首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We have previously shown that bovine oocytes parthenogenetically activated after 40 hours (hr) of in vitro maturation proceed through the cell cycle faster than those after 20 hr of maturation. In the present study, we used this model of different speed of nuclear progression to investigate the correlation of two hallmarks of nuclear events, exit of metaphase arrest and pronuclear formation, with dynamics of MPF and MAPK. Bovine oocytes were matured in vitro for 20 hr (young) or 40 hr (aged) and activated in 7% ethanol followed by incubation in cycloheximide for 0, 0.5, 1, 3, 5, or 7 hr. Activity of MPF and MAPK was lower in aged than young oocytes. The responses to oocyte activation by both the two kinases and nuclear progression were faster in aged than in young oocytes. The activity of MPF declined to undetectable levels (P < 0.05) as early as 0.5 hr after activation in aged oocytes, while this did not happen in young oocytes until 3 hr after activation. The inactivation of MAPK occurred approximately 2 hr earlier in aged oocytes (5 hr post-activation) than in young oocytes (7 hr post-activation). Furthermore, the decline in MPF activity preceded that of MAPK in both young and aged oocytes by about 2 hr. The decrease in activity of MPF and MAPK corresponded with the exit from meiosis and pronuclei formation regardless of the speed of nuclear progression. Despite dramatic changes in activity of MPF and MAPK, the levels of Cdc2 and Erk2 proteins were unchanged (P > 0.05) during the first 7 hr of activation. These observations suggest that inactivation of MPF and MAPK are pre-requisite for the release from metaphase arrest and formation of pronuclei in bovine oocytes.  相似文献   

2.
Bovine follicular oocytes were collected from ovarian antral follicles (2 to 7 mm in diameter) from slaughtered cattle. They were matured in vitro (IVM) for 23 to 24 h and then activated. In Experiment 1, 4 concentrations of ethanol were compared. The activation rates of oocytes were 4, 12, 36 and 27%, respectively, following exposure for 7 min to 0, 5, 7 and 10% ethanol. In Experiment 2, 7% ethanol was tested with exposure times of 0, 5, 7.5 and 10 min, and 6, 32, 27 and 33% of the oocytes were activated, respectively. In Experiment 3 the synergistic effect of ethanol and electric pulse was compared within 4 treatments: A) 7% ethanol alone, B) electric pulse alone, C) ethanol first and then electric pulse treatment, and D) electric pulse first followed by ethanol exposure. Of the oocytes activated, 37, 31, 28 and 51%, respectively, were from Treatments A through D. In Experiments 4 and 5 the possible synergistic effect of ethanol and a protein synthesis inhibitor, cycloheximide, was studied within 4 treatments: A) parthenogenetic control with no activation treatment, B) ethanol alone, C) cycloheximide alone, and D) ethanol treatment followed by cycloheximide. The oocyte activation rates in Experiment 4 in Treatments A through D, respectively, were 9, 44, 43 and 84%. Corresponding values for development of oocytes to the 2 to 8-cell stage after culture for 3 d (Experiment 5) were 9, 20, 14 and 45%, respectively (P<0.05). In conclusion, exposure to 7% ethanol for 5 min followed by incubation with cycloheximide was the best activation treatment for bovine IVM oocytes.  相似文献   

3.
This research was undertaken to improve development of parthenogenetic embryos following various combined treatments of ethanol and cycloheximide. In Experiment 1 in vitro matured oocytes (IVM, 24 hr) were treated with 7% ethanol for 5 min followed by incubation in 10 μg/ml cycloheximide in Medium 199 for 0 (control), 5, 10, and 20 hr. Development to 2–8 cells following culture for 3 days was similar among treated groups (32–41%; P > 0.05), which was higher than that of controls (6%; P < 0.05). Experiment 2 compared pre-ethanol exposures for 0, 1, 2.5, and 5 min, followed by 5 hr cycloheximide treatment on activation development. One- to 5-min groups resulted in 42–44% cleavage contrasted to 1–12% for controls (P < 0.05). Experiment 3 examined the effect on oocyte development of ethanol and different concentrations of cycloheximide (0, 1, 5, and 10 μg/ml). Cleavage to 2–8 cells was similar among the 5 and 10 μg/ml cycloheximide groups (36% and 42%, P > 0.05) but lower (P < 0.05) for the 1 μg/ml group (24%) and the controls (2–13%). When 5 μg/ml cycloheximide was used (Experiment 4), pre-exposure to ethanol (1, 2.5, and 5 min) resulted in more oocytes cleaved (38–41%) than in the cycloheximide alone group (0%) or the control (0%, P < 0.05). Experiment 5 tested blastocyst development of the activated oocytes with or without cytochalasin B treatment. Oocytes developed to blastocyts were 0%, 14%, 3%, and 3% (P < 0.05), respectively, for control, treatment with ethanol and cycloheximide in the presence, or absence of cytochalasin B, or electrical pulse plus cycloheximide. In conclusion, the combined ethanol and cycloheximide treatment supported high rates of parthenogenetic development using 24 hr IVM bovine oocytes. Blastocyst rate was significantly higher when cytochalasin B was added to the combined activation regimen. © 1994 Wiley-Liss, Inc.  相似文献   

4.
《Theriogenology》1996,45(8):1473-1478
Activation of meiosis in oocytes by artificial means is important in studies of oocyte function. In pigs, it seems that treatment with ethanol alone is inadequate for efficient activation of oocytes. Data collected in cattle, suggested that addition of a protein synthesis inhibitor increased the effectivness of ethanol for oocyte activation.We investigated the combined effects of exposure to ethanol and to the protein synthesis inhibitor cycloheximide, on activation of in vitro-matured pig oocytes. Treatment with ethanol alone (concentrations 0, 5, 7 and 10 %) for intervals of up to 3 minutes resulted in very limited activation rates (max. 15%). A culture of IVM pig oocytes with cycloheximide alone (10 μg/ml) for 24 hours did not induce oocyte activation either. However, exposure of IVM pig oocytes to 7 and 10 % ethanol followed by culture with cyloheximide substantially increased the activation rate. A maximal activation rate (over 80%) was observed when oocytes were treated with 10% ethanol for 1 min and subsequently cultured with cycloheximide.  相似文献   

5.
The effects of cumulus cell removal and centrifugation of maturing bovine oocytes on nuclear maturation and subsequent embryo development after parthenogenetic activation and nuclear transfer were examined. Removal of cumulus cells at 4, 8, and 15 hr after in vitro maturation (IVM) or the centrifugation of denuded oocytes had no effect on maturation rates. Oocytes treated at 0 hr of IVM had a lower expulsion rate (50%) of the first polar body (PB1). The removal of cumulus cells and centrifugation affected the pattern of spindle microtubule distribution and division of chromosomes. There were almost no spindle microtubules allocated to PB1 and the spindles were swollen in anaphase I and telophase I oocytes. Approximately 20% of PB1 oocytes contained tripolar or multipolar spindles. After activation, oocytes denuded with or without centrifugation at 8 hr of IVM resulted in the lowest rate of development (3.0%). Denuded oocytes at 4, 15, and 24 hr of IVM with centrifugation or not resulted in similar blastocyst development rates (9.6%-13.2%). However, centrifugation of oocytes denuded at the beginning of IVM resulted in lower blastocyst development rate (8.1%, P < 0.05) than the noncentrifuged oocytes (17.3%). After nuclear transfer, the blastocyst development rates of oocytes denuded and centrifuged at 0, 4, and 8 hr of IVM were not different when compared to the same patch of noncentrifuged oocytes. However, oocytes denuded and centrifuged at 15 hr of IVM resulted in lower (P < 0.05) blastocyst development rates than the noncentrifuged oocytes. The results of this study suggest that removal of cumulus cells and centrifugation of denuded oocytes affect the spindle pattern. Embryo development of denuded and centrifuged oocytes may differ depending on the time of removal of cumulus cells.  相似文献   

6.
Development of an effective activation protocol is of great importance for studying oocyte competence and embryo cloning. Experiments were designed to examine effects of intracellular calcium elevating agents such as calcium ionophore A23187 (CaA) and ethanol, or protein synthesis and phosphorylation inhibitors such as cycloheximide (CH) and 6-dimethylaminopurine (6-DMAP), or a sequential combination of these agents on both parthenogenetic development and protein patterns of newly matured bovine oocytes. Oocytes were matured for 24 hr in M-199 supplemented with follicle-stimulating hormone (FSH), luteinizing hormone (LH), and estradiol at 39°C in humidified air. They were then activated by various treatments and cultured in KSOM. Protein patterns at 15 hr after treatment were determined on 8–15% gradient SDS-PAGE and silver stained. Results demonstrated that none of the chemical agents—CaA, ethanol, 6-DMAP, or cycloheximide—could effectively induce parthenogenetic development of young bovine oocytes. When compared with the single treatments, sequentially combined treatments of CaA with 6-DMAP or with cycloheximide plus cytochalasin D (CD) significantly increased the rates of cleavage (78–82% versus 3–13%) and blastocyst development (31–40% versus 0%), which were comparable with those of IVF group (80% and 35%, respectively; P > 0.05). Supplementation with CD to the combined CaA and CH treatment improved rates of cleavage and blastocyst development versus without CD supplementation (31% versus 7%; P < 0.05). Fluorescent microscopy revealed that 95% (n = 40) of oocytes treated with CaA plus 6-DMAP had one pronucleus (PN) and one polar body (PB), while 88% (n = 40) in the CaA plus cycloheximide–treated group had one PN and two PBs and 85% (n = 40) in CaA plus cycloheximide and CD group had two PNs and one PB. Treatment by CaA alone resulted in 73% of oocytes (n = 40) arrested at a metaphase stage with two PBs (named as metaphase III or MIII). Protein patterns were similar for chemically activated and in vitro–fertilized (IVF) oocytes in that the 138- and 133-kDa proteins, whose functions are not yet known, were present in the metaphase-stage (MII 24 hr, MII 40 hr, and MIII) oocytes but were absent in PN-stage oocytes regardless of treatment. Therefore, these proteins seem to be metaphase-associated proteins. Taken together, we conclude that optimal parthenogenetic development of newly matured bovine oocytes can be obtained by calcium ionophore treatment followed by incubation in either 6-DMAP or cycloheximide plus cytochalasin D and that the reduction of the 138- and 133-kDa proteins might be necessary for the full activation of bovine oocytes. Mol. Reprod. Dev. 49:298–307, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

7.
All porcine oocytes cultured 20 hr in medium with 10 μg/ml cycloheximide rested in the germinal vesicle (GV) stage but with the highly condensed bivalents in nucleoplasm. When these oocytes were washed and cultured in the control medium for 2, 4, and 6 hr, germinal vesicle breakdown (GVBD) was completed in 0, 86, and 100% of them, respectively. When similarly inhibited oocytes cultured successively only 2.5 hr in the control medium were given again in cycloheximide enriched medium (3.5 hr), nearly all of them reached late diakinesis stage again. It means that oocytes cultured for 20 hr and washed free of this inhibitor of protein synthesis completed GVBD rapidly (4 hr) and protein synthesis crucial for nuclear membrane disintegration occurred already during the first 2 hr after washing of inhibitor. All oocytes cultured for 20 hr in medium with 1 mM p-aminobenzamidine rested in GV with chromatin around the compact nucleolus. The successive culture in cycloheximide (20 hr) and p-aminobenzamidine (10 hr) prevented GVBD in all oocytes, too. In contrast, when the oocytes washed after cycloheximide block (20 hr) were cultured in p-aminobenzamidine enriched medium 2 and 3 hr and again for 6 hr in cycloheximide medium, the nuclear membrane dissolved in 62 and 68% of oocytes, respectively. These data suggest that inhibition of protein synthesis in pig oocytes does not prevent the high condensation of bivalents in GV. However, nuclear membrane breakdown requires the successive protein synthesis and proteolysis.  相似文献   

8.
A series of experiments were conducted to evaluate the effects of FSH supplementation during IVM on porcine oocyte nuclear maturation, and subsequent fertilization, cleavage and embryo development. Cumulus-oocyte complexes (COCs) were cultured 40 h without FSH (control), 40 h with FSH (FSH 0-40 h), or 20 h with FSH followed by a 20-h culture period without FSH (FSH 0-20 h). Nuclear stage of oocytes was assessed at intervals from 12 to 40 h of IVM. Furthermore, oocytes were in vitro fertilized, fixed and stained to determine normally fertilized and polyspermic oocytes. Additionally, COCs were matured with FSH, fertilized and zygotes cultured in NCSU-23. The percentage of cleaved embryos and blastocysts were determined and the number of nuclei was counted. The presence of FSH during the first 20 h of IVM retarded germinal vesicle breakdown. After 40 h of culture 84, 67 and 58% MII oocytes were observed in the FSH 0-20 h, FSH 0-40 h and control groups, respectively. After IVF, penetration rates were similar at 27, 26 and 29%, while the proportion of polyspermic oocytes was 7, 19 and 11% of penetrated oocytes for control, FSH 0-40 and FSH 0-20 h groups, respectively. Cleavage and blastocyst rates differed among treatments (21, 29 and 38%, and 7, 15 and 20% for control, FSH 0-40 and FSH 0-20 h groups, respectively). No differences in blastocyst cell number were found among groups. Blastocyst rates, based on number of cleaved embryos, were 51 and 52% for the FSH 0-40 and FSH 0-20 h groups, which differed significantly from the control group (31%). The results indicate that FSH has a stimulatory effect on nuclear and cytoplasmic maturation of sow oocytes. Addition of FSH for the first 20 h of culture was most beneficial, based on cleavage and blastocyst development rates.  相似文献   

9.
10.
The present study examined the effect of epidermal growth factor (EGF) during in vitro maturation (IVM) and embryo culture on blastocyst development in the pig. In experiment 1, cumulus oocyte complexes were cultured in North Carolina State University (NCSU) 23 medium containing porcine follicular fluid, cysteine, hormonal supplements, and with or without EGF (0–40 ng/ml) for 20–22 hr. They then were cultured for an additional 20–22 hr without hormones. After maturation, cumulus-free oocytes were co-incubated with frozen-thawed spermatozoa for 5–6 hr. Putative embryos were transferred to NCSU 23 containing 0.4% BSA and cultured for 144 hr. In experiment 2, oocytes were matured in medium containing 10 ng/ml EGF, inseminated, and putative embryos were cultured in the presence of 0–40 ng/ml EGF. In experiment 3, oocytes were cultured in the presence of 0, 10 and 40 ng/ml EGF to examine the kinetics of meiotic maturation. In experiment 4, 2- to 4-cell and 8-cell to morula stage embryos derived from oocytes matured with 10 ng/ml EGF were transferred to the oviduct and uterus, respectively, of each of three recipient gilts (3 and 4 days post-estrus, respectively). The presence or absence of EGF during IVM did not affect cumulus expansion, nuclear maturation, fertilization parameters, or cleavage rate. However, compared to no addition (21%), presence of 1 (33%) and 10 ng/ml EGF (42%) during IVM increased (P < 0.01) the rate of blastocyst development in a concentration-dependent manner. Compared to 10 ng/ml EGF, higher concentrations (20 and 40 ng/ml) reduced (P < 0.01) blastocyst development in a concentration-dependent manner (35% and 24%, respectively). No difference was observed between no addition and 40 ng/ml EGF (22%). Compared to no addition and 10 ng/ml EGF, a significantly (P < 0.001) higher proportion (25% vs. 55%) of oocytes reached metaphase II stage 33 hr after IVM with 40 ng/ml EGF. However, no difference was observed at 44 hr. Transfer of embryos to six recipient gilts resulted in three pregnancies and birth of 18 piglets. The results show that EGF at certain concentrations in IVM medium can influence the developmental competence of oocytes. However, addition of EGF during the culture of pig embryos derived from oocytes matured in the presence of EGF is without effect. Birth of piglets provides evidence that embryos derived from oocytes matured in a medium containing EGF are viable. Mol. Reprod. Dev. 51:395–401, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
The influence of small doses of ethanol or dimethylsulphoxide (DMSO) on in vitro maturation (IVM) of bovine cumulus-oocyte complexes (COC) was examined, either after spontanous maturation or after inhibition of meiosis with 6-dimethylaminopurine (6-DMAP) or 3-isobutyl-1-methylxanthine (IBMX). Subsequent to IVM for 23 hr in semidefined serum-free Earle's TCM199 medium, nuclear maturation was assessed cytogenetically, while the combined cytoplasmic and nuclear maturation was measured indirectly by the oocytes' ability to undergo fertilization and further embryonic development. Embryo development was followed until the blastocyst stages at day 9 after insemination. Neither spontanous nuclear maturation nor cleavage was compromised by IVM in 相似文献   

12.
13.
Pre-pubertal pig oocytes display reduced developmental competence compared with adult oocytes following in vitro maturation (IVM). Exposure to dibutyryl cyclic adenosine monophosphate (dbcAMP) for the first 20 hr IVM improves development of pre-pubertal oocytes, suggesting that their cAMP content may be inadequate. This study examined the effect of 1 mM dbcAMP treatment for the first 22 hr of IVM on the cAMP content, meiotic progression, and embryo development of pre-pubertal and adult oocytes. In control groups, a two-fold increase in cAMP was observed in adult oocytes after 22 hr IVM, with no change in pre-pubertal oocyte cAMP content. At 22 hr IVM, dbcAMP treatment resulted in two- and five-fold increases in pre-pubertal and adult oocyte cAMP, respectively. After 22 hr control IVM, a greater proportion of pre-pubertal oocytes occupied metaphase I (MI) compared with adult oocytes (69% vs. 49%). dbcAMP treatment reduced the proportion of pre-pubertal and adult oocytes in MI stage at 22 hr. Despite dbcAMP treatment, the proportion of pre-pubertal oocytes in the MI stage at 22 hr remained higher than that of adult oocytes. In control groups, adult oocytes displayed a greater ability to form blastocysts compared with pre-pubertal oocytes following either parthenogenetic activation (59% vs. 25%) or in vitro fertilization (IVF) (47% vs. 19%). dbcAMP treatment increased subsequent blastocyst formation rates of pre-pubertal oocytes, whereas blastocyst formation rates of adult oocytes remained unchanged. Our results suggest that the reduced developmental capacity of pre-pubertal oocytes may be a consequence of their reduced ability to accumulate cAMP during IVM.  相似文献   

14.
The objective of this study was to evaluate parthenogenetic activation of domestic cat oocytes after being exposed to either ethanol, magnetic field, calcium ionophore A23187, or cycloheximide and a combination of these agents. We also wished to evaluate the usefulness of the magnetic field for oocyte activation. In vitro matured oocytes subjected to artificial activation were randomly assigned into eight groups according to activating agents: (1) 10% ethanol; (2) the magnetic field (slow-changing, homogenous magnetic field with low values of induction); (3) 10% ethanol plus magnetic field; (4) 10 microM calcium ionophore A23187; (5) 10 microM calcium ionophore A23187 plus magnetic field; (6) 10% ethanol and 10 microg/mL of cycloheximide; (7) 10% ethanol and 10 microg/mL of cycloheximide plus magnetic field; (8) oocytes were not exposed to any of the activating agents. After activation oocytes were stained with Hoechst 33258 and parthenogenetic activation was defined as oocytes containing pronuclei and second polar bodies or two to four or six nuclei (embryonic cleavage). The total activation rate by using different activation treatments was 40%. The addition of the magnetic field to ethanol or calcium ionophore treatments resulted in increased parthenogenetic activation rates from 47% to 75%, and from 19% to 48%, respectively (P<0.001). Instead, when the magnetic field was added to ethanol and cycloheximide treatment, activation rate decreased from 48% to 30%. Oocytes activated with magnetic field only gave the lowest activation rate (12%). We concluded that a magnetic field can be used as an activating agent, and the combination of ethanol and magnetic field is an effective method for domestic cat oocyte activation.  相似文献   

15.
Oocytes recovered at various times from immature rats treated with PMSG and HCG were incubated with capacitated epididymal spermatozoa of mature rats. In the presence of follicular cells, sperm penetration was not observed 4 hr after incubation in the oocytes at stages from the intact germinal vesicle to the chromatin mass, but 7 to 55% of oocytes were penetrated at stages from the condensed germainal vesicle to metaphase II. After the removal of follicular cells, 15 to 72% of the oocytes at any stage were penetrated. After further incubation for 15 hr, the proportion of penetrated oocytes increased from 8 to 98% from early to late stages and that of penetrated oocytes with a male and female pronucleus increased from 9 to 100% as maturation progressed. Although the average number of spermatozoa/oocyte was not correlated with its maturation, transformation of the sperm head into a male pronucleus was retarded or failed, especially in the younger oocytes. Following incubation in a defined medium for 13 hr, 85% of oocytes at the intact germinal vesicle stage matured to the stage of the first polar body formation, but only 18 to 22% of these mature oocytes were penetrated by spermatozoa and only a few of the penetrated oocytes cleaved into normal two-cell eggs. When eggs recovered from oviducts 14 to 20 hr after ovulation were exposed to capacitated spermatozoa, the proportion of penetrated eggs (86 to 98%) and that of polyspermic eggs (11 to 27%) were not related to the ages of the eggs, but failure of transformation of the sperm head and the proportion of abnormal eggs increased 14 to 20 hr after ovulation.  相似文献   

16.
The enucleation of oocytes to be used as host cytoplasts for embryo reconstruction by nuclear transfer is an important limiting step when cloning mammals. We propose an enucleation technique based on the removal of chromatin after oocyte activation, at the telophase stage, by aspirating the second polar body and surrounding cytoplasm. In a preliminary experiment to determine an optimal activation protocol, oocytes were matured for 26 and 30 hr and exposed for 5 min to 7% ethanol and/or for 3 hr at either 25 or 4°C. Relative to most activation treatments tested, oocytes matured for 30 hr and exposed to ethanol alone showed highest activation rates, as determined by low levels of H1 kinase activity within 90 min from exposure and high pronuclear formation (82%) after 12 hr of culture. No synergistic effect on activation rates was observed when oocytes also were exposed to reduced temperature after ethanol treatment. Microsurgical removal of the telophase-stage chromatin in a small volume of cytoplasm adjacent to the second polar body was significantly more effective in enucleating than aspiration of a larger cytoplasm volume surrounding the first polar body of metaphase-arrested oocytes (98% versus 59%; P < 0.01). Moreover, compared with a nuclear transfer protocol based on enucleation of metaphase-arrested oocytes followed by aging and cooling, more (38% versus 16%; P < 0.001) and better-quality blastocytes (126 versus 84 nuclei per blastocyst; P < 0.02) were obtained from embryos reconstructed using the telophase procedure. Higher development potential of embryos reconstructed by the telophase procedure may be attributed to (1) the selection of oocytes that activate and respond by extruding the second polar body, (2) avoiding the use of DNA dyes and ultraviolet irradiation, and (3) the limited removal of cytoplasm during enucleation. The ease with which telophase enucleation can be performed is likely to render this technique widely useful for research and practice on mammalian cloning. Mol. Reprod. Dev. 49:29–36, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

17.
Equine oocyte in vitro maturation: influences of sera, time, and hormones.   总被引:4,自引:0,他引:4  
Objectives of the present research were to determine the influences of types of media, sera, time and hormones on equine oocyte in vitro maturation (IVM). The following types of media and sera were evaluated: Menezo's B2 medium (B2), modified Tissue Culture Medium 199 (TCM), Defined Medium (DM), fetal calf serum (FCS), mare serum collected on the first day of estrus (MS), and mare serum collected on the day of ovulation (MSO). Resultant oocyte maturation was compared with the control: DM with bovine serum albumin (BSA). Effect of culture time (0, 15, and 32 hr) and the following hormones on oocyte IVM were evaluated: none, bovine luteinizing hormone (bLH; 1, 10, 100 micrograms/ml), equine luteinizing hormone (eLH; 100 micrograms/ml), bovine follicle-stimulating hormone (FSH; 5 micrograms/ml), and equine chorionic gonadotropin (eCG; 1 and 100 IU/ml). Cumulus expansion in the media and sera experiments was 50% (DM with BSA), 80% (TCM, B2, and DM with MS or MSO), and 100% (FCS with any medium). The proportion of metaphase II (MII) oocytes was significantly (P less than 0.05) increased the percentage of MII oocytes as compared with 0 hr of culture. Cumulus expansion in the hormone experiments was 80% (none, bLH, and eLH), and 100% (eCG and FSH). Freshly prepared bLH significantly (P less than 0.05) inhibited nuclear maturation of equine oocytes. In summary, 15 hr of culture was sufficient time for equine oocyte IVM and all combinations of medium, serum, and hormone addition were equally effective in achieving IVM except fresh bLH and DM with BSA.  相似文献   

18.
There are many factors affecting the efficiency of nuclear transfer technology. Some are evaluated here using our novel approach by enucleating oocytes at 20–22 hr after in vitro maturation (IVM), culturing the enucleated oocytes (cytoplasts) for 8–10 hr or 18–20 hr to gain activation competence and then conducting nuclear transfer. In the first experiment, we demonstrated that cumulus cell (CC) monolayer can support some cloned embryos to develop into morulae or blastocysts. Co-culture with CC and bovine oviduct epithelial cell (BOEC) monolayers resulted in no differences (P 0.05) in supporting the development of cloned embryos (Experiment 2). When in vitro matured oocytes were enucleated at 22 hr after IVM followed by nuclear transfer 18–20 hr later, cleavage and morula or blastocyst development of the cloned embryos were similar to those resulting from the enucleated oocytes which had been matured in vivo (Experiment 3). Frozen embryos as nuclear donor cells worked equally well as fresh embryos for cloning in embryo development which was superior to IVF embryos (Experiment 4). However, fresh embryos resulted in a higher proportion (P < 0.05) of blastomere recovery than did frozen or IVF ambryos. Finally, embryo transfer of cloned embryos from our procedure produced a viable calf, demonstrating the commercial value of this novel approach of the technology. © 1993 Wiley-Liss, Inc.  相似文献   

19.
In this study, micromanipulation and electrofusion conditions for the cloning of in vitro-produced bovine embryos (here after termed IVM/IVF embryos) derived from in vitro-matured (IVM) and in vitro-fertilized (IVF) oocytes were established. The effect of DC field strength on the fusion rate was tested in a model system using pronuclear stage embryos in which a cytoplasmic vesicle was removed and reinserted. Efficient fusion (80%) was obtained by applying a pulse of 1.75 kV/cm for 40 μsec. In vitro development of manipulated pronuclear stage embryos was as efficient as that of unmanipulated control embryos. Different fusion media were compared in the cloning procedure, using IVM oocytes as recipients and blastomeres from day 6 IVM/IVF donor embryos. Zimmermann cell fusion medium reduced the lysis of nuclear transfer embryos compared to F300 (5% vs. 25%). The effects of drugs disrupting the microfilaments and microtubuli were determined. Neither the addition of cytochalasin B (CCB) for 1 hr in the postfusion medium nor incubation of donor blastomeres with nocodazole had a significant effect on the fusion or cleavage rate of the nuclear transfer embryos. Additional experiments demonstrated that there was no difference in developmental potential between nuclear transfer embryos allowed to develop in vitro or in vivo and that the embryos gave a 15% pregnancy rate in recipient cattle. © 1993 Wiley-Liss, Inc.  相似文献   

20.
To improve the enucleation rate in newly matured bovine oocytes, we investigated the position of cytoplasmic chromatin in relation to the polar body and the consequent enucleation efficiency before and after sequential activation with calcium ionophore A23187 and cycloheximide. Oocytes aspirated from the follicles of slaughterhouse-collected ovaries were cultured for 18 to 20 h. With Hoechst staining, only 40.7% of the chromatin material was found adjacent to the first polar body in metaphase II oocytes, while 100% was located adjacent to the second polar body in oocytes after the activation. Enucleation trials after activation showed a higher enucleation rate (91.5%) than that before activation (59.9%). The following experiment determined the effect of using both kinds of cytoplast on the in vitro development of nuclear transfer embryos. Blastomeres of the 32-cell-stage in vitro-produced embryos were transferred, fused to the activated cytoplasts and cultured in vitro. No significant difference was detected in fusion, cleavage or development to blastocysts obtained 7 d (174 h) post fusion. In conclusion, this study showed that young in vitro-matured bovine oocytes sequentially activated with calcium ionophore and cycloheximide have cytoplasmic chromatin material adjacent to the second polar body, leading to a high enucleation rate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号