首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Current methods for detecting complete oocyte maturation and developmental competence are inadequate. The objectives of this study were to (1) examine the relationship between cat oocyte energy metabolism and development in vitro after fertilization and (2) determine if cumulus cell metabolism could be used to predict development of individual oocytes after fertilization in vitro. The hanging drop method was used to assess metabolism of three different types of cat oocytes: immature (IMO), in vitro matured (IVM), and in vivo matured (IVOM). Stage of oocyte nuclear maturation or developmental competence was assessed after metabolic analysis. Glycolysis and oxidation of glucose, glutamine, palmitate, and lactate increased with the resumption of oocyte meiotic maturation (P<0.05). Pyruvate was the preferred substrate, but uptake was not linked to maturation. IVM oocytes had impaired glucose and palmitate metabolism compared to IVOM oocytes (P<0.05). Oocyte glycolytic activity and oocyte glucose oxidation correlated well with embryo development after insemination in vitro (P<0.05). Furthermore, oocytes that had similar glucose metabolism and that were grouped together for culture on this basis had higher (P<0.05) overall rates of development than oocytes grouped randomly. There was no correlation (P>0.05) between cumulus cell metabolism and individual oocyte development after in vitro fertilization. The data reveal that energy metabolism is linked to oocyte maturation in the cat and that glucose metabolic activity can indicate those oocytes most likely to fertilize and develop in vitro. Measuring cumulus cell metabolism does not accurately predict individual oocyte development after insemination in vitro.  相似文献   

2.
We have investigated the changes in the mechanical properties of the zona pellucida (ZP), a multilayer glycoprotein coat that surrounds mammalian eggs, that occur after the maturation and fertilization process of the bovine oocyte by using atomic force spectroscopy. The response of the ZP to mechanical stress has been recovered according to a modified Hertz model. ZP of immature oocytes shows a pure elastic behavior. However, for ZPs of matured and fertilized oocyte, a transition from a purely elastic behavior, which occurs when low stress forces are applied, towards a plastic behavior has been observed. The high critical force necessary to induce deformations, which supports the noncovalent long interaction lifetimes of polymers, increases after the cortical reaction. Atomic force microscopy (AFM) images show that oocyte ZP surface appears to be composed mainly of a dense, random meshwork of nonuniformly arranged fibril bundles. More wrinkled surface characterizes matured oocytes compared with immature and fertilized oocytes. From a mechanical point of view, the transition of the matured ZP membrane toward fertilized ZP, through the hardening process, consists of the recovery of the elasticity of the immature ZP while maintaining a plastic transition that, however, occurs with a much higher force compared with that required in matured ZP.  相似文献   

3.
Suzuki H  Ju JC  Yang X 《Cloning》2000,2(2):69-78
Oocyte activation is a critical component of the current animal cloning scheme. This study was designed to examine surface characteristics of bovine oocytes by scanning electron microscopy (SEM) after activation by calcium ionophore A23187 (A23187) and electric pulse combined with cycloheximide (CHX) or 6-dimethylaminopurine (6-DMAP) treatments. In vitro matured (IVM) oocytes were activated then harvested at 0 to 19 hours after the onset of treatments for SEM processing. The zona pellucida (ZP) of untreated IVM oocytes exhibited an open mesh structure. The ZP surface showed little changes after A23187 alone, but dramatically changed to a less porous surface 3 hours after combined treatments with CHX or 6-DMAP. The vitelline membrane of IVM oocytes was covered with well-developed microvilli (MV). The MV became shorter (0.83 vs. 1.35 microm, p < 0.01) 8 hours after A23187 treatment alone. The vitelline membrane was altered in all oocytes examined 3 hours after incubation with A23187 plus CHX or 6-DMAP. A 1.5-fold increase in the diameter of MV in the CHX group and a higher incidence of large cytoplasmic protrusions (more than 1 microm width) in the 6-DMAP group were observed. After removal of inhibitors, the surface morphologies of the ZP and vitelline membrane were returned nearly to those of untreated IVM oocytes in both groups. The present study clearly showed that surface characteristics of the bovine oocyte were more profoundly changed by a combination of agents for parthenogenetic stimulation, and that the ultrastructural effects were reversible.  相似文献   

4.
The objective of this study was to evaluate the effects of porcine oviductal epithelial cell (POEC) monolayers and cumulus cells on the zona pellucida (ZP) and cortical granules (CG) of in vitro matured porcine oocytes. Denuded and cumulus-enclosed oocytes were exposed to POEC before or during in vitro fertilization (IVF). The functional effects of the co-culture system were the tested on the ZP resistance, measured by the time necessary to dissolve the ZP with 0.1% pronase, and the distribution and density of the cortical granules. CG density in the equator and cortex of each oocyte was evaluated by confocal microscopy after staining with fluorescein isothiocyanate-labelled peanut agglutinin (FITC-PNA). Both variables were assessed immediately after an in vitro maturation period (IVM group), 3 and 6h after culture with or without (Control) oviductal cells (Experiment 1) and 3h after insemination with frozen-thawed epididymal spermatozoa in the presence or absence (Control) of oviductal cells (Experiment 2). The time to dissolve the ZP of oocytes from IVM group was 440.4 +/- 61.7 s and no difference was observed among groups in Experiment 1. In contrast, the density of CG was affected; oocytes pre-incubated for 6h had a higher density than those pre-incubated for 3 h (P <0.001). Oocytes fertilized in vitro in the presence of POEC (Experiment 2) had a similar ZP digestion time as control oocytes 3 h after insemination. The presence of POEC during IVF as well as the presence of cumulus cells had no effect on the density and distribution of CG. However, a significant decrease in the density of CG was observed in the fertilized oocytes compared to in vitro matured oocytes (P <0.001). It is concluded that under the conditions employed the oviductal and cumulus cells in the perifertilization period had no effect on ZP hardening and CG density. However, an increase in CG density was observed when oocytes were maintained in culture. In addition, no hardening of ZP was observed after IVF, and denuded and cumulus-enclosed oocytes showed similar cortical reactions after insemination with epididymal spermatozoa regardless of the presence of POEC.  相似文献   

5.
This study deals with the effect of plasminogen/plasmin on the in vitro maturation (IVM) of bovine cumulus‐oocyte complexes (COCs). Exogenous plasminogen activator streptokinase (SK) added to the IVM medium revealed similar values of cumulus expansion and oocyte nuclear maturation compared to controls (standard IVM medium). However, a decrease in both determinations was observed in COCs matured with the supplementation of ?‐aminocaproic acid (?‐ACA), a specific plasmin inhibitor. After in vitro fertilization, no differences were observed in either cleavage or blastocyst rates between SK and control groups; however, ε‐ACA treatment caused a decrease in both developmental rates. Zona pellucida (ZP) digestion time decreased in the SK group while it increased in the ε‐ACA group. Raman microspectroscopy revealed an increase in the intensity of the band corresponding to the glycerol group of sialic acid in the ZP of oocytes matured with SK, whereas ZP spectra of oocytes treated with ?‐ACA presented similarities with immature oocytes. The results indicate that although treatment with SK did not alter oocyte developmental competence, it induced modifications in the ZP of oocytes that could modify the folding of glycoproteins. Plasmin inhibition impairs oocyte maturation and has an impact on embryo development, thus evidencing the importance of this protease during IVM.  相似文献   

6.
Pig oocytes obtained from slaughterhouse material and rat oocytes obtained from PMSG-treated immature females were incubated as isolated oocytes or injected into explanted pig follicles (5–8 mm). Free oocytes of both species, with or without their cumulus investment or gonadotropins during culture, matured at high rates after 30 hr or 9–10 hr of culture, respectively. Gonadotropic stimulation was necessary for maturation of both the native and injected cumulus-intact pig oocytes in follicle culture. Cumulus-free pig oocytes injected into follicle failed to mature in response to gonadotropic stimulation, suggesting an inability to perceive or respond to stimulation. Injected rat oocytes, however, matured irrespective of cumulus investment or gonadotropic stimulation. Their maturation was delayed and reduced at 9 hr. These results in the rat suggest that the pig follicular environment is incapable of regulating rat oocyte maturation but rather presents a permissive or supportive environment for their maturation. The explanted surrogate follicles from the pig or other species may provide a useful model for the study of oocyte-follicle interactions in oocyte maturation within or between species.  相似文献   

7.
The timing of the reduction of cumulus cell-oocyte coupling was correlated with oocyte meiotic maturation and the expansion (mucification) of the cumulus oophorus using immature mice treated with gonadotropins. Three hours after the injection of an ovulatory dose of human chorionic gonadotropin (hCG), more than 90% of the oocytes isolated from large Graafian follicles had undergone germinal vesicle breakdown, indicating that oocyte meiotic maturation had been initiated. However, no cumulus expansion or reduction of intercellular coupling was detected at this time. By 6 hr after hCG injection, the index of oocyte-cumulus cell coupling was still not less than that found in oocyte-cumulus cell complexes isolated from control mice not receiving hCG. Cumulus expansion at 6 hr post-hCG was limited to the outer cumulus cells while those adjacent to the oocyte were still tightly packed. Cumulus expansion appeared complete by 9 hr after hCG injection and the cumulus cell-oocyte coupling index was greatly reduced. These results show that oocyte meiotic maturation in the mouse is not initiated by a reduction in cumulus cell-oocyte coupling or by cumulus expansion. However, the results suggest that the reduction of intercellular coupling in vivo may be a result of cumulus expansion.  相似文献   

8.
Heterologous intercellular communication was determined qualitatively by lucifer yellow dye transfer and quantitatively by transfer of radiolabeled uridine metabolites and electrical current in hamster oocyte-cumulus complexes during meiotic maturation in vitro and in vivo. In addition, changes in cell resting potentials during maturation were recorded. Significantly less time was required for germinal vesicle breakdown (GVBD) in oocytes matured in vitro than in oocytes stimulated in vivo (1.81 +/- 0.06 hr, N = 13 vs 2.46 +/- 0.07 hr, N = 18, respectively, P less than 0.001). Resting potentials of the oocyte (RP-o) and cumulus cells (RP-c) significantly increased contemporaneously with GVBD in vitro (RP-o: from -18.9 +/- 3.2 mV to -33.2 +/- 2.9 mV, P less than 0.001; RP-c: from -16.3 +/- 1.9 mV to -27.5 +/- 2.6 mV, P less than 0.001) and in vivo after hCG injection (RP-o: from -16.8 +/- 5.9 mV to -30.1 +/- 3.9 mV, P less than 0.001; RP-c: from -15.5 +/- 3.8 mV to -26.3 +/- 3.2 mV, P less than 0.001). RP-o and RP-c progressively increased with time of culture up to 7 hr (maximum time examined) while the values reached maxima in in vivo matured oocytes 4.5 hr post-hCG and subsequently declined concomitant with the onset of cumulus expansion. Cumulus to oocyte coupling decreased progressively with time after release from meiotic arrest both in vitro and in vivo, as assessed by a progressive reduction in transfer of either uridine marker or lucifer yellow from the cumulus cell to the oocyte. By 4.5 hr after hCG injection, cumulus expansion had begun in 100% of complexes examined. Expansion was extensive by 7 hr post-hCG and spread of lucifer yellow from a cumulus cell was limited to very few adjacent cumulus cells. Oocyte to cumulus cell metabolic coupling also decreased progressively with time in both treatment groups. Examination of the extent of heterologous ionic coupling revealed that ionic coupling exhibited biphasic and, bidirectionally parallel, increases during meiotic maturation. While these temporal changes were observed in both groups, the coupling ratios were much greater in those complexes matured in vitro than in vivo. These results show that dye, metabolic, and electrical coupling exist between the immature hamster oocyte and its surrounding cumulus cells but that during the early stages of meiosis, metabolic and dye coupling decrease, while electrical coupling increases biphasically.  相似文献   

9.
Several contemporary micromanipulation techniques, such as sperm microinjection, nuclear transfer, and gene transfer by pronuclear injection, require removal of cumulus cells from oocytes or zygotes at various stages. In humans, the cumulus cells are often removed after 15–18 hr of sperm-oocyte coincubation to assist the identification of the fertilization status. This study was designed to evaluate the function of cumulus cells during oocyte maturation, fertilization, and in vitro development in cattle. Cumulus cells were removed before and after maturation and after fertilization for 0,7,20, and 48 hr. The cumulus-free oocytes or embryos were cultured either alone or on cumulus cell monolayers prepared on the day of maturation culture. Percentages of oocyte maturation, fertilization, and development to cleavage, morula, and blastocyst stages and to expanding or hatched blastocysts were recorded for statistical analysis by categorical data modeling (CATMOD) procedures. Cumulus cells removed before maturation significantly reduced the rate of oocyte maturation (4–26% vs. 93–96%), fertilization (0–9% vs. 91–92%), and in vitro development at all stages evaluated. Cumulus cells removed immediately prior to in vitro fertilization (IVF) or 7 hr after IVF reduced the rates of fertilization (58–60% and 71%, respectively, vs. 91–92% for controls), cleavage development (40–47% and 53–54% vs. 74–78% for controls), and morula plus blastocyst development (15% and 24% vs. 45%, P < 0.05). Cumulus cell co-culture started at various stages had no effect on fertilization and cleavage development but significantly improved rates of embryo development to morula or blastocyst stages (P < 0.05). Cumulus cell removal at 20 hr after IVF resulted in similar development to controls (P > 0.05) at all stages tested in this study. The intact state of surrounding cumulus cells of oocytes or embryos appears to be beneficial before or shortly after insemination (at or before 7 hr of IVF) but not essential at 20 hr after IVF. © 1995 Wiley-Liss, Inc.  相似文献   

10.
Oocyte maturation is a key issue of current animal biotechnology. This study was designed to examine the morphodynamics of the cumulus-oocyte association during oocyte maturation. Porcine cumulus-oocyte complexes were recovered from slaughterhouse ovaries; matured in vitro for 0, 24, 36, and 44 h; and evaluated by scanning electron microscopy either combined or not combined with the osmium-dimethyl sulfoxide-osmium maceration (ODO) method. The cytoskeleton distribution was also observed by fluorescence staining. Prior to maturation culture (0 h), the spherical cumulus cells were tightly clustered around the oocyte, with narrow intercellular spaces. They showed active secretion at 36 h and were fully expanded at 44 h of culture. The ODO methods revealed that the cumulus cells projected numerous long and thin transzonal projections at 0 h, but these were largely disconnected at 44 h. The outer surface of the zona pellucida showed a meshwork surface regardless of time of incubation, whereas the inner surface changed from a fine fibrous surface to a spongy surface that was coated with mucin. The vitelline surface changed from a sparse distribution of short microvilli (MV) to a dense distribution of well-developed MV. Fluorescence staining showed that the cumulus cell projections consisted mainly of microfilaments, which were abundant at the germinal vesicle and metaphase-I (M-I) stages (0-24 h) but which were decreased in number at the M-II stage (36-44 h). We conclude that the cumulus-oocyte transzonal projections became disconnected between the M-I and M-II stages as a result of cumulus expansion. The cumulus-cumulus communications, however, remained intact at these stages, although the biological functions of these communications were not clear.  相似文献   

11.
12.
IVF of porcine oocytes has been carried out in many laboratories. However, polyspermic fertilization is still a major issue to be solved. It is well known that besides the nucleus, oocyte organelles and the cytoplasm have to undergo a final maturation process before they become fully competent for fertilization. Until now, it is still uncertain whether the zona pellucida (ZP) must also undergo a maturation process and what impact the maturation status may have on sperm recognition and monospermic fertilization. Our data show that the ZP undergoes biochemical changes in the final maturation phase of the oocyte prior to fertilization. During zona maturation, the induction of the acrosome reaction in spermatozoa bound to the zona pellucida shows a different time pattern. Additionally, it was shown by 2D gel electrophoresis that after maturation, ZPA moved 0.8 pI units and ZPB/ZPC 1.3 pI units in the direction of the anode, indicating increased acidity. These preliminary studies indicate that the maturation processes of the oocyte involves biochemical and functional alterations in the zona pellucida. In addition, the morphology of the porcine ZP was investigated before and after maturation at the GVI and metaphase II stage as well as 1h after onset of IVF. No significant consistent structural changes were seen between immature oocytes and those matured in vitro for 48 h. However, at 24 h, the zona structures were more similar to those in in vivo matured oocytes. This phenomenon needs to be elucidated. So far, the only way to avoid polyspermic penetration is to reduce the number of spermatozoa per oocyte used for IVF. The amount depends on the treatment of the sperm and has to be set for each individual boar.  相似文献   

13.
The seminal plasma PSP-I/PSP-II spermadhesin is able to preserve, in vitro, the viability of highly extended boar spermatozoa, suggesting it might be used as a suitable ameliorator for the damaging effects of sperm handling, including in vitro fertilization. However, little is known about the ligand capability of PSP-I/PSP-II as regards the zona pellucida (ZP) or its possible role in gamete interaction. The present study evaluated the effect of the presence of PSP-I/PSP-II (1.5 mg/ml) during in vitro oocyte maturation and also during co-incubation of frozen-thawed boar spermatozoa with either immature (IM) or in vitro matured (IVM) oocytes, either enclosed by cumulus cells or denuded. Exposure of the gametes to the heterodimer during in vitro gamete co-incubation showed a significant blocking effect of sperm penetration rates and a decreased number of spermatozoa per oocyte in both IM and IVM denuded oocytes. Such an effect was not present in cumulus-enclosed oocytes, suggesting the effect could be mediated by exposed ZP receptors. In addition, when PSP-I/PSP-II was added to the IVM medium, oocyte maturation rates were significantly reduced. In conclusion, the results suggest that PSP-I/PSP-II, when present in vitro, blocks sperm-ZP binding.  相似文献   

14.
The cryopreservation of female gametes is still an open problem because of their structural sensitivity to the cooling-and-freezing process and to the exposure to cryoprotectants. The present work was aimed to study the effect of vitrification on immature bovine oocytes freed of cumulus cell investment before freezing. To verify the feasibility and efficiency of denuded oocyte (DO) cryopreservation, the cytoplasmic alterations eventually induced either by cell removal or by the vitrification process were analyzed. In particular, the migration of cortical granules and Ca++ localization were studied. In addition, the localization and distribution of microtubules and microfilaments in immature fresh and vitrified DOs were evaluated. Finally, to establish whether the removal of cumulus cells influenced developmental competence, DOs were thawed after vitrification, matured in vitro and fertilized; then presumptive zygotes were cultured to reach the blastocyst stage. The results indicate that mechanical removal of cumulus cells from immature bovine oocytes does not affect their maturation competence but reduces the blastocyst rate when compared with intact cumulus oocyte complexes (COCs). The findings indicate further that the vitrification process induces changes of cytoplasmic components. However, the composition of the manipulation medium used to remove cumulus cells plays a crucial role in reducing the injuries caused by cryopreservation in both cytoplasmic and nuclear compartments. In fact, the presence of serum exerts a sort of protection, significantly improving both oocyte maturation and blastocyst rates. In conclusion, we demonstrate that denuded immature oocytes can be vitrified after cumulus cells removal and successfully develop up, after thawing, to the blastocyst stage, following in vitro maturation and fertilization.  相似文献   

15.
When immature oocytes of the starfish, Asterina pectinifera , were treated with calcium-free seawater for 1 hr and then inseminated in normal seawater, they formed several blisters, indicative of polyspermy, and raised fertilization membranes. These oocytes continued to have intact germinal vesicles. Electron microscopic study revealed that the egg surface remained virtually unchanged after the treatment with calcium-free seawater. Upon insemination, however, the cortical granules broke down and the fertilization membrane was formed. These immature oocytes with ferilization membranes underwent maturation (germinal vesicle breakdown) after treatment with 1-methyladenine.
The treatment with calcium-free seawater seems to bring about some physiological change on the surface of immature oocyte, which bestows some attributes of maturation but is insufficient to mature the oocytes completely.  相似文献   

16.
The relationship between onset of the early cytoplasmic stages of oocyte activation (vitelline membrane separation and elevation) and nuclear meiotic maturation was investigated in starfish oocytes after their exposure to divalent ionophore (A-23187) or sperm. Meiotically mature oocytes, isolated in calcium-free seawater, underwent activation in response to sperm or ionophore as previously reported. Large, immature starfish oocytes, arrested in prophase I of meiosis (germinal vesicle stage), underwent vitelline membrane elevation when treated with divalent ionophore A-23187 or starfish sperm. Histological studies demonstrated that cortical granule breakdown in the oocyte cortex was associated with vitelline membrane elevation after these treatments. Activation of oocytes by sperm occurred only in response to starfish sperm. Sea urchin, sand dollar, surf clam, or marine worm sperm did not induce vitelline membrane elevation of either immature or mature starfish oocytes. Sperm- or ionophore-activated immature oocytes underwent nuclear maturation after addition of the meiosis-inducing hormone, l-methyladenine; however, parthenogenetic development did not occur and embryonic development was markedly inhibited. In contrast to previous studies, the present results indicate that cytoplasmic activation can be initiated before and without hormone induction of the nuclear maturation process. Differentiation of the oocyte cell surface or cortex reactivity therefore appears to occur during oogenesis rather than as a consequence of maturation. The data further support the view that divalent ions mediate certain of the early activation responses initiated by sperm at the time of fertilization and that synchronization of fertilization to the meiotic process in the oocyte is important for the occurrence of normal development.  相似文献   

17.
Porcine follicular fluid (pFF), as a supplement of maturation media, has been shown several times to improve the in vitro production (IVP) of porcine embryos. As a transudate of serum, pFF contains locally produced factors in addition to the ones derived from serum. The objective of this study was to determine the additional positive effects of these pFF specific factors on the nuclear and cytoplasmic maturation of porcine oocytes. Follicular fluid and autologous serum were collected from sows in the preovulatory phase of the estrous cycle. Subsequently, oocytes from prepubertal gilts were matured in NCSU23 supplemented with either 10% pFF or 10% autologous serum derived from the same sow. Oocytes were then fertilized and the putative zygotes were cultured for 7 days. Nuclear maturation and cumulus expansion were assessed after the maturation culture. For evaluation of cytoplasmic maturation, oocyte glutathione (GSH) content, fertilization parameters and embryonic development were evaluated. After in vitro maturation (IVM) of the oocytes, both cumulus expansion rate and oocyte GSH content were increased for oocytes matured in pFF (P<0.05). More monospermic penetration was found when cumulus-intact oocytes had been matured in 10% pFF but this effect was lost after fertilization of cumulus denuded oocytes indicating that the pFF was acting through the cumulus. We speculate that the increased cumulus expansion and increased glutathione content, which were prevalent after IVM in pFF, are responsible for the positive effects on fertilization and the pre-implantation development of the embryos.  相似文献   

18.
Experiments were conducted with 5,979 oocytes to determine whether detaching some of the cumulus cells from oocytes either before or after maturation would improve the fertilization rate and proportion of oocytes that developed to expanded blastocysts. Oocytes were aspirated from ovaries of slaughtered cows and matured, fertilized and cultured in vitro. Pipetting immature oocytes before maturation to detach some of the cumulus, with all cumulus cells left in the maturation wells, significantly increased fertilization rates, especially of oocytes that initially had a full cumulus investment. In further experiments, pipetting oocytes either before or after maturation to detach most of the cumulus, or treating with hyaluronidase after maturation to disperse the cumulus, significantly increased fertilization rates and proportions of oocytes developing to expanded blastocysts.  相似文献   

19.
FINE STRUCTURE OF LOACH OOCYTES DURING MATURATION IN VITRO   总被引:3,自引:0,他引:3  
The morphological changes during in vitro maturation of Misgurnus anguillicaudatus oocyte are described. The process of oocyte maturation can be divided into three provisional stages based on morphological events. Fully-grown, immature oocytes are opaque yellowish-white. The morphological characteristics of their ooplasm are the existence of annulate lamellae, a mass of long mitochondria and an electron dense layer beneath the vitelline surface. Three hr after a 1 hr exposure to corticosterone, these structures disappear and the cortical ooplasm becomes semi-transparent. In this stage of the maturation process (Stage I), the germinal vesicle, without a nucleolus, moves toward the animal pole, and scattered cytoplasmic inclusions approach the vitelline surface. Six hr after exposure to the hormone (Stage II), the whole ooplasm becomes semi-transparent and large yolk platelets are seen in the animal pole region. Tubular endoplasmic reticula develop throughout the ooplasm and some cortical alveoli (CA) become aligned beneath the vitelline surface. Nine hr after exposure to the hormone (Stage III), the oocyte chorion separates from the follicle cells. Most CA align beneath the vitelline surface and cytoplasm accumulates in the cortical region of the animal hemisphere.  相似文献   

20.
R Romar  P Coy  D Rath 《Theriogenology》2012,78(5):1126-1139
The cortical reaction induces changes at the egg's Zona pellucida (ZP), perivitelline space and/or oolemma level, blocking polyspermic fertilization. We studied the timing of sperm penetration and cortical reaction in pig oocytes matured under different conditions and inseminated with different boars. Immature (germinal vesicle stage) and in vitro matured (IVM) (metaphase II stage) oocytes were inseminated and results assessed at different hours post insemination. Penetrability and polyspermy rates increased with gamete coincubation time and were higher in IVM oocytes. A strong boar effect was observed in IVF results. Cortical reaction (assessed as area occupied by cortical granules) and galactose-β(1-3)-Nacetylgalactosamine residues on ZP (area labeled by peanut agglutinin lectin, PNA) were assessed in IVM and in vivo matured (IVV) oocytes at different hours post insemination. After maturation, IVM and IVV oocytes displayed similar area occupied by cortical granules and it decreased in fertilized oocytes compared to unfertilized ones. Cortical reaction was influenced by boar and was faster in polyspermic than in monospermic oocytes, and in IVM than in IVV oocytes. The outer ZP of inseminated oocytes appeared stained by PNA and the labeled area increased along with gamete coculture time. This labeling was also observed after insemination of isolated ZP, indicating that this modification in ZP carbohydrates is not induced by cortical reaction. The steady and maintained cortical reaction observed at 4 to 5 h post insemination in IVV monospermic oocytes might reflect the physiological time course of this important event in pigs. Both maturation conditions and boar affect cortical granules release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号