首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We have investigated the cellular characteristics, especially chromatin condensation and the basic nuclear protein profile, during spermiogenesis in the common tree shrew, Tupaia glis. Spermatids could be classified into Golgi phase, cap phase, acrosome phase, and maturation phase. During the Golgi phase, chromatin was composed of 10-nm and 30-nm fibers with few 50-nm to 60-nm knobby fibers. The latter were then transformed into 70-nm knobby fibers during the cap phase. In the acrosome phase, all fibers were packed into the highest-order knobby fibers, each about 80–100 nm in width. These chromatin fibers became tightly packed in the maturation phase. In a mature spermatozoon, the discoid-shaped head was occupied by the acrosome and completely condensed chromatin. H3, the core histone, was detected by immunostaining in all nuclei of germ cell stages, except in spermatid steps 15–16 and spermatozoa. Protamine, the basic nuclear protein causing the tight packing of sperm chromatin, was detected by immunofluorescence in the nuclei of spermatids at steps 12–16 and spermatozoa. Cross-immunoreactivity of T. glis H3 and protamine to those of primates suggests the evolutionary resemblance of these nuclear basic proteins in primate germ cells. This work was supported by the Thailand Research Fund (Senior Research Fellowship to Prof. Prasert Sobhon).  相似文献   

2.
In the process of the chromatin remodeling that occurs during spermiogenesis in some animal species, it is possible to distinguish between two separate aspects: the chromatin condensation pattern itself (granular, fibrillar, or lamellar), and the architecture of this pattern, that is to say, its arrangement within the nucleus. In the cephalopod Octopus vulgaris these two aspects are clearly differentiated. The condensation pattern develops from 25 nm fibers to fibers with a tubular aspect and with a progressively increasing diameter (40-60 nm and then to 80 nm), to end finally in the form of very thin fibers (3-5 nm) product of the coalescence and dissolution of the major fibers. The main directive force that governs this process lies in the global change that occurs in the proteins that interact with all (or the major part) of the genomic DNA. The condensation pattern by itself in this species does not present a fixed order: most of the fibers appear without any predominant spatial direction in the spermiogenic nuclei. However, as the nuclei elongate, the chromatin fibers arrange in parallel following the elongation axis. This parallel disposition of the chromatin fibers appears to be mediated by two specific areas, each of which we call a "polar nuclear matrix" (PNM). These matrices differentiate in the basal and apical nuclear poles adjacent to the centriolar implantation fosse and the acrosome, respectively. The areas that constitute the PNM have the following characteristics: (a) they are the only areas where DNA is found anchored to the nuclear membrane; (b) they are the zones from which the chromatin condensation pattern (fibers/tubules) begins; and (c) they are most probably the points through which the mechanical forces originating from nuclear elongation are transmitted to chromatin, causing the chromatin fibers/tubules to adopt an almost perfectly parallel disposition. Finally, we discuss the importance of the architecture of the chromatin condensation pattern, as it is one of the determining factors of the spatial organization of the mature sperm genome and chromosome positioning.  相似文献   

3.
中国雨蛙精子形成的研究   总被引:4,自引:0,他引:4  
林丹军  尤永隆 《动物学报》2000,46(4):376-384,T005,T007
中国雨蛙的精子形成过程中,细胞核的浓缩经历了5个时期。从第1期进入第2期,染色质纤维增粗并聚集成卷曲的柱状结构。从第2期进入第3期,染色质纤维进一步增粗,细胞核逐渐伸直成柱状。进入第4期,染色质紧密聚集,纤维之间间隙很小。进入第5期,染色质纤维聚集成均匀的致密结构。伴随着染色质的浓缩,核膜数次更新,核内不参与浓缩的物质渐次从核中排出,核中出现一串核泡。顶体在染色质未浓缩之前(第1期)开始分化,由一  相似文献   

4.
Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This "elementary" fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30-40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called "immature chromatin," which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.  相似文献   

5.
An electron microscope study was carried out on Hypselodoris tricolor spermatids to describe the development of the nuclear morphogenesis and investigate the possible cause(s) of the change in the shape of the spermatid nucleus during spermiogenesis. Three different stages may be distinguished in the course of the nuclear morphogenesis on the basis of the morphology and inner organization of the nucleus. Stage 1 spermatid nuclei are spherical or ovoid in shape and the nucleoplasm finely granular in appearance. Stage 2 nuclei exhibit a disc- or cup-shaped morphology, and the chromatin forms short, thin filaments. During stage 3, a progressive nuclear elongation takes place, accompanied by chromatin rearrangement, first into fibers and then into lamellae, both formations helically oriented. A row of microtubules attached to the nuclear envelope completely surrounds the nucleus. Interestingly, the microtubules always lie parallel to the chromatin fibers adjacent to them. Late stage 3 spermatids show the highest degree of chromatin condensation and lack the manchette at the end of spermiogenesis. Our findings indicate the existence of a clear influence exerted on the chromatin by the manchette microtubules, which appear to be involved in determining the specific pattern of chromatin condensation in Hypselodoris tricolor.  相似文献   

6.
7.
Changes in chromatin structure at different stages of differentiation of human spermatids were studied. It was shown that, in nuclei of early spermatids, chromatin is loosely packed and its structural element is an 8-nm fiber. This “elementary” fiber is predominant at the initial stages of differentiation; in the course of maturation, it is replaced by globular elements approximately 60 nm in diameter. In intermediate spermatids, these globules start to condense into fibrillar aggregates and reduce their diameter to 30–40 nm. At all stages of spermatid maturation, except the final stages, these globules are convergence centers for elementary fibers. This remodelling process is vectored and directed from the apical (acrosomal) to the basal pole of the nucleus. In mature spermatids, the elementary 8-nm fibers are almost absent and the major components are 40-nm fibrillar aggregates. The nuclei of mature spermatids are structurally identical with the nuclei of spermatozoa with the so-called “immature chromatin,” which are commonly found in a low proportion in sperm samples from healthy donors and may prevail over the normal cells in spermiogenetic disorders. The cause of this differentiation blockade remains unknown. Possibly, the formation of intermolecular bonds between protamines, which are required for the final stages of chromatin condensation, is blocked in a part of spermatids. The results of this study are discussed in comparison with the known models of nucleoprotamine chromatin organization in human spermatozoa.  相似文献   

8.
Light and transmission electron microscopy of the spermatozoa and spermatogenesis of 16 species (in three genera, Patella, Helcion, Cellana) of patellid limpet have shown that head lengths of the sperm range from 3 to 13 μm, and each species has a sperm with a unique morphology, indicating that the spermatozoa can be used as a taxonomic character. Although spermatozoon structure is species specific, five types can be recognized, based on the size, shape, and structure of the nucleus and acrosome. The occurrence of five morphological types of sperm, one of which (Cellana capensis) is particularly different from other patellids, suggests that the taxonomy of the family Patellidae be re-examined. The morphological changes that occur during spermatogenesis are very similar in all species, although two patterns of chromatin condensation are found. Those species with sperm that have short squat nuclei (length:breadth < 3.5:1) have a granular pattern of condensation. Species with sperm that have more elongate nuclei (length:breadth > 5:1) have an initial granular phase followed by the formation of chromatin fibrils. These fibrils become organized along the long axis of the elongating nucleus. The absence of a manchette suggests that nuclear elongation is brought about from within the nucleus.  相似文献   

9.
Male germ cells of the greater bandicoot rat, Bandicota indica, have recently been categorized into 12 spermiogenic steps based upon the morphological appearance of the acrosome and nucleus and the cell shape. In the present study, we have found that, in the Golgi and cap phases, round spermatid nuclei contain 10-nm to 30-nm chromatin fibers, and that the acrosomal granule forms a huge cap over the anterior pole of nucleus. In the acrosomal phase, many chromatin fibers are approximately 50 nm thick; these then thickened to 70-nm fibers and eventually became 90-nm chromatin cords that are tightly packed together into highly condensed chromatin, except where nuclear vacuoles occur. Immunocytochemistry and immunogold localization with anti-histones, anti-transition protein2, and anti-protamine antibodies suggest that histones remain throughout spermiogenesis, that transition proteins are present from step 7 spermatids and remain until the end of spermiogenesis, and that protamines appear at step 8. Spermatozoa from the cauda epididymidis have been analyzed by acid urea Triton X-100 polyacrylamide gel electrophoresis for basic nuclear proteins. The histones, H2A, H3, H2B, and H4, transitional protein2, and protamine are all present in sperm extracts. These findings suggest that, in these sperm of unusual morphology, both transition proteins and some histones are retained, a finding possibly related to the unusual nuclear form of sperm in this species.  相似文献   

10.
During mitosis in Trypanosoma cruzi ten dense plaques originate from the single, large nucleolus present in interphase and the preliminary phase of mitosis. Each plaque becomes associated with two microtubular bundles which end at the poles of the dividing nucleus. After an equilibrium phase in which the plaques are located near the nuclear equator, each plaque divides into two half-plaques. Each half-plaque migrates to a pole in the next stage. Although the composition of the plaques is unknown, they are associated with chromatin fibers. It is concluded that plaques act as kinetochores of higher organisms and provide a mechanical device for equal distribution of chromatin to daughter nuclei.  相似文献   

11.
Reversible permeable cells have been used to isolate chromatin structures during the process of chromosome condensation. Analysis of individual structures slipping out from nuclei after reversal of permeabilization revealed that chromosomes of Drosophila cells consist of small units called rodlets. The fluorescent images of chromatin fibers were subjected to computer analysis allowing the computer-aided visualization of chromatin fibers. The zig-zag array of fibers consisting of 12-15 nucleosomes with a length of 270-330 nm (average 300 nm) showed decondensed extended strings, condensed loops, and coiled condensed loops. Theoretical considerations leading to the plectonemic model of chromatin condensation are based on experimental data, and give an explanation how the 30 chromatin fibers are formed and further condensed to the 300 nm chromatin loops in Drosophila cells.  相似文献   

12.
Summary— Trypanosoma brucei brucei, a protozoan parasite of wild and domestic animals in Africa, is related to the pathogenic agent of human sleeping sickness. Four H1 histone proteins were isolated from nuclei of procyclic culture forms and cleaved with proteases. Amino acid sequence analysis of purified fragments indicated the presence of variants which displayed sequence identities as compared to the C-terminal domain of human H1. Substitutions of amino acids and posttranslational modifications of the histones in iT b brucei H1 may influence protein conformation and histone-histone as well as histone-DNA interactions in the chromatin of the parasite. Digestion of soluble chromatin with immobilized trypsin at low and high ionic strengths indicated an internal localization of H1 in the condensed chromatin. The influence of histone H1 of T b brucei on the compaction pattern of the chromatin was investigated by dissociation and reconstitution experiments. Electron microscopy revealed that trypanosome H1 was able to induce condensation of the chromatin of the parasite and of rat liver into dense tangles. After dephosphorylation of H1, 30 nm fibers were induced in rat liver chromatin, while the resulting fibers were distinctly thinner in T b brucei. It can be concluded that the absence of 30 nm fibers in T b brucei chromatin cannot be explained by the divergent variants and posttranslational phosphorylations of H1 only but rather by the influence of both, the divergent core histones, previously described, and H1 properties.  相似文献   

13.
Summary Spermatogenesis was studied at the ultrastructural level in Polydora ligni, P. websteri, P. socialis and Streblospio benedicti. Spermatogonia, spermatocytes, spermatids and mature sperm are described. In all four species, meiosis occurs in the coelom following release of spermatogonia from the gonad. In Polydora spp., chromatin condensation is lamellar with no microtubules present during nuclear elongation. In S. benedicti, chromatin condensation is fibrous with a manchette of microtubules present around the nucleus. In all four species, the acrosome forms from a Golgi-derived vesicle situated at the base of spermatids. The acrosome in Polydora spp. is conical with a distinctive substructure whereas the S. benedicti acrosome is long and spiral. The implantation fossa is short in all species except P. ligni. All four species have elongated sperm heads. The middlepiece as well as the nucleus is elongated in Polydora spp. whereas S. benedicti has a long nucleus but a short middlepiece. Platelet-shaped electron-dense bodies are present throughout the nuclear region and middlepiece of Polydora spp. and the nuclear region of S. benedicti. These membrane-bounded bodies may be energy storage organelles. The use of ultrastructural data in analysis of sibling species complexes is discussed.Contribution Number 203 from Harbor Branch Foundation, Inc.  相似文献   

14.
A technique for isolating whole chromatin from nuclei of the lower eukaryote Euglena gracilis is presented. This chromatin, which appears under the electron microscope as uniformly condensed fibers, can, nevertheless, be subfractionated into distinct heterochromatic and euchromatic fractions. The euchromatin, comprising about 14% of the total DNA of the nucleus, contains over 80 % of the total endogenous RNA polymerase activity measured. The Km for this enzyme is higher than that found for prokaryotes, but falls in the range found for other eukaryotes. Stability constants, calculated from cation-chromatin binding data, suggest that internal carboxyl groups of chromosomal proteins, at least, are involved in the condensation of Euglena chromatin. The relationship between Euglena chromatin and that of higher eukaryotes is discussed.  相似文献   

15.
This study describes the morphology of the sperm cell of Maja brachydactyla, with emphasis on localizing actin and tubulin. The spermatozoon of M. brachydactyla is similar in appearance and organization to other brachyuran spermatozoa. The spermatozoon is a globular cell composed of a central acrosome, which is surrounded by a thin layer of cytoplasm and a cup‐shaped nucleus with four radiating lateral arms. The acrosome is a subspheroidal vesicle composed of three concentric zones surrounded by a capsule. The acrosome is apically covered by an operculum. The perforatorium penetrates the center of the acrosome and has granular material partially composed of actin. The cytoplasm contains one centriole in the subacrosomal region. A cytoplasmic ring encircles the acrosome in the subapical region of the cell and contains the structures‐organelles complex (SO‐complex), which is composed of a membrane system, mitochondria with few cristae, and microtubules. In the nucleus, slightly condensed chromatin extends along the lateral arms, in which no microtubules have been observed. Chromatin fibers aggregate in certain areas and are often associated with the SO‐complex. During the acrosomal reaction, the acrosome could provide support for the penetration of the sperm nucleus, the SO‐complex could serve as an anchor point for chromatin, and the lateral arms could play an important role triggering the acrosomal reaction, while slightly decondensed chromatin may be necessary for the deformation of the nucleus. J. Morphol., 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

16.
Testicular samples were collected to describe the ultrastructure of spermiogenisis in Alligator mississipiensis (American Alligator). Spermiogenesis commences with an acrosome vesicle forming from Golgi transport vesicles. An acrosome granule forms during vesicle contact with the nucleus, and remains posterior until mid to late elongation when it diffuses uniformly throughout the acrosomal lumen. The nucleus has uniform diffuse chromatin with small indices of heterochromatin, and the condensation of DNA is granular. The subacrosome space develops early, enlarges during elongation, and accumulates a thick layer of dark staining granules. Once the acrosome has completed its development, the nucleus of the early elongating spermatid becomes associated with the cell membrane flattening the acrosome vesicle on the apical surface of the nucleus, which aids in the migration of the acrosomal shoulders laterally. One endonuclear canal is present where the perforatorium resides. A prominent longitudinal manchette is associated with the nuclei of late elongating spermatids, and less numerous circular microtubules are observed close to the acrosome complex. The microtubule doublets of the midpiece axoneme are surrounded by a layer of dense staining granular material. The mitochondria of the midpiece abut the proximal centriole resulting in a very short neck region, and possess tubular cristae internally and concentric layers of cristae superficially. A fibrous sheath surrounds only the axoneme of the principal piece. Characters not previously described during spermiogenesis in any other amniote are observed and include (1) an endoplasmic reticulum cap during early acrosome development, (2) a concentric ring of endoplasmic reticulum around the nucleus of early to middle elongating spermatids, (3) a band of endoplasmic reticulum around the acrosome complex of late developing elongate spermatids, and (4) midpiece mitochondria that have both tubular and concentric layers of cristae. J. Morphol., 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

17.
Male germ cells in the testis of Holothuria leucospilota can be divided into 12 stages based on ultrastructure and patterns of chromatin condensation. The spermatogonium (Sg) is a spherical-shaped cell with a diameter of about 6.5-7microm. Its nucleus mostly contains euchromatin and small blocks of heterochromatin scattered throughout the nucleus. The nucleolus is prominent. Primary spermatocytes are divided into six stages, i.e., leptotene (LSc), zygotene (ZSc), pachytene (PSc), diplotene (DSc), diakinesis (DiSc) and metaphase (MSc). The early cells are round while in DiSc and in MSc cells are oval in shape. From LSc to MSc, the sizes of cells range from 3.5 to 4microm. LSc contains large blocks of heterochromatin as a result of increasingly condensed 17nm fibers. In ZSc, the nucleus contains prominent synaptonemal complexes but a nucleolus is absent. In PSc, heterochromatin blocks are tightly packed together by 26nm fibers and appeared as large patches in DSc. Heterochromatin patches were enlarged to form chromosomes in DiSc and MSc and then the chromosome are moved to be aligned along equatorial region. The secondary spermatocyte (SSc) is an oval cell about 4.5-5.5microm. Their nuclei contain large clumps of heterochromatin along the nuclear envelope and in the center nuclear region. Spermatids are divided into two stages, i.e., early spermatid (ESt) and late spermatid (LSt). The nuclei decrease in size by a half and become spherical; thus the chromatin fibers condensed into 20nm and are closely packed together leaving only small spaces in LSt. The spermatozoa (Sz), with chromatin tightly packed in the spherical nucleus with a diameter of 2microm and a small acrosome situated at the anterior of the nucleus. The tail consists of a pair of centrioles lying perpendicular to each other and surrounded by a mitochondrial ring, and an axonemal complex, surrounded by a plasma membrane.  相似文献   

18.
Polyclonal antibodies have been raised against a nonhistone protein (MENT) which has been previously shown to be associated with the repressed chromatin of mature chicken erythrocytes and to promote the in vitro condensation of chromatin of immature erythrocyte nuclei. Here we report that the expression pattern of MENT closely follows chromatin condensation in maturing arian erythrocytes of definitive and primary lineages. Accumulation of MENT correlates more strongly with chromatin condensation than does accumulation of histone H5. In addition to being present in erythrocytes, the protein was also found in neutrophil nuclei and an immunofluorescence reaction was observed with embryonic (nucleated) thrombocytes. MENT was not detected in other chicken tissues (brain, liver, testis). In intact erythrocytes, MENT immunofluorescence was found in foci close to the nuclear periphery, while in isolated, decondensed nuclei, the fluorescence signal was uniformly distributed. In neutrophil nuclei, containing approximately 10 times more MENT than adult erythrocytes, intense staining associated with the peripheral heterochromatin was observed. These findings are discussed in regard to a possible mechanism for chromatin condensation by MENT.  相似文献   

19.
The restructuring of the sperm head has been examined in a caddis fly, Potamophylax rotundipennis (Limnephilidae), using light and electron microscopy. The roughly spherical nuclei of young spermatids are transformed into needle-shaped elements in advanced spermatids. During this process, the nuclei transiently become sickle-shaped. Prominent structural changes occur within the nucleus during spermiogenesis. The chromatin of spherical and slightly elongated nuclei has an amorphous appearance, then coarse granules become apparent, chromatin threads are visible in fully elongated nuclei and finally lamellar elements appear. During the changes in chromatin texture, a dense layer, the chromatin rim, develops transiently. This feature of the chromatin surface is interpreted as the structural expression of exchanges between nucleus and cytoplasm. A microtubular manchette is formed at the cytoplasmic face of the nuclear envelope. Whereas the manchette covers the full perimeter of the nucleus in early stages of elongation, gaps in the palisade of microtubules appear before the nuclear diameter decreases and needle-shaped nuclei develop. It is possible that the intermittent deployment of manchette microtubules is involved in reducing the nuclear diameter towards the end of nuclear elongation. The delayed detachment of the chromatin from the posterior pole of the nucleus, observed at the onset of nuclear clongation, points to local modifications of the nuclear envelope responsible for the connection of the centriole adjunct and the flagellum with the posterior pole of the nucleus.  相似文献   

20.
Chromatin within swollen or lysed isolated sperm nuclei of the sea urchin, Strongylocentrotus purpuratus, was examined by electron microscopy. Spread preparations of lysed sperm nuclei demonstrated dense aggregates of nondispersed material and beaded filaments radiating from these aggregates. These beaded fibers are similar in size and appearance to the “beads-on-a-string” seen as characteristic of chromatin spreads from numerous interphase nuclei. The beads are nucleosomes that have an average diameter of 130 Å. The interconnecting string is 40 Å indiameter and corresponds to the spacer DNA. In thin sections of swollen nuclei the sperm chromatin appears to be composed of 400 Å superbeads that are closely apposed to form 400 Å fibers. As the chromatin disperses, the superbeads are seen to be attached to one another by chromatin fibers of 110 Å diameter. In thin sections, the 400 Å superbeads appear to disperse directly into the 110 Å fibers with no intervening structures. This work demonstrates that the heterochromatin in Strongylocentrotus purpuratus sperm nuclei is composed of nucleosomes that form 100 Å filaments that are compacted into 400 Å superbeads. The superbeads coalesce to give the morphological appearance of 400 Å fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号