strengthening of the interaction between the zinc domain and the C trimer.  相似文献   

16.
The beta-galactosidase from an extreme thermophile, Thermus thermophilus A4 (A4-beta-Gal), is thermostable and belongs to the glycoside hydrolase family 42 (GH-42). As the first known structures of a GH-42 enzyme, we determined the crystal structures of free and galactose-bound A4-beta-Gal at 1.6A and 2.2A resolution, respectively. A4-beta-Gal forms a homotrimeric structure resembling a flowerpot. Each monomer has an active site located inside a large central tunnel. The N-terminal domain of A4-beta-Gal has a TIM barrel fold, as predicted from hydrophobic cluster analysis. The putative catalytic residues of A4-beta-Gal (Glu141 and Glu312) superimpose well with the catalytic residues of Escherichia coli beta-galactosidase. The environment around the catalytic nucleophile (Glu312) is similar to that in the case of E.coli beta-galactosidase, but the recognition mechanism for a substrate is different. Trp182 of the next subunit of the trimer constitutes a part of the active-site pocket, indicating that the trimeric structure is essential for the enzyme activity. Structural comparison with other glycoside hydrolases revealed that many features of the 4/7 superfamily are conserved in the A4-beta-Gal structure. On the basis of the results of 1H NMR spectroscopy, A4-beta-Gal was determined to be a "retaining" enzyme. Interestingly, the active site was similar with those of retaining enzymes, but the overall fold of the TIM barrel domain was very similar to that of an inverting enzyme, beta-amylase.  相似文献   

17.
ATP‐dependent proteases are crucial for cellular homeostasis. By degrading short‐lived regulatory proteins, they play an important role in the control of many cellular pathways and, through the degradation of abnormally misfolded proteins, protect the cell from a buildup of aggregates. Disruption or disregulation of mammalian mitochondrial Lon protease leads to severe changes in the cell, linked with carcinogenesis, apoptosis, and necrosis. Here we present the structure of the proteolytic domain of human mitochondrial Lon at 2 Å resolution. The fold resembles those of the three previously determined Lon proteolytic domains from Escherichia coli, Methanococcus jannaschii, and Archaeoglobus fulgidus. There are six protomers in the asymmetric unit, four arranged as two dimers. The intersubunit interactions within the two dimers are similar to those between adjacent subunits of the hexameric ring of E. coli Lon, suggesting that the human Lon proteolytic domain also forms hexamers. The active site contains a 310 helix attached to the N‐terminal end of α‐helix 2, which leads to the insertion of Asp852 into the active site, as seen in M. jannaschii. Structural considerations make it likely that this conformation is proteolytically inactive. When comparing the intersubunit interactions of human with those of E. coli Lon taken with biochemical data leads us to propose a mechanism relating the formation of Lon oligomers with a conformational shift in the active site region coupled to a movement of a loop in the oligomer interface, converting the proteolytically inactive form seen here to the active one in the E. coli hexamer.  相似文献   

18.
A gene (CAC2657) encoding a ferredoxin (EFR1) from the strictly anaerobic soil bacterium Clostridium acetobutylicum was cloned and expressed in Escherichia coli. The ferredoxin gene encodes a polypeptide of 27 kDa that incorporates 2[4Fe–4S] clusters. An extended N-terminal region of 187 amino acid (aa) residues precedes ferredoxin domain. The EFR1 expressed in E. coli is a trimeric protein. The iron and sulfur content of the reconstituted protein agrees with that expected of a trimeric form of the protein. The ferredoxin domain of EFR1 is closely related to ferredoxin of C. pasteurianum; and can be fitted to the X-ray crystal structure with a root mean square deviation of 0.62 As for the Cα atoms of the generated 3D simulation model. In cultures of C. acetobutylicum the efr1 gene shows higher relative expression on induction with Trinitrotoluene (TNT) compared to that from uninduced control cultures.  相似文献   

19.
《BBA》2002,1553(1-2):140-157
Succinate-ubiquinone oxidoreductase (SQR) as part of the trichloroacetic acid cycle and menaquinol-fumarate oxidoreductase (QFR) used for anaerobic respiration by Escherichia coli are structurally and functionally related membrane-bound enzyme complexes. Each enzyme complex is composed of four distinct subunits. The recent solution of the X-ray structure of QFR has provided new insights into the function of these enzymes. Both enzyme complexes contain a catalytic domain composed of a subunit with a covalently bound flavin cofactor, the dicarboxylate binding site, and an iron–sulfur subunit which contains three distinct iron–sulfur clusters. The catalytic domain is bound to the cytoplasmic membrane by two hydrophobic membrane anchor subunits that also form the site(s) for interaction with quinones. The membrane domain of E. coli SQR is also the site where the heme b556 is located. The structure and function of SQR and QFR are briefly summarized in this communication and the similarities and differences in the membrane domain of the two enzymes are discussed.  相似文献   

20.

Thraustochytrium sp. 26185, a unicellular marine protist, synthesizes docosahexaenoic acid, an omega-3 very long chain polyunsaturated fatty acid (VLC-PUFAs), by a polyunsaturated fatty acid (PUFA) synthase comprising three large subunits with multiple catalytic dehydratase (DH) domains critical for introducing double bonds at the specific position of fatty acids. To investigate functions of these DH domains, one DH domain from subunit-A and two DH domains from subunit-C of the PUFA synthase were dissected and expressed as stand-alone enzymes in Escherichia coli. The results showed that all these DH domains could complement the defective phenotype of a E. coli FabA temperature sensitive mutant, despite they have only modest sequence similarity with FabA, indicating they can function as 3-hydroxyacyl-ACP dehydratase for the biosynthesis of unsaturated fatty acids in E. coli. Site-directed mutagenesis analysis confirmed the authenticity of active site residues in these domains. In addition, overexpression of the three domains in a wild type E. coli strain resulted in the substantial alteration of fatty acid profiles including productions and ratio of unsaturated to saturated fatty acids. A combination of evidences from sequence comparison, functional expression, and mutagenesis analysis suggest that the DH domain from subunit-A is similar to DH domains from polyketide synthases, while the DH domains from subunit-C are more comparable to E. coli FabA in catalytic functions. Successful complementation and functional expression of the embedded DH domains from the PUFA synthase in E. coli is an important step towards for elucidating the molecular mechanism in the biosynthesis of VLC-PUFAs in Thraustochytrium.

  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号