首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cell cycle deregulation is a common feature of human cancer. Tumor cells accumulate mutations that result in unscheduled proliferation, genomic instability and chromosomal instability. Several therapeutic strategies have been proposed for targeting the cell division cycle in cancer. Whereas inhibiting the initial phases of the cell cycle is likely to generate viable quiescent cells, targeting mitosis offers several possibilities for killing cancer cells. Microtubule poisons have proved efficacy in the clinic against a broad range of malignancies, and novel targeted strategies are now evaluating the inhibition of critical activities, such as cyclin-dependent kinase 1, Aurora or Polo kinases or spindle kinesins. Abrogation of the mitotic checkpoint or targeting the energetic or proteotoxic stress of aneuploid or chromosomally instable cells may also provide further benefits by inducing lethal levels of instability. Although cancer cells may display different responses to these treatments, recent data suggest that targeting mitotic exit by inhibiting the anaphase-promoting complex generates metaphase cells that invariably die in mitosis. As the efficacy of cell-cycle targeting approaches has been limited so far, further understanding of the molecular pathways modulating mitotic cell death will be required to move forward these new proposals to the clinic.  相似文献   

2.
Cells are constantly challenged by DNA damage and protect their genome integrity by activation of an evolutionary conserved DNA damage response pathway (DDR). A central core of DDR is composed of a spatiotemporally ordered net of post-translational modifications, among which protein phosphorylation plays a major role. Activation of checkpoint kinases ATM/ATR and Chk1/2 leads to a temporal arrest in cell cycle progression (checkpoint) and allows time for DNA repair. Following DNA repair, cells re-enter the cell cycle by checkpoint recovery. Wip1 phosphatase (also called PPM1D) dephosphorylates multiple proteins involved in DDR and is essential for timely termination of the DDR. Here we have investigated how Wip1 is regulated in the context of the cell cycle. We found that Wip1 activity is downregulated by several mechanisms during mitosis. Wip1 protein abundance increases from G1 phase to G2 and declines in mitosis. Decreased abundance of Wip1 during mitosis is caused by proteasomal degradation. In addition, Wip1 is phosphorylated at multiple residues during mitosis, and this leads to inhibition of its enzymatic activity. Importantly, ectopic expression of Wip1 reduced γH2AX staining in mitotic cells and decreased the number of 53BP1 nuclear bodies in G1 cells. We propose that the combined decrease and inhibition of Wip1 in mitosis decreases the threshold necessary for DDR activation and enables cells to react adequately even to modest levels of DNA damage encountered during unperturbed mitotic progression.  相似文献   

3.
Summary The chronological distributions of human blood lymphocytes in first, second and third mitosis following PHA stimulation in vitro are presented. The first G1 phase is shown to be of variable length resulting in some first mitoses appearing only about 150 h after stimulation. The serum or plasma used in the culture medium influences cell cycle time. A total cell cycle time of 10.6 h was estimated for cultures with autologous donor plasma and of 14.7 h for cultures with fetal calf serum. It was further calculated that following PHA stimulation 90% of the lymphocytes divide once, about 65% divide for a second and about 40% divide for a third time.  相似文献   

4.
Mitotic catastrophe is a phenomenon displayed by cells undergoing aberrant mitosis to eliminate cells that fail to repair the errors. Why and how mitotic catastrophe would lead to cell death remains to be resolved and the answer will prove valuable in design of better therapeutic agents that specifically target such cells in mitosis. The antibiotic actinomycin D has been shown to induce chromosomal lesions in lower order organisms as well as in human interphase cells. Relatively few studies have been conducted to elucidate molecular events in the context of mitotic DNA damage. We have previously established a model of mitotic catastrophe in human HeLa cells induced by actinomycin D. Here, we show that actinomycin D induce cellular stress via DNA damage during mitosis. The higher order packing of chromosomes during mitosis might impede efficient DNA repair. γH2AX serves as a marker for DNA repair and active JNK interacts with γH2AX in actinomycin D‐treated mitotic extracts. We believe JNK might be in part, responsible for the phosphorylation of H2AX and thereby, facilitate the propagation of a positive signal for cell death, when repair is not achieved. The mitotic cell activates JNK‐mediated cell death response that progresses through a caspase cascade downstream of the mitochondria. In the mean time, remaining checkpoint signals may be sufficient to put a restraining hand on entry into anaphase and the cell eventually dies in mitosis. J. Cell. Biochem. 110: 725–731, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

5.
Progression through the G2/M transition following DNA damage is linked to cytokinesis failure and mitotic death. In four different transformed cell lines and two human embryonic stem cell lines, we find that DNA damage triggers mitotic chromatin decondensation and global phosphorylation of histone H2AX, which has been associated with apoptosis. However, extended time-lapse studies in HCT116 colorectal cancer cells indicate that death does not take place during mitosis, but 72% of cells die within 3 days of mitotic exit. By contrast, only 11% of cells in the same cultures that remained in interphase died, suggesting that progression through mitosis enhances cell death following DNA damage. These time-lapse studies also confirmed that DNA damage leads to high rates of cytokinesis failure, but showed that cells that completed cytokinesis following damage died at higher rates than cells that failed to complete division. Therefore, post-mitotic cell death is not a response to cytokinesis failure or polyploidy. We also show that post-mitotic cell death is largely independent of p53 and is only partially suppressed by the apical caspase inhibitor Z-VAD-FMK. These findings suggest that progression through mitosis following DNA damage initiates a p53- and caspase-independent cell death response that prevents propagation of genetic lesions.  相似文献   

6.
A major step in the journey from germline stem cell to differentiated gamete is the decision to leave the mitotic cell cycle and begin progression through the meiotic cell cycle. Over the past decade, molecular regulators of the mitosis/meiosis decision have been discovered in most of the major model multicellular organisms. Historically, the mitosis/meiosis decision has been closely linked with controls of germline self-renewal and the sperm/egg decision, especially in nematodes and mice. Molecular explanations of those linkages clarify our understanding of this fundamental germ cell decision, and unifying themes have begun to emerge. Although the complete circuitry of the decision is not known in any organism, the recent advances promise to impact key issues in human reproduction and agriculture.  相似文献   

7.
Centromere protein CENP-A is a histone H3-like protein associated specifically with the centromere and represents one of the human autoantigens identified by sera taken from patients with the CREST variant of progressive systemic sclerosis. Injection of whole human autoimmune serum to the centromere into interphase cells disrupts some mitotic events. It has been assumed that this effect is due to CENP-E and CENP-C autoantigens, because of the effects of injecting monospecific sera to those proteins into culture cells. Here we have used an antibody raised against an N-terminal peptide of the human autoantigen CENP-A to determine its function in mitosis and during cell cycle progression. Affinity-purified anti-CENP-A antibodies injected into the nucleus during the early replication stages of the cell cycle caused cells to arrest in interphase before mitosis. These cells showed highly condensed small nuclei, a granular cytoplasm and loss of their division capability. On the other hand, microinjection of nocodazole-blocked HeLa cells in mitosis resulted in the typical punctate staining pattern of CENP-A for centromeres during different stages of mitosis and apparently normal cell division. This was corroborated by time-lapse imaging microscopy analysis of mid-interphase-injected cells, revealing that they undergo mitosis and divide properly. However, a significant delay throughout the progression of mitotic stages was observed. These results suggest that CENP-A is involved predominantly in an essential interphase event at the centromere before mitosis. This may include chromatin assembly at the kinetochore coordinate with late replication of satellite DNA to form an active centromere. Received: 3 August 1998 / Accepted: 18 September 1998  相似文献   

8.
Osmotic regulation of intracellular water during mitosis is poorly understood because methods for monitoring relevant cellular physical properties with sufficient precision have been limited. Here we use a suspended microchannel resonator to monitor the volume and density of single cells in suspension with a precision of 1% and 0.03%, respectively. We find that for transformed murine lymphocytic leukemia and mouse pro–B cell lymphoid cell lines, mitotic cells reversibly increase their volume by more than 10% and decrease their density by 0.4% over a 20-min period. This response is correlated with the mitotic cell cycle but is not coupled to nuclear osmolytes released by nuclear envelope breakdown, chromatin condensation, or cytokinesis and does not result from endocytosis of the surrounding fluid. Inhibiting Na-H exchange eliminates the response. Although mitotic rounding of adherent cells is necessary for proper cell division, our observations that suspended cells undergo reversible swelling during mitosis suggest that regulation of intracellular water may be a more general component of mitosis than previously appreciated.  相似文献   

9.
Summary— Several studies have shown that kinases and phosphatases can interact with the centrosome during interphase and mitosis suggesting that centrosomal components might be the targets of these enzymes. The association of the cAMP-dependent protein kinase type II and the mitotic kinase p34cdc2 with centrosomes from human lymphoblast cells has previously been shown (Keryer et al, 1993, Exp Cell Res 204, 230–240; Bailly et al, 1989, EMBO J 8, 3985–3995). In this paper we demonstrate that isolated centrosomes are able to phosphorylate a few number of centrosomal proteins (Mr 230–220000; 135000 and 50000) and also H1 histone. The phosphorylation of H1-histone is cell cycle dependent and modulated by phosphatases. The use of kinase and phosphatase inhibitors and the addition of the catalytic subunit of cAMP-dependent kinase or of cyclinB-p34cdc2 kinase showed that both kinases phosphorylate the same centrosomal substrates. In addition two centrosomal proteins (Mr 100000 and 37000) were phosphorylated only by p34cdc2 kinase. Although the low amount of centrosomal proteins precluded a full characterization of these substrates we discuss the identity of the major centrosomal phosphoproteins by comparison with proteins known to associate with microtubule-organizing centres or mitotic spindles. Our results raise also the intriguing possibility that the cAMP-dependent protein kinase could be regulated by the mitotic kinase at the entry of mitosis.  相似文献   

10.
We prepared the T cell growth factor (TCGF) from human spleen cell cultures stimulated with phytohemagglutinin (PHA). Various cell culture conditions and agents supporting the active TCGF production of the spleen cells were examined. The highest TCGF activity was obtained in the supernatants under the conditions that 2 x 10(6)/ml spleen cells were stimulated with PHA for 48 hr. Production of TCGF from spleen cells depended markedly on their individual sources. Addition of indomethacin to the culture or irradiation of the responding spleen cells increased TCGF activity in the supernatant of the culture. Further, addition of irradiated cells of an Epstein-Barr virus (EBV)-transformed lymphoblastoid cell line (LCL) to spleen cell cultures stimulated with PHA greatly enhanced TCGF production. Human splenic TCGF facilitated the establishment of human cytotoxic T cell (Tc) lines specific for EBV-transformed LCL cells when those Tc line cells were stimulated periodically with irradiated autologous LCL cells but not with the other two types (K-562 or Molt-4) of cells. Allogeneic LCL stimulators allowed the Tc line cells to proliferate. However, Tc line cells cocultured once with allogeneic LCL stimulators no longer exhibited EBV-specificity in their cytotoxicities.  相似文献   

11.
Programmed cell death, or apoptosis, is a highly regulated process used to eliminate unwanted or damaged cells from multicellular organisms. The morphology of cells undergoing apoptosis is similar to cells undergoing both normal mitosis and an aberrant form of mitosis called mitotic catastrophe. During each of these processes, cells release substrate attachments, lose cell volume, condense their chromatin, and disassemble the nuclear lamina. The morphological similarities among cells undergoing these processes suggest that the underlying biochemical changes also may be related. The susceptibility of cells to apoptosis frequently depends on the differentiation state of the cell. Additionally, cell cycle checkpoints appear to link the cell cycle to apoptosis. Deregulation of the cell cycle components has been shown to induce mitotic catastrophe and also may be involved in triggering apoptosis. Some apoptotic cells express abnormal levels of cell cycle proteins and often contain active Cdc2, the primary kinase active during mitosis. Although cell cycle components may not be involved in all forms of apoptosis, in many instances cell proliferation and cell death may share common pathways.  相似文献   

12.
Mitosis is controlled by a network of kinases and phosphatases. We screened a library of small interfering RNAs against a genome-wide set of phosphatases to comprehensively evaluate the role of human phosphatases in mitosis. We found four candidate spindle checkpoint phosphatases, including the tumor suppressor CDKN3. We show that CDKN3 is essential for normal mitosis and G1/S transition. We demonstrate that subcellular localization of CDKN3 changes throughout the cell cycle. We show that CDKN3 dephosphorylates threonine-161 of CDC2 during mitotic exit and we visualize CDC2pThr-161 at kinetochores and centrosomes in early mitosis. We performed a phosphokinome-wide mass spectrometry screen to find effectors of the CDKN3-CDC2 signaling axis. We found that one of the identified downstream phosphotargets, CKβ phosphorylated at serine 209, localizes to mitotic centrosomes and controls the spindle checkpoint. Finally, we show that CDKN3 protein is down-regulated in brain tumors. Our findings indicate that CDKN3 controls mitosis through the CDC2 signaling axis. These results have implications for targeted anticancer therapeutics.  相似文献   

13.
Caspases have been known for several years for their involvement in executing apoptosis, where unwanted or damaged cells are eliminated. Surprisingly, after analysis of the relevant data set from the Stanford microarray database, we noticed that the gene expression pattern for caspase 3, but not for caspase 1, 6, 7, 8, 9, or 10, undergoes periodic change in the HeLa cell cycle. In this study, we have demonstrated that caspase 3, but not other caspases, is upregulated and activated just prior to mitosis. Pretreatment of human hepatoma cells with a caspase 3 inhibitor z-DEVD-FMK, prior to the treatment with an antimicrotubule drug nocodazole, abrogates the mitotic arrest, suggesting that caspase 3 (or a caspase 3-like enzyme) might be involved in mitotic-spindle checkpoint. The studies not only characterize caspase 3 as a cell cycle-regulated protein, but also link the protein to nocodazole-dependent mitotic checkpoint, greatly expanding the understanding of caspase 3. These authors contributed equally.  相似文献   

14.
Microtubule drugs, which block cell cycle progression through mitosis, have seen widespread use in cancer chemotherapies. Although microtubules are subject to regulation by signal transduction mechanisms, their pharmacological modulation has so far relied on compounds that bind to the tubulin subunit. A new microtubule pharmacophore, diphenyleneiodonium, causing disassembly of the microtubule cytoskeleton is described here. Although this synthetic compound does not affect the assembly state of purified microtubules, it profoundly suppresses microtubule assembly in vivo, causes paclitaxel-stabilized microtubules to cluster around the centrosomes, and selectively disassembles dynamic microtubules. Similar to other microtubule drugs, this new pharmacophore blocks mitotic spindle assembly and mitotic cell division.  相似文献   

15.
16.
The cell surface is the cellular compartment responsible for communication with the environment. The interior of mammalian cells undergoes dramatic reorganization when cells enter mitosis. These changes are triggered by activation of the CDK1 kinase and have been studied extensively. In contrast, very little is known of the cell surface changes during cell division. We undertook a quantitative proteomic comparison of cell surface‐exposed proteins in human cancer cells that were tightly synchronized in mitosis or interphase. Six hundred and twenty‐eight surface and surface‐associated proteins in HeLa cells were identified; of these, 27 were significantly enriched at the cell surface in mitosis and 37 in interphase. Using imaging techniques, we confirmed the mitosis‐selective cell surface localization of protocadherin PCDH7, a member of a family with anti‐adhesive roles in embryos. We show that PCDH7 is required for development of full mitotic rounding pressure at the onset of mitosis. Our analysis provided basic information on how cell cycle progression affects the cell surface. It also provides potential pharmacodynamic biomarkers for anti‐mitotic cancer chemotherapy.  相似文献   

17.
Interfering with mitosis for cancer treatment is an old concept that has proven highly successful in the clinics. Microtubule poisons are used to treat patients with different types of blood or solid cancer since more than 20 years, but how these drugs achieve clinical response is still unclear. Arresting cells in mitosis can promote their demise, at least in a petri dish. Yet, at the molecular level, this type of cell death is poorly defined and cancer cells often find ways to escape. The signaling pathways activated can lead to mitotic slippage, cell death, or senescence. Therefore, any attempt to unravel the mechanistic action of microtubule poisons will have to investigate aspects of cell cycle control, cell death initiation in mitosis and after slippage, at single‐cell resolution. Here, we discuss possible mechanisms and signaling pathways controlling cell death in mitosis or after escape from mitotic arrest, as well as secondary consequences of mitotic errors, particularly sterile inflammation, and finally address the question how clinical efficacy of anti‐mitotic drugs may come about and could be improved.  相似文献   

18.
We previously demonstrated that neurotransferrin (NTF), a transferrin extracted from adult chicken peripheral nerves, promotes growth of primary chick muscle cells in the absence of embryo extract. NTF was shown to stimulate DNA synthesis and cell proliferation. In the present study, we demonstrate that NTF is a mitogen using two independent methods; counts of orcein-stained mitotic figures and analysis of cell cycle kinetics with a fluorescence-activated cell sorter. In low-density cultures mitotic activity increases with increasing doses of NTF followed by a plateau at concentrations greater than 6 μg/ml. Residual, embryonic mitotic activity progressively declines with time after plating muscle cells in the absence of NTF. Absence of NTF for 2 days causes cells to lose irreversibly their myogenic potential. In the presence of NTF, mitotic activity increases for 2 days followed by a decline concurrent with myoblast fusion and formation of myotubes. Cell cycle analysis showed that NTF addition causes cell populations to shift from Gt to S and G2 + M within 18.5 hr. Muscle cells, plated at high densities in the absence of NTF, show mitotic activities similar to those plated at low densities in the presence of NTF. Addition of NTF to high-density cultures is ineffective in stimulating mitosis. These studies show that at typical cell plating densities, NTF is a required mitogen for primary chick muscle cell cultures.  相似文献   

19.
Mitotic Catastrophe的研究进展   总被引:1,自引:0,他引:1  
细胞死亡是多细胞生物生命过程中重要的生理或病理现象,可分为坏死和程序性细胞死亡,而后者根据死亡细胞的形态学和发生机制的不同又可分为凋亡、自吞噬和mitotic catastrophe,其中mitotic catastrophe是近年来才被揭示报道,是指细胞在有丝分裂过程中死亡的现象,是一种发生在细胞有丝分裂期由于异常的细胞分裂而导致的细胞死亡,它常常伴随着细胞有丝分裂检查点的异常和基因或纺锤体结构的损伤而发生。现对mitotic catastrophe及相关的调控机制进行综述。  相似文献   

20.
In a cross-species overexpression approach, we used the pseudohyphal transition of Saccharomyces cerevisiae as a model screening system to identify human genes that regulate cell morphology and the cell cycle. Human enhancer of invasion-cluster (HEI-C), encoding a novel evolutionarily conserved coiled-coil protein, was isolated in a screen for human genes that induce agar invasion in S. cerevisiae. In human cells, HEI-C is primarily localized to the spindle during mitosis. Depletion of HEI-C in vivo with short interfering RNAs results in severe mitotic defects. Analysis by immunofluorescence, flow cytometry analysis, and videomicroscopy indicates that HEI-C-depleted cells form metaphase plates with normal timing after G(2)/M transition, although in many cases cells have disorganized mitotic spindles. Subsequently, severe defects occur at the metaphase-anaphase transition, characterized by a significant delay at this stage or, more commonly, cellular disintegration accompanied by the display of classic biochemical markers of apoptosis. These mitotic defects occur in spite of the fact that HEI-C-depleted cells retain functional cell cycle checkpoints, as these cells arrest normally following nocodazole or hydroxyurea treatment. These results place HEI-C as a novel regulator of spindle function and integrity during the metaphase-anaphase transition.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号