首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The cellular and biochemical events which transduce chemical insults into signals for increased expression of the stress-responsive gene gadd 153 were investigated using nephrotoxic cysteine conjugates. In LLC-PK1 cells, cysteine conjugate toxicity is initiated by covalent binding, but depletion of cellular thiols, an increase in cytosolic free calcium, and lipid peroxidation couple the binding to cell death (Chen, Q., Jones, T. W., Brown, P. C., and Stevens, J. L. (1990) J. Biol. Chem. 265, 21603-21611; Chen, Q., Jones, T. W., and Stevens, J. L. (1991) Toxicologist 11, 101, 1991). Three different toxic cysteine conjugates induced gadd 153 mRNA. With S-(1,2-dichlorovinyl)-L-cysteine (DCVC), the induction was both concentration and time-dependent. Preventing the metabolism of DCVC and covalent binding of DCVC-derived reactive metabolites to cellular macromolecules with the beta-lyase inhibitor (aminooxy)acetic acid blocked the induction. However, buffering free calcium with a cell permeable calcium chelator or blocking lipid peroxidation with an antioxidant did not affect the induction of gadd 153 mRNA by DCVC even though these treatments inhibit toxicity. These data suggest that covalent binding of reactive metabolites to cellular macromolecules may serve as a primary signal for the induction of gadd 153 mRNA by nephrotoxic cysteine conjugates. Interestingly, the sulfhydryl agent dithiothreitol, which was nontoxic and prevented the toxicity of DCVC, also induced an increase in gadd 153 mRNA. When both dithiothreitol and DCVC were added to cells, there were no inhibitory or additive effects on expression. Therefore, cellular thiol-disulfide status may also play a role in gadd 153 induction.  相似文献   

3.
Serotonin (5-HT) stimulates superoxide release, phosphorylation, of p42/p44 mitogen-activated protein kinase (MAPK), and DNA synthesis in bovine pulmonary artery smooth muscle cells. Both p42/p44 MAPK and reactive oxygen species (ROS) generation are required for 5-HT-induced growth in SMC. Agents that block the production of ROS, or ROS scavengers, block MAPK activation by 5-HT. However, specific signal transduction by 5-HT leading to proteins that control entrance into the cell cycle are not well defined in smooth muscle cells. Here, we show by Western blot that 5-HT upregulates c-Fos, an immediate early gene product known to regulate the entrance of quiescent cells into the cell cycle. Northern blots showed that c-fos mRNA is induced by 5-HT in 30 min. This induction is blocked by PD98059, indicating that activation of MAPK is required. 5-HT-induced expression of a 350 bp c-fos promoter in a luciferase reporter is blocked by PD98059 and diphenyliodonium (DPI). The GTPases Rac1 and Ras have been implicated in growth factor-induced generation of ROS. Overexpression of either dominant negative (DN) Rac1 or DN Ras inhibited 5-HT-mediated c-fos promoter activation. 5-HT also induced expression from a truncated c-fos promoter containing an isolated serum response element. This activation was blocked by DPI and PD98059. Overexpression of activated Ras and Rac1 were additive for activation of the serum response element promoter. Regulation of cyclin D1, a protein shown to be regulated by c-fos and required for entry into the cell cycle, is upregulated by 5-HT and is blocked by DPI and PD98059. Nuclear factor-κB, which can also regulate cyclin D1, was not activated. We conclude that 5-HT stimulates c-fos and cyclin D1 expression through a ROS-dependent mechanism that requires Ras, Rac1, and MAPK.  相似文献   

4.
The developmental expression of the protooncogenes, c-fos and c-myc, in muscle and liver of 14-and 19-day embryos and 1-, 6-, 8-and 28-day-old chicks of Athens Canadian Random Bred (ACRB) Single Comb White Leghorn (SCWL) and Peterson X Arbor Acres commercial broiler (PXAA) was determined. For the three stocks of chicken, significant differences were found in c-fos and c-myc expression. For both muscle and liver, averaged across ages, abundance of c-fos RNA was highest in PXAA and lowest in ACRB with differences significant at the P<0.01 level. c-myc RNA levels were significantly higher (P<0.01) in PXAA than in ACRB or SCWL liver. Taken over the developmental period, expression of c-fos RNA in muscle increased at different rates between breeds from 14-day embryo levels to peak levels in 6- to 8-day-old chicks and declined in 28-day-old chicks. Levels of c-fos were much lower in liver and showed no consistent differences related to developmental stage. A steady decline in c-myc from 14-day embryo levels to 28-day-old chicks was found in both muscle and liver. This decline in c-myc levels generally parallels the decline in relative growth rates which occurs in all breeds over the developmental period. In liver, the fast growing PXAA had the highest levels of c-myc. c-fos, on the other hand, showed elevated levels in PXAA for both muscle and liver and distinctly different patterns between these two tissues over the developmental period, suggesting tissue-specific involvement in growth.  相似文献   

5.
The expression of c-myc was analyzed in murine and human erythroblasts throughout their differentiation in vitro into reticulocytes. The murine cells were splenic erythroblasts from animals infected with the anemia strain of Friend virus (FVA cells). In FVA cells cultured without EPO, the c-myc mRNA and protein levels decrease sharply within 3 to 4 h, showing that continual EPO stimulation is required to maintain c-myc expression. When cultured with EPO, the c-myc mRNA level of FVA cells is raised within 30 min of exposure. The c-myc mRNA and protein reach maxima at 1 to 3 h, then decline slowly to very low levels by 18 h. In contrast, c-fos and c-jun mRNA levels are not regulated by EPO in FVA cells. The human cells analyzed were colony-forming units-erythroid, CFU-E, derived in vitro by the culture of peripheral blood burst-forming units-erythroid (BFU-E). When grown in EPO and insulin-like growth factor 1 (IGF-1) these cells differentiate into reticulocytes over 6 days rather than the 2 days required for murine cells, but the c-myc mRNA kinetics and response to EPO parallel those of mouse cells at similar stages of differentiation. Both IGF-1 and c-kit ligand (SCF) cause an additive increase in c-myc mRNA in human CFU-E in conjunction with EPO. These additive effects suggest that EPO, IGF-1, and SCF affect c-myc mRNA accumulation by distinct mechanisms. Addition of an antisense oligonucleotide to c-myc in cultures of human CFU-E specifically inhibited cell proliferation but did not affect erythroid cell differentiation or apoptosis. When human cells were grown in high SCF concentrations, an environment which enhances proliferation and retards differentiation, antisense oligonucleotide to c-myc strongly inhibited proliferation, but such inhibition did not induce differentiation. This latter result indicates that differentiation requires signals other than depression of c-myc and resultant depression of proliferation. © 1996 Wiley-Liss, Inc.  相似文献   

6.
S-(chloroethyl)-cysteine (CEC) and S-(1,2-dichlorovinyl)cysteine (DCVO) have been proposed as intermediates in the metabolic transformation of the carcinogens 1,2-dichloroethane and 1,1,2-trichloroethylene. We have tested the ability of CEC and DCVC to induce DNA repair and genotoxic effects at the chromosomal level by comparative assessment of unscheduled DNA synthesis induction and micronucleus formation in Syrian hamster embryo fibroblasts. CEC induced a potent and dose-dependent response in both assays, whereas DCVC treatment resulted in a comparatively weak induction of DNA repair and failed to raise micronucleus formation above control rates. Inhibition of cysteine conjugate \gB-lyase diminished the effect of DCVC, but had no influence on the genotoxicity of CEC either in the unscheduled DNA synthesis or micronucleus assay.Abbreviations AOAA aminooxyacetic acid - CEC S-(chloroethyl)-cysteine; \gB-lyase, cysteine conjugate -lyase - DCE 1,2-dichloroethane - DCVC S(1,2-dichlorovinyl)-cysteine - GSH glutathione - HU hydroxyurea - IBR IBR-modified Dulbecco's Eagle's reinforced medium - MN2 micronuclei/2,000 cells - 4-NQO 4-nitroquinoline-1-oxide - SHE Syrian hamster embryo fibroblasts; 3H-Thd, 3H-thymidine - TCE 1,1,2-trichloroethylene - UDS unscheduled DNA synthesis  相似文献   

7.
8.
9.
10.
11.
1. The noncompetitive N-methyl-D-aspartate (NMDA) receptor antagonists produce behavioral responses that closely resemble both positive and negative symptoms of schizophrenia. These drugs also induce excitatory and neurotoxic effects in limbic cortical areas.2. We have here mapped the brain areas which show increased activity in response to noncompetitive NMDA-receptor antagonist administration concentrating especially to those brain areas that have been suggested to be relevant in the pathophysiology of schizophrenia.3. Rats were treated intraperitoneally with a NMDA-receptor antagonist MK801 and activation of brain areas was detected by monitoring the expression of c-fos mRNA by using in situ hybridization.4. MK801 induced c-fos mRNA expression of in the retrosplenial, entorhinal, and prefrontal cortices. Lower c-fos expression was observed in the layer IV of the parietal and frontal cortex. In the thalamus, c-fos mRNA expression was detected in the midline nuclei and in the reticular nucleus but not in the dorsomedial nucleus. In addition, c-fos mRNA was expressed in the anterior olfactory nucleus, the ventral tegmental area, and in cerebellar granule neurons.5. NMDA-receptor antagonist ketamine increased dopamine release in the parietal cortex, in the region where NMDA-receptor antagonist increased c-fos mRNA expression.6. Thus, the psychotropic NMDA-receptor antagonist induced c-fos mRNA expression in most, but not all, brain areas implicated in the pathophysiology of schizophrenia. The high spatial resolution of in situ hybridization may help to define regions of interest for human imaging studies.  相似文献   

12.
This study focused on the function of hnRNP-R in the regulation of c-fos expression. We demonstrated that hnRNP-R accelerated the rise and decline phases of c-fos mRNAs and Fos proteins, allowing PMA to induce an augmented pulse response of c-fos expression. Then, we examined the role of the c-fos-derived AU-rich element (ARE) in hnRNP-R-regulated mRNA degradation. Studies with the ARE-GFP reporter gene showed that hnRNP-R significantly reduced the expression of GFP with an inserted ARE. Moreover, immunoprecipitation-RT-PCR analysis demonstrated that in R28 cells and rat retinal tissues, the c-fos mRNA was co-immunoprecipitated with hnRNP-R. These findings indicate that hnRNP-R regulates the c-fos expression in retinal cells, and that the ARE of c-fos mRNAs contributes to this regulation.  相似文献   

13.
14.
15.
16.
Nephrotoxic cysteine conjugates kill cells after they are metabolized by the enzyme cysteine conjugate beta-lyase to reactive fragments which bind to cellular macromolecules. We have investigated the cellular events which occur after the binding and lead ultimately to cell death in renal epithelial cells. Using S-(1,2-dichlorovinyl)-L-cysteine (DCVC) as a model conjugate, we found that the phenolic antioxidants N,N'-diphenyl-p-phenylenediamine (DPPD), butylated hydroxyanisole, butylated hydroxytoluene, propyl galate, and butylated hydroxyquinone, and the iron chelator deferoxamine inhibited the cytotoxicity significantly. Among the five antioxidants, DPPD was most potent. DPPD blocked DCVC toxicity over an extended time period, and the rescued cells remained functional as measured by protein synthetic activity. DPPD was able to block the toxicity of two other toxic cysteine conjugates S-(2-chloro-1,1,2-trifluoroethyl)-L-cysteine and S-(1,1,2,2-tetrafluoroethyl)-L-cysteine. In addition to LLC-PK1 cells, DPPD also protected freshly isolated rat kidney epithelial cells in suspension and in primary culture. In suspension cells, DPPD was effective at low doses of DCVC (25-50 microM) but not at high concentrations (250-500 microM). DPPD inhibition was not due to an inactivation of beta-lyase or a decrease in the binding of [35S]DCVC metabolites to cellular macromolecules and occurred at a step after the activation of the toxins. During DCVC treatment, lipid peroxidation products were detectable prior to cell death. DPPD blocked lipid peroxidation over the whole time course. Depletion of nonprotein thiols also occurred prior to cell death. DPPD did not prevent the loss of nonprotein thiols. However, the sulfhydryl-reducing agent DTT blocked lipid peroxidation and toxicity at a step after the activation of DCVC. Therefore, it appears that cysteine conjugates kill renal epithelial cells by a combination of covalent binding, depletion of nonprotein thiols, and lipid peroxidation.  相似文献   

17.
18.
19.
Summary 1. This study presents a time course analysis of the messenger RNA (mRNA) levels of c-fos, vasopressin (VP), and oxytocin (OT) in the paraventricular (PVN) and supraoptic nucleus (SON), following acute and chronic dehydration by water deprivation. 2. Male Wistar rats were separated into five groups: nondehydrated (control group) and dehydrated for 6, 24, 48 and 72 h. Following water deprivation, animals were decapitated, their blood was collected for hematocrit, osmolality, and plasma sodium measurements, and brains were removed for dissection of both PVN and SON. 3. As expected, the hematocrit, osmolality, plasma sodium, and weight loss were increased after water deprivation. In SON, a significant increase in both VP and OT mRNA expression was observed 6 h after dehydration reaching a peak at 24 h and returning to basal levels of expression at 72 h. In the PVN, an increase in both VP and OT mRNA expression occurred 24 h after dehydration. At 72 h the VP and OT mRNA expression levels had decreased but they were still at higher levels than those detected in control animals. 4. These results suggest that SON is the first nucleus to respond to the dehydration stimulus. Additionally, we also observed an increase in c-fos mRNA expression in both PVN and SON 6 h after water deprivation, which progressively decreased 24, 48, and 72 h after the onset of water deprivation. Therefore, it is possible that c-fos may be involved in the modulation of VP and OT genes, regulating the mRNA expression levels on a temporally distinct basis within the PVN and SON.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号