首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The flagellar apparatus and reservoir cytoskeleton of Cryptoglena pigra Ehrenberg are described. Three flagellar roots are associated with the two basal bodies. The four-membered dorsal root arises from the dorsal basal body and extends anteriorly following the reservoir membrane. At the base of the reservoir the dorsal root nucleates a large microtubular group termed the dorsal band. The dorsal band continues anteriorlhy between the reservoir and eyespot and is continuous with the microtubules of the canal and ultimately the pellicle. The ventral basal body is associated with two roots. The four-membered intermediate root proceeds anteriorly and extends the length of the reservoir. The seven-to eight-membered ventral root projects anteriorly along the reservoir membrane and bends away from the reservoir. At this point, the microtubules of the ventral root line a cytoplasmic pocket and are termed the MTR (reinforcing microtubules). The canal region is composed of longitudinal microtubules surrounded by two semicircles of microtubles. Ultimately, the fifteen ridges of the canal give rise to the pellicular ridges.  相似文献   

2.
The freshwater green euglenoid Euglena anabaena var. minor has a pellicle with groove‐ridge articulation, a chloroplast with pyrenoids doubly sheathed by two paramylon caps, and a nucleus with permanently condensed chromosomes and nucleolus. The flagellar apparatus basically resembles that of Euglena. The dorsal root (DR) originates at the dorsal basal body of the emergent flagellum, while both the intermediate root (IR) and ventral root (VR) originate at the ventral basal body of the non‐emergent flagellum. The cytoplasmic pocket is associated with the ventral root/ reinforcing microtubular band. However, ultrastructural characterization of E. anabaena var. minor shows the pocket to consist of five to seven microtubules, and flagellar roots with microtubule configuration of 3–4–6 in the DR‐IR‐VR. The dorsal band microtubules pair at the reservoir‐canal transition level. The doublet microtubules are formed into triplets and doublets at the lower canal level and then make pellicular microtubules at the upper canal level.  相似文献   

3.
Summary InCryptomonas ovata, long, dorsal flagella are produced which transform during the following cell division into short, ventral flagella. At division there is a reorientation in cell polarity, and the parental basal apparatus, which comprises the basal bodies and associated roots, is distributed to the daughter cells via a complex sequence of events. Flagellar apparatus development includes the transformation of a four-stranded microtubular root into a mature root of different structure and function. Each newly formed basal body nucleates new microtubular roots, but receives a striated fibrous root from a parental basal body. The striated roots are originally produced on the transforming basal body and are transferred to the new basal bodies at each successive division. The development of the asymmetric flagellar apparatus throughout the cell cycle is described.  相似文献   

4.
The flagellar apparatus of Ploeotia costata Farmer and Triemer was reconstructed using serial sectioning and TEM. The flagellar apparatus is similar to other euglenoids having two flagella arising from basal bodies connected by a striated fiber, and three asymmetrically arranged roots. The flagella emerge subapically from between the two ventral pellicle strips. The dorsal flagellum is 1/2 the body length and actively pulls the cell, while the ventral flagellum is twice the body length and drags along the substrate surface. The ventral and dorsal roots are on the opposite sides of their respective basal bodies, while the intermediate root is associated with the ventral flagellum on the side closest to the dorsal basal body. The dorsal root lines the dorsal side of the reservoir and after giving rise to the dorsal band lines the right side of the reservoir/canal. The ventral and intermediate roots join at the reservoir forming the intermediate-ventral root, which lines the left and ventral sides of the reservoir/canal. There was no evidence of a microtubule-reinforced pocket in P. costata. Comparisons with Ploeotia vilrea, Lentomonas applanatum, and related flagellar apparatuses led to the conclusion that the basic euglenoid flagellar structure is symplesiomorphic but with enough variation to be taxonomically diagnostic.  相似文献   

5.
Phacus pleuronectes (O. F. Müller) Dujardin is a phototrophic euglenoid with small discoid chloroplasts, a flat rigid body, and longitudinally arranged pellicular strips. The flagellar apparatus consisted of two basal bodies and three flagellar roots typical of many phototrophic euglenoids but also had a large striated fiber that connected the two basal bodies and associated with the ventral root. The three roots, in combination with the dorsal microtubular band, extended anteriorly and formed the major cytoskeletal elements supporting the reservoir membrane and ultimately the pellicle. A cytoplasmic pocket arose in the reservoir/canal transition region. It was supported by the ventral root and a C-shaped band of electron-opaque material that lined the cytoplasmic side of the pocket. A large striated fiber extended from this C-shaped band toward the reservoir membrane. The striated fibers in the basal apparatus and associated with the microtubule-reinforced pocket in P. pleuronecte s appear to be similar to those of the phagotrophic euglenoids.  相似文献   

6.
The marine dinoflagellate Oxyrrhis marina has three major microtubular systems: the flagellar apparatus made of one transverse and one longitudinal flagella and their appendages, cortical microtubules, and intranuclear microtubules. We investigated the dynamic changes of these microtubular systems during cell division by transmission and scanning electron microscopy, and confocal fluorescent laser microscopy. During prophase, basal bodies, both flagella and their appendages were duplicated. In the round nucleus situated in the cell centre, intranuclear microtubules appeared radiating toward the centre of the nucleus from densities located in some nuclear pores. During metaphase, both daughter flagellar apparatus separated and moved apart along the main cell axis. Microtubules of ventral cortex were also duplicated and moved with the flagellar apparatus. The nucleus flattened in the longitudinal direction and became discoid-shaped close to the equatorial plane. Many bundles of microtubules ran parallel to the short axis of the nucleus (cell long axis), between which chromosomes were arranged in the same direction. During ana-telophase, the nucleus elongated along the longitudinal axis and took a dumbbell shape. At this stage a contractile ring containing actin was clearly observed in the equatorial cortex. The cortical microtubule network seemed to be cut into two halves at the position of the actin bundle. Shortly after, the nucleus divided into two nuclei, then the cell body was constricted at its equator and divided into one anterior and one posterior halves which were soon rebuilt to produce two cells with two full sets of cortical microtubules. From our observations, several mechanisms for the duplication of the microtubule networks during mitosis in O. marina are discussed.  相似文献   

7.
The sub-thecal microtubular cytoskeleton of Amphidinium rhynchocephalum Anissimowa was investigated using indirect immunofluorescence microscopy and transmission electron microscopy. The majority of sub-thecal microtubules are longitudinally oriented and radiate from one of two sub-thecal transverse microtubular bands that lie adjacent to the anterior and posterior edge of the cingulum.Both transverse bands consist of 3–5 microtubules and are loop shaped with one end adjacent to the cell's right edge of the sulcus and the other end adjacent to the fibrous ventral ridge. The posterior transverse microtubular band (PTB) defines the posterior edge of the cingulum and gives rise to numerous posteriorly directed longitudinal microtubular bundles that consist of 1–3 microtubules per bundle. These bundles end at the posterior end of the cell. The PTB also gives rise to the cingular longitudinal microtubules that underlie the cingular groove and terminate at the anterior transverse microtubular band (ATB). The ATB defines the anterior edge of the cingulum and loops around the base of the epicone. This band gives rise to anteriorly directed longitudinal microtubular bundles that terminate in the small epicone of the cell. The longitudinal microtubular root of the flagellar apparatus is directed posteriorly and lies immediately beneath the theca but is distinct from the subthecal microtubule system. A narrow fibrous ridge is ventrally located to the cell's left between the exit apertures of the transverse and longitudinal flagella. In this position, the ventral ridge lies between and also connects with the anterior and posterior transverse microtubular bands. The ventral ridge is also associated with three microtubules that are distinct from other cytoskeletal microtubules. Our results demonstrate that the majority of sub-thecal microtubules originate from one of two microtubular bands associated with the cingulum. The possible role of the fibrous ventral ridge and its associated microtubules is also discussed.  相似文献   

8.
Phacus trypanon Pochmann is a photosynthetic euglenoid that is known to have typical characteristics of the Euglenales. The ultrastructure of P. trypanon was examined with particular attention being given to the striated fibers of both the basal body complex and feeding apparatus and microtubule arrangement. As in other euglenoids, the basal body complex was associated with the striated and fibrous fibers. The singlet microtubules at the reservoir level were arranged into doublets by a successive linkage of the existing adjacent microtubules at the transition level, and doublets were rearranged into a three-over-two pattern of cytoskeletal microtubules that were continuous with the subpellicular microtubules. The most striking feature of the feeding apparatus of P. trypanon was the prominent striated fiber that originated from the reservoir membrane and became arc shaped with electron-opaque bands at the lower canal level. The reinforcing microtubular band (MTR)/pocket of P. trypanon was associated with a prominent striated fiber that may act as a nucleating site for the semicircular microtubules, which surround the canal. The striated fiber and MTR/pocket are usually only found in those taxa that have a well-developed feeding apparatus and lack plastids; therefore, we speculate that the ingestion apparatus is functional in P. trypanon , which likely diverged in the early history of the photosynthetic green euglenoids.  相似文献   

9.
Summary The ultrastructure of the flagellar apparatus of aPleurochrysis, a coccolithophorid was studied in detail. Three major fibrous connecting bands and several accessory fibrous bands link the basal bodies, haptonema and microtubular flagellar roots. The asymmetrical flagellar root system is composed of three different microtubular roots (referred to here as roots 1,2, and 3) and a fibrous root. Root 1, associated with one of the basal bodies, is of the compound type, constructed of two sets of microtubules,viz. a broad sheet consisting of up to twenty closely aligned microtubules, and a secondary bundle made up of 100–200 microtubules which arises at right angles to the former. A thin electron-dense plate occurs on the surface of the microtubular sheet opposite the secondary bundle. The fibrous root arises from the same basal body and passes along the plasmalemma together with the microtubular sheet of root 1. Root 2 is also of the compound type and arises from one of the major connecting bands (called a distal band) as a four-stranded microtubular root and extends in the opposite direction to the haptonema. From this stranded root a secondary bundle of microtubules arises at approximately right angle. Root 3 is a more simple type, composed of at least six microtubules which are associated with the basal body. The flagellar transition region was found to be unusual for the classPrymnesiophyceae. The phylogenetic significance of the flagellar apparatus in thePrymnesiophyceae is discussed.  相似文献   

10.
R. A. Andersen 《Protoplasma》1985,128(2-3):94-106
Summary Flagellated vegetative cells of the colonial golden algaSynura uvella Ehr, were examined using serial sections. The two flagella are nearly parallel as they emerge from a flagellar pit near the apex of the cell. The photoreceptor is restricted to swellings on the flagella in the region where they pass through the apical pore in the scale case and the swellings are not associated with the cell membrane or an eyespot. A unique ring-like structure surrounds the axonemes of both flagella at a level just above the transitional helix. The basal bodies are interconnected by three striated, fibrous bands. Four short (<100 nm) microtubules lie between the basal bodies at their proximal ends. Two rhizoplasts extend down from the basal bodies and separate into numerous fine striated bands which lie over the nucleus. Three- and four-membered microtubular roots arise from the rhizoplasts and extend apically together. As the roots reach the cell anterior, the three-membered root bends and curves clockwise to form a large loop around the flagella; the four-membered root bends anticlockwise and terminates under the distal end of the three-membered root as it completes the loop. There are four absolute orientations, termed Types 1–4, in which the flagellar apparatus can occur. With each orientation type the positions of the Golgi body, nucleus, rhizoplasts, chloroplasts and microtubular roots change with respect to the flagella, basal bodies and photoreceptor. Two new basal bodies appear in pre-division cells, and three short microtubules appear in a dense substance adjacent to each new basal body. Based upon the positions of new pre-division basal bodies, a hypothesis is proposed to explain why there are four orientations and how they are maintained through successive cell divisions.  相似文献   

11.
The intracellular structural relationships between the flagella and haptonema in Chrysochromulina acantha Leadbeater & Manton (Prymnesiophyceae) were studied in detail and a reconstruction is presented. Three micro-tubular roots are associated with the flagellar apparatus. The largest, consisting of a sheet of approximately 20 microtubules, has its origins at the base of the left basal body. The main body of microtubules passes over the surface of a mitochondrion toward the left chloroplast and apparently terminates at a pair of microtubules oriented perpendicularly to it. Four microtubules diverge from the sheet and pass behind the left basal body. Two other roots–one consisting of a 2 + 2 + 1 arrangement of microtubules, the other of a single microtubule only—are associated with the right basal body. The two basal bodies are connected by distal and proximal fibers, and they are linked also to the base of the haptonema, three fibers extending from the haptonemal base to the right basal body, one only to the left. An additional fiber extending from the right basal body passes between the left basal body and the base of the haptonema, terminating at the largest microtubular root. Lateral extensions link this fiber to both the left basal body and the haptonematal base. Negative staining of isolated root systems of C. simplex Estep et al. shows that the arrangement of microtubules and fibrous connections is similar to that in C. acantha. The root system of C. acantha is compared to those of other members of the Prymnesiophyceae.  相似文献   

12.
The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the over lying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoircanal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.  相似文献   

13.
M A Farmer  R E Triemer 《Bio Systems》1988,21(3-4):283-291
The flagellar apparatus of euglenoids consists of two functional basal bodies, three unequal microtubular roots subtending the reservoir, and a fourth band of microtubules nucleated from one of the flagellar roots and subtending the reservoir membrane. The flagellar apparatus of some euglenoids may contain additional basal bodies, striated roots ("rhizoplasts"), fibrous roots, striated connecting fibers between basal bodies, layered structures, or various electron-dense connective substances. With the possible exception of Petalomonas cantuscygni, nearly all euglenoids are biflagellate although the length of one flagellum may be highly reduced. The flagellar transition zone and number of basal bodies are highly variable among species. In recent years a cytoplasmic pocket that branches off from the reservoir has been discovered. The microtubules of the ventral flagellar root are continuous with the microtubules which line this pocket. Based on positional and structural similarities, this structure is believed to be homologous with the MTR/cytostome of bodonids. Coupled with other ultrastructural and biochemical data, the fine structure of the flagellar apparatus supports the belief that the euglenoid flagellates are descendant from bodonid ancestors.  相似文献   

14.
The flagellar apparatus of Pyrobotrys has a number of features that are typical of the Chlorophyceae, but others that are unusual for this class. The two flagella are inserted at the apex, but they extend to the side of the cell toward the outside of the colony, here designated as the ventral side. Four basal bodies are present, two of which extend into flagella. Four microtubular rootlets alternate between the functional and accessory basal bodies. In each cell, the two ventral rootlets are nearly parallel, but the dorsal rootlets are more widely divergent. The rootlets alternate between two and four microtubules each. A striated distal fiber connects the two functional basal bodies in the plane of the flagella. Two additional, apparently nonstriated, fibers connect the basal bodies proximal to the distal fiber. Another striated fiber is associated with each four-membered rootlet near its insertion into the flagellar apparatus. A fine periodic component is associated with each two-membered rootlet. A rhizoplast-like structure extends into the cell from each of the functional basal bodies. The arrangement of these components does not reflect the 180° rotational symmetry that is usually present in the Chlorophyceae, but appears to be derived from a more symmetrical ancestor. It is suggested that the form of the flagellar apparatus is associated with the unusual colony structure of Pyrobotrys.  相似文献   

15.
The flagellar root system of Entosiphon sulcatum (Dujardin) Stein (Euglenophyceae) is described and compared with kinetoplastid and other euglenoid systems. An asymmetric pattern of three microtubular roots, one between the two flagellar basal bodies and one on either side (here called the intermediate, dorsal, and ventral roots), is consistent within the euglenoid flagellates studied thus far. The dorsal root is associated with the basal body of the anterior flagellum (F1) and lies on the left dorsal side of the basal body complex. Originating between the two flagellar basal bodies, and associated with the basal body of the trailing flagellum (F2), the intermediate root is morphologically distinguished by fibrils interconnecting the individual microtubules to one another and to the overlying reservoir membrane. The intermediate root is often borne on a ridge projecting into the reservoir. The ventral root originates near the F2 basal body and lies on the right ventral side of the cell. Fibrillar connections link the membrane of F2 with the reservoir membrane at the reservoir-canal transition level. A large cross-banded fiber joins the two flagellar basal bodies, and a series of smaller striated fibers links the anterior accessory and flagellar basal bodies. Large nonstriated fibers extend from the basal body complex posteriorly into the cytoplasm.  相似文献   

16.
The three-dimensional structure of the flagellar apparatus in the dinoflagellate Oxyrrhis marina has been reinvestigated and found to consist of several previously unknown components and component combinations that appear strikingly similar to those of some gymnodinoid taxa. The flagellar apparatus of this dinoflagellate is asymmetric and extremely complex consisting of a longitudinal and a transverse basal body that gives rise to eight structurally different components. The only posteriorly directed component is the large microtubular root that consists of 45–50 microtubules at its origin and is attached proximally to a perpendicularly oriented striated fibrous component. Arising from each basal body, two striated fibrous roots with different periodicities extend to the cell's left. A single stranded microtubular root with associated electron dense material emanates from the transverse basal body and also extends to the cell's left. A striated fibrous connective arises from the longitudinal basal body and extends toward the cell's right ventral surface and terminates near the sub-thecal microtubular system. A compound root consisting of microtubules and electron dense material also originates from the longitudinal basal body and extends ventrally into the anterior region of the tentacle. Structural similarities between the parallel striated fibrous roots of Oxyrrhis and Polykrikos are discussed as are flagellar apparatus similarities among other gymnodinoid dinoflagellates. A diagrammatic reconstruction of the Oxyrrhis flagellar apparatus is also presented.  相似文献   

17.
The flagellar apparatus of four heterolobosean species Percolomonas descissus, Percolomonas sulcatus, Tetramitus rostratus, and Naegleria gruberi were examined. P. descissus lives in oxygen-poor water. It is a quadriflagellated cell with a ventral groove. The two pairs of basal bodies are connected to an apical structure from which the peripheral dorso-lateral microtubules and a short striated rhizoplast originate. There is one major microtubular root, R1, which originates from the posterior basal body pair and splits into left and right portions that support the sides of the ventral groove. The anterior pair of basal bodies is associated with a root of four to five microtubules that runs to the left of the groove. This organisation is similar to that previously reported for Psalteriomonas, Lyromonas, and Percolomonas cosmopolitus. Percolomonas sulcatus has two parallel pairs of basal bodies, each of which is associated with a well-developed R1 root. These roots divide to give two distinct left portions and one merged right portion that support the margins of the slit-like ventral groove. Tetramitus rostratus has two pairs of basal bodies, several rhizoplast fibres, and two R1 roots. Each R1 root supports one wall of the ventral groove. Naegleria gruberi may have two pairs of basal bodies, each associated with a microtubular root and one long rhizoplast fibre. From available data, a 'double bikont'-like organisation of the heterolobosean flagellar apparatus is inferred, where both of the eldest basal bodies have largely 'mature' complements of microtubular roots. The cytoskeletal organisation of heteroloboseans is compared to those of (other) excavates. Our structural data and existing molecular phylogenies weaken the case that Percolomonas, Psalteriomonas, and Lyromonas are phylogenetically separable from other heteroloboseans, undermining many of the highest-level taxa proposed for these organisms, including Percolozoa, Striatorhiza, Percolomonada, Percolomonadea, and Lyromonadea.  相似文献   

18.
The flagellar apparatus of Chrysolepidomonas dedrolepidota Peters et Andersen is similar to that of other members of the Ochromonadales, Chrysophyceae. there are four microtubular roots (R1-4) and a system II fiber (= rhizoplast). the R1 root consists of three microtubules that nucleate many cytoplasmic microtubules. One compressed band of 10 or more cytoplasmic microtubules is directed black along the R1 root in an anti-parallel direction. The R2 root consists of one to two microtubules, and it extends toward the distal end of the R1 root. The R3 root consists of six (?seven) microtubules near its proximal end. The “a” and “f” microtubules of the R3 root are under the short flagellum, and the “f” microtubule loops back and under the basal body, extending down to the nucleus. The R4 root consists of one to two microtubules extending along the left side of the shot flagellum and curving under the short flagellum where it terminates near the “a” microtubule of R3 Both flagella have a transitional plate and a transitional helix with five gyres. There is a thin, second plate in the basal body at the level of the distal end of the “c” tubules of the basal body triplets. The tripartite flagellar hairs have long lateral filaments but lack short lateral filaments. We compare the flagellar apparatus with that of other members of the Ochromonadales and members of the Hydrurales and Hibberdiales.  相似文献   

19.
Behaviors of male and female gametes, planozygotes and their microtubular cytoskeletons of a marine green alga Bryopsis maxima Okamura were studied using field emission scanning electron microscopy, high‐speed video microscopy, and anti‐tubulin immunofluorescence microscopy. After fusion of the biflagellate male and female gametes, two sets of basal bodies lay side by side in the planozygote. Four long female microtubular roots extended from the basal bodies to the cell posterior. Four short male roots extended to nearly half the distance to the posterior end. Two flagella, one each from the male and female gametes, become a pair. Specifically, the no. 2 flagellum of the female gamete and one male flagellum point to the right side of the eyespot of the female gamete, which is located at the cell posterior and which is associated with 2s and 2d roots of the female gamete. This spatial relationship of the flagella, microtubular roots, and the eyespot in the planozygote is retained until settlement. During forward swimming, the planozygote swings the flagella backward and moves by flagellar beating. The male and female flagella in the pair usually beat synchronously. The cell withdraws the flagella and becomes round when the planozygote settles to the substratum 20 min after mixing. The axoneme and microtubular roots depolymerize, except for the proximal part and the basal bodies. Subsequently, distinct arrays of cortical microtubules develop in zygotes until 30 min after mixing. These results are discussed with respect to the functional significance of the spatial relationships of flagellar apparatus‐eyespot‐cell fusion sites in the mating gametes and planozygote of green algae.  相似文献   

20.
Peranema trichophorum (Ehrenberg) Stein, a colorless phagotrophic euglenoid flagellate, has a typically euglenoid microtubular root complement. Striated root components, relatively uncommon in euglenoids, are connected to the basal bodies and to a microtubular root. The flagellar system of Peranema consists of three unequal microtubular roots which extend anteriorly beneath the reservoir membrane, and narrow-band striated roots (periodicity = 29–33 nm) which connect one of the four basal bodies to the movable rodorgan of the feeding apparatus. An inter basal body striated fiber forms a three-way connection between one particular microtubular root, a flagellar basal body, and the striated roots. A striated fibril (periodicity = 18–25 nm), which may be an extension of the striated root system, extends beneath the reservoir membrane. Associated with the striated fibril and the striated roots are cisternae of smooth endoplasmic reticulum.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号