首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microsomes from the renal cortex of DBA/2J mice can metabolize chloroform through oxidative and reductive pathways, similar to hepatic microsomes. The oxidative or reductive nature of CHCl3 activation is strictly dependent on the oxygenation of the incubation mixture, as indicated by the formation of qualitatively different adducts to phos-pholipids (PLs). The protein and lipid binding levels measured in kidney microsomes from control females differed significantly from the binding levels observed with kidney microsomes from male and testosterone-treated female DBA/2J mice in aerobic conditions only. Therefore, the sex-dependent CHCl3-induced acute nephrotoxicity seems related only with the oxidative CHCl3activation. The levels of adducts to PL polar heads and to protein showed a strict correlation with each other. Therefore, the assay of adducts to PL polar heads may be used as a substitute for the assay of adducts to protein. This might be especially convenient when studying the effects of both phosgene and the trichloromethyl radicals.  相似文献   

2.
The adducts produced in vitro by the reactive metabolites of [14C]-chloroform with total phospholipids (PLs) of freshly isolated hepatocytes have been characterized. The radical metabolite formed several adducts with all the major PL classes. These adducts seemed very likely to result from the unspecific attack of the radical on the PL fatty acyl chains. [14C]-Chloroform-derived phosgene caused the formation of a single PL adduct characterized by a ratio 14C:P of 1:4. This adduct was tentatively identified as an adduct of phosgene with two molecules of cardiolipin. © 1996 John Wiley & Sons, Inc.  相似文献   

3.
Microsomal phospholipids (PL) are a good target for the reactive intermediates produced by either the oxidative or the reductive biotransformation of CHCl3 (Testai et al. (1990), Toxicol. Appl. Pharmacol. 104, 496-503). In order to preliminarily characterize the different PL with CHCl3 reactive intermediates, two common methods of PL breakdown have been exploited: the acid-catalyzed transmethylation and the enzymatic hydrolysis with phospholipase C. The results indicated that radioactivity derived from the adducts of PL with the oxidation metabolite, phosgene, partitioned preferentially in the aqueous phase (the ratio of aqueous to organic phase radioactivity contents was about 10); the opposite occurred (ratio about 0.1) when the PL adducts were produced by the reductive process metabolites (dichloromethyl radicals). Therefore, the two methods of PL adduct breakdown can be used to detect and quantitate selectively the two reactive intermediates of CHCl3 biotransformation. The use of phospholipase C, which specifically cleaves the bond between the glyceryl-oxygen and the phosphor atom of PL also gave some structural information. Indeed, the radioactivity partitioning in the aqueous phase after enzymatic hydrolysis of CHCl3 oxidation-associated PL adducts, indicated the selective covalent binding of phosgene residues with the PL polar heads. The clear-cut different partition of radioactivity observed after hydrolysis of PL adducts with CHCl3 reduction intermediates, analogously indicated that dichloromethyl radicals were selectively bound to the PL fatty acyl chains. Using this method we could confirm that in in vitro experimental conditions resembling the physiological status of the liver, both metabolic pathways were concurrently active in hepatic microsomes of B6C3F1 mice. Extents of reactive metabolites similar to those found in B6C3F1 mouse liver microsomes, could be measured in Sprague-Dawley rat liver microsomes only after pretreatment of the animals with PB and incubation with higher CHCl3 concentrations. The toxicological implications of these findings are discussed.  相似文献   

4.
We examined the effects of isopropanol (ISOP) pretreatment on the metabolism of 14CCl4 to 14CO2 and CHCl3 exhaled in the breath, to 14C metabolite excreted in 24 hr urine and feces from 0 to 24 hr, and to 14C metabolite bound to liver at 24 hr. Fasted male rats were given 0.1 or 2.0 mmoles 14CCl4/kg. ISOP pretreatment, which markedly enhanced the hepatotoxicity of CCl4, selectively enhanced the rate and total extent of 14CO2 and CHCl3 metabolite exhalation. The pathways of CCl4 metabolism leading to CO2 and CHCl3 metabolite formation may be more relevant to the hepatotoxicity of CCl4 than the pathways leading to urinarym fecal or covalently bound metabolites.  相似文献   

5.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

6.
Lance R. Pohl  G. Krishna 《Life sciences》1978,23(10):1067-1072
Cytochrome P-450 appears to catalyze the invitro formation of phosgene (COCl2) from chloroform (CHCl3) in rat liver microsomes, since this reaction is NADPH dependent and inhibited by carbon monoxide and SKF 525-A. Moreover, the cleavage of the C-H bond appears to be the rate-determining step in this process since deuterium labeled chloroform (CDCl3) is biotransformed into COCl2 slower than is CHCl3. CDCl3 was also less hepatotoxic than CHCl3 suggesting that a similar pathway of metabolism is responsible for the hepatotoxic properties of chloroform.  相似文献   

7.
This study focused on the hepatoprotective activity of C-phycocyanin (C-PC) against carbon tetrachloride-induced hepatocyte damage in vitro and in vivo. In in vitro study, human hepatocyte cell line L02 was used. C-PC showed its capability to reverse CCl4-induced L02 cells viability loss, alanine transaminase (ALT) leakage and morphological changes. C-PC also showed the following positive effects: prevent the CCl4-induced overproduction of intracellular reactive oxygen species (ROS) and malondialdehyde (MDA); prevent changes in superoxide dismutase (SOD) activity; and reduce glutathione (GSH) level. In vivo, C-PC showed its capability to decrease serum ALT and aspartate transaminase (AST) levels in CCl4-induced liver damage in mice. The histological observations supported the results obtained from serum enzymes assays. C-PC also showed the following effects in mice liver: prevent the CCl4-induced MDA formation and GSH depletion; prevent SOD and glutathione peroxidase (GSH-Px) activity; and prevent the elevation of transforming growth factor-beta1 (TGF-β1) and hepatocyte growth factor (HGF) mRNAs. Both the in vitro and in vivo results suggested that C-PC was useful in protecting against CCl4-induced hepatocyte damage. One of the mechanisms is believed to be through C-PCs scavenging ability to protect the hepatocytes from free radicals damage induced by CCl4. In addition, C-PC may be able to block inflammatory infiltration through its anti-inflammatory activities by inhibiting TGF-β1 and HGF expression.  相似文献   

8.
The two CHCl3 activation pathways have been studied in incubations at different oxygenation conditions with hepatic microsomes from control Sprague Dawley (SD) rats or SD rats treated with different cytochrome P450 inducers (acetone, phenobarbital, pyrazole, dexamethasone, and β-naphthoflavone). The present results provide direct evidence that CHCl3 concentration is critical in determining the role of different cytochrome P450 isoforms (CYP) and the related effects of metabolic inducers. At 0.1 mM CHCl3 concentration, the only major contribution to its oxidative biotransformation in liver microsomes from untreated rats was due to CYP2E1, as shown by metabolic inhibition due to 4-methylpyrazole or by anti-CYP2E1 antibodies. Moreover, animal treatments with acetone and pyrazole increased the production of adducts of phosgene to microsomal phospholipid by about 10–15 times. At 5 mM chloroform, in control rat liver microsomes, CYP2B1/2 was the major participant responsible for chloroform activation, while CYP2E1 and CYP2C11 were also significantly involved. Consistently, at this chloroform concentration, the effect of phenobarbital (CYP2B1/2 inducer) was maximal, producing very high levels of adducts. The reductive pathway was expressed at 5 mM CHCl3 only and was not significantly increased by any of the inducers used. Moreover, it was not inhibited by metyrapone and 4-methylpyrazole or by anti CYP2C11 antibodies. Therefore, it may be concluded that, in the range of chloroform concentrations tested, those CYPs involved in CHCl3 oxidative bioactivation do not participate in CHCl3 reduction. Chloroform oxidative metabolism in PB-microsomes could achieve very high absolute rates, much higher than those in C-microsomes; in contrast, the metabolic rates in AC- and PYR-microsomes remained within the activity levels observable in C-microsomes at high chloroform concentration. Therefore, it can be argued that the CYP2B1/2-mediated induction of CHCl3 activation is the basis for the effect of PB in potentiating chloroform hepatotoxicity. Moreover, processes other than CYP2E1-mediated metabolic induction may be more relevant in the ketones potentiation of chloroform-induced acute toxicity. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 11: 305–312, 1997.  相似文献   

9.
The formation of a covalent adduct to a single phospholipid by the oxidative chloroform metabolite, phosgene, is demonstrated in liver mitochondria of phenobarbital-pretreated Sprague Dawley (SD) rats treated with CHCl3. The densitometric analysis of the phosphorus stained extracted phospholipids showed that the formation of this adduct in liver mitochondria is accompanied by a decrease of phosphatidylethanolamine and cardiolipin. The characterization of this adduct was performed with a multinuclear NMR approach by comparison with the decreased phospholipids. Treatment of rats with [13C]chloroform resulted in an intense 13C NMR peak from either an esteric or amidic carbonyl. Very strong similarities in fatty acid composition were found between phosphatidylethanolamine and the phosgene-modified PL, using 13C and 1H NMR spectroscopy. A multiplet at 3.91 ppm coupled to a signal at 3.41 ppm was shown by two-dimensional 1H NMR in the adduct spectrum. This cross peak was interpreted as arising from the shifted resonances of the two PE head group methylene groups, due to the binding with phosgene. 31P spectrum of the adduct was identical to that of phosphatidylethanolamine. We concluded that the chloroform adduct is a modified phosphatidylethanolamine, with the phosgene-derived carbonyl bound to the amine of the head group. © 1997 John Wiley & Sons, Inc. J Biochem Toxicol 12: 93–102, 1998  相似文献   

10.
Phosgene: a metabolite of chloroform   总被引:7,自引:0,他引:7  
Cysteine inhibited the in vitro covalent binding of [14C] chloroform, (CHCl3), to microsomal protein and concomitantly trapped a reactive metabolite, presumably phosgene (COCl2), as 2-oxothiazolidine-4-carboxylic acid. When the incubation was conducted in an atmosphere of [18O] O2, the trapped COCl2 contained [18O]. These findings suggest that the CH bond of CHCl3 is oxidized by a cytochrome P-450 monooxygenase to produce trichloromethanol, which spontaneously dehydrochlorinates to yield the toxic agent phosgene.  相似文献   

11.
Summary Benzoyl peroxide catalytic decomposition of carbon tetrachloride in a model system produces trichloromethyl and trichloromethylperoxyl free radicals. These radicals are also produced by CCl4 bioactivation in liver and are considered to be responsible for the deleterious effects of this hepatotoxin. In this study, it is attempted to learn about how the .CCl3 and CCl3O2. tend to react with hydroxyproline in a model system. Hydroxyproline was selected because of its role in collagen metabolism. During the interaction of both radicals with hydroxyproline a total of 16 reaction products were isolated and identified by gas chromatographic-mass spectrometric analysis. All of them were hydroxyproline analogs, no single one contained C from CCl4 and only three contained chlorine. Consequently, most adducts would be missed in experiments where formation of reaction products are studied by formation of14C or36Cl labeled adducts (e.g. covalent binding studies used by toxicologists). If similar hydroxyproline analog reaction products were observed during CCl4 intoxication it might be reasonably expected that they interfered with collagen metabolism and participate in cirrhogenic effects of CCl4 on the liver.  相似文献   

12.
The transformations of 14CCl4 by whole cells of Acetobacterium woodii suspended in phosphate buffer containing reducing agents, and by the cobalt corrinoid aquocobalamin in the same solution, were compared. Each catalyst transformed 14CCl4 not only to reduced products (CHCl3 and CH2Cl2) but also to CO and CO2 as well as non-volatile products. The mass balance for radioactive carbon was complete in each case. Thus, the reactions of the pure cobalt corrinoid resemble the reactions in vivo. The proton in CHCl3, formed from CCl4 by A. woodii, was derived from water. Extracts of A. woodii were fractionated into large and small molecules, and each of the two fractions was separated chromatographically. Fractions of proteins demonstrated poor correlation between content of the corrinoid vitamin B12 and rates of transformation of CCl4. The correlation was somewhat improved if the fractions were autoclaved, but dechlorination in the absence of vitamin B12 was observed. Separation of the small molecules yielded only one fraction containing vitamin B12, and this fraction catalyzed dechlorination, whereas several other fractions were able to dechlorinate CCl4 in the absence of vitamin B12. We presume there to be unrecognized dechlorinative factors in anaerobic bacteria.Abbreviations GC gas chromatograph(y) - GC-MS (or-TCD or-FID) GC coupled to a mass spectrometer (or a thermal conductivity detector or a flame ionization detector) - HPLC high pressure liquid chromatograph(y) - FPLC high pressure protein chromatograph(y)  相似文献   

13.
《Inorganica chimica acta》1987,131(1):101-103
Reaction of Ni(OCH3)(OCH2CCl3) with some oxygen and nitrogen donor ligands results in the formation of 1:1 adducts have been characterized from their magnetic susceptibility, reflectance, IR and mass spectral data.  相似文献   

14.
Apocynum venetum L., belonging to the family Apocynaceae, is a popular medicinal plant, which is commonly used in the treatment of hypertension, neurasthenia, and hepatitis in China. In the present study, the total flavonoids (TFs) were prepared from the leaves of A. venetum, and its protective effects on carbon tetrachloride (CCl4)-induced hepatotoxicity in a cultured HepG2 cell line and in mice were investigated. Cell exposed to 0.4% CCl4 (v/v) for 6 h led to a significant decrease in cell viability, increased LDH leakage, and intracellular reactive oxygen species (ROS). CCl4 also induced cell marked apoptosis, which was accompanied by the loss of mitochondrial membrane potential (MMP). Pretreatment with TFs at concentrations of 25, 50, and 100 μg/mL effectively relieved CCl4-induced cellular damage in a dose-dependent manner. In vivo, TFs (100, 200, and 400 mg/kg BW) were administered via gavage daily for 14 days before CCl4 treatment. The high serum ALT and AST levels induced by CCl4 were dose-dependently suppressed by pretreatment of TFs (200 and 400 mg/kg BW). Histological analysis also supported the results obtained from serum assays. Furthermore, TFs could prevent CCl4-caused oxidative damage by decreasing the MDA formation and increasing antioxidant enzymes (CAT, SOD, GSH-Px) activities in liver tissues. In summary, both in vitro and in vivo data suggest that TFs, prepared from A. venetum, showed a remarkable hepatoprotective and antioxidant activity against CCl4-induced liver damage.  相似文献   

15.
The degradation of trichloroethylene (TCE, Cl2C=CHCl) and tetrachloroethylene (PCE, Cl2C=CCI2) in a gas stream from a soil vapor extraction (SVE) well was demonstrated with an annular photocatalytic reactor packed with porous TiO2 pellets in a field trial at the Savannah River Site in Aiken, SC. The TiO2 pellets were prepared using a sol‐gel method. The experiments were performed at 55 to 60°C using space times of 108 to 1010 g ? s ? mol‐1 for TCE and PCE. Chloroform (CHCl3) and carbon tetrachloride (CCl4) were detected as minor products from side reactions. On a molar basis, the amounts CCl4 and CHCl3 produced were about 2 and 0.2% of the reactants, respectively.  相似文献   

16.
In order to determine whether CCl4, CBrCl3, CBr4 or CHCl3 undergo oxidative metabolism to electrophilic halogens by liver microsomes, they were incubated with liver microsomes from phenobartital pretreated rats in the presence of NADPH and 2,6-dimethylphenol. The analysis of the reaction mixtures by capillary gas chromatography mass spectrometry revealed that 4-chloro-2,6-dimethylphenol was a metabolite of CCl4 and CBrCl3 whereas 4-bromo-2,6-dimethylphenol was a metabolite of CBr4. The formation of the metabolites was significantly decreased when the reactions were conducted with heat denatured microsomes, in the absence of NADPH or under an atmosphere of N2. These results indicate that the chlorines of CBrCl3 and CCl4 and the bromines of CBr4 are oxidatively metabolized by rat liver microsomes to electrophilic and potentially toxic metabolites.  相似文献   

17.
In rats treated with CCl4 for 7 weeks, liver proline oxidase activity was drastically reduced 24 h after the initial administration of the toxic agent and remained low throughout the treatment period. This was accompanied by a larger accumulation of added proline in the incubation medium and a lesser release of 14CO2 from [14C]proline during incubation.Collagen synthesis by liver slices of CCl4-treated rats increased in proportion to proline concentration, a plateau being reached at 0.48 mM proline. The plateau did not occur within the range studied with liver slices of normal liver.Increased collagen synthesis in vitro was accompanied by increased deposition of collagen in vivo only during the first 3 weeks of CCl4 treatment. No further increase in liver collagen content occurred thereafter. Discontinuance of CCl4-administration was followed by a return to normal of proline oxidase activity and in vitro collagen synthesis within 2 weeks. Nevertheless, collagen content remained elevated.The results suggest that proline oxidase activity, together with the previously shown increased formation of proline from precursor amino acids, may control the amount of proline available for collagen biosynthesis; and that the rate of degradation of collagen, perhaps by collagenase, may determine the levels of collagen remaining after discontinuance of CCl4-administration.  相似文献   

18.
Bacteriochlorophyll c in vivo is a mixture of at least 5 homologs, all of which form aggregates in CH2Cl2, CHCl3 and CCl4. Three homologs exist mainly in the 2-R-(1-hydroxyethyl) configuration, whereas the other two homologs, 4-isobutyl-5-ethyl and 4-isobutyl-5-methyl farnesyl bacteriochlorophyll c, exist mainly in the 2-S-(1-hydroxyethyl) configuration (Smith KM, Craig GW, Kehres LA and Pfennig N (1983) J. Chromatograph. 281: 209–223). In CCl4 the S-homologs form an aggregate of 2–3 molecules whose absorption (747 nm maximum) and circular dichroism spectra resemble those of the chlorosome. In CH2Cl2, CHCl3 and CCl4 the 4-n-propyl homolog (R-configuration) forms dimers absorbing at ca. 680 nm and higher aggregates absorbing at 705–710 nm. In CCl4 the dimerization constant is approx. 10 µM–1 (1000 times that for chlorophyll a). The difference between the types of aggregates formed by the 4-n-propyl and 4-isobutyl homologs is attributed to the difference between the R- and S-configurations of the 2-(1-hydroxyethyl) groups in each chlorophyll.Abbreviations BChl bacteriochlorophyll - CD circular dichroism - Chl chlorophyll - DNS data not shown - EEF 4-ethyl-5-ethyl farnesyl - iBM/EF 4-isobutyl-5-methyl/ethyl farnesyl - MEF 4-methyl-5-ethyl farnesyl - PEP 4-n-propyl-5-ethyl farnesyl  相似文献   

19.
Raman spectra are reported for crystalline nonactin, monactin, dinactin, trinactin, and tetranactin and their solutions in CCl4, CHCl3, CH3OH, and 4:1 (v/v) CH3OH:CHCl3. The macrotetrolide nactins selectively bind a wide variety of cations, and are important model compounds for the study of ion complexation. The conformations of nonactin, monactin, and dinactin in solution are similar. Their conformations are found to be sufficiently open to permit the ester carbonyl groups to form hydrogen bonds with CH3OH; this gives rise to characteristic changes in the vibration frequencies associated with the ester groups. Nonactin, which is the least soluble of the nactins in CH3OH, is also the least effective at forming hydrogen bonds with CH3OH. The greater ability of the higher nactins to form hydrogen bonds with CH3OH may be due to the increased inductive effect of ethyl over methyl side chains, which may increase the dipole moment of the ester carbonyl groups. Spectra of crystalline nonactin, monactin, and tetranactin are fairly similar, while the spectra of dinactin and trinactin comprise a second, distinct family. This is consistent with X-ray crystallographic studies, which show that nonactin and tetranactin form monoclinic crystals, while trinactin is triclinic.  相似文献   

20.
Exposure of isolated rat hepatocytes to hepatotoxic halomethanes results in a 40–60% decrease in intracellular Ca2+ content. The order of halomethane potency (CBrCl3 CCl4 CHCl3) suggests that this effect requires halomethane metabolism by the hepatic mixed function oxidase system. Although the Ca2+ sequestering ability of the endoplasmic reticulum is destroyed by CBrCl3 and CCl4, it appears that much of the Ca2+ lost from the cell is mitochondrial in origin. Paradoxically, saturating concentrations of CCl4 cause a marked increase in cell Ca2+. CCl4 also causes an acute increase in cytoplasmic free Ca2+ (from about 60 nM to about 90 nM), but this effect does not appear to require CCl4 metabolism and is probably a result of direct action of CCl4 on the plasma membrane.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号