首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The activities of the mammalian G1 cyclins, cyclin D and cyclin E, during cell cycle progression (G1/S) are believed to be regulated by cell attachment and the presence of growth factors. In order to study the importance of cell attachment and concomitant integrin signaling on the expression of G1 cyclins during the natural adhesion process from mitosis to interphase, protein expression was monitored in cells that were synchronized by mitotic shake off. Here we show that in Chinese hamster ovary (CHO) and neuroblastoma (N2A) cells, expression of cyclin E at the M/G1 transition is regulated by both growth factors and cell attachment, while expression of cyclin D seems to be entirely dependent on the presence of serum. Expression of cyclin E appears to be correlated with the phosphorylation of the retinoblastoma protein, suggesting a link with the activity of the cyclin D/cdk4 complex. Expression of the cdk inhibitors p21cip1/Waf1 and p27Kip1 is not changed upon serum depletion or detachment of cells during early G1, suggesting no direct role for these CKIs in the regulation of cyclin activity. Although inhibition of cyclin E/cdk2 kinase activity has been reported previously, this is the first time that cyclin E expression is shown to be dependent on cell attachment.  相似文献   

3.
4.
NA22598, a novel antitumor compound isolated from a microbial cultured broth, inhibited the growth of human colon cancer DLD-1 cells in suspension cultures (anchorage-independent growth) severalfold more strongly than in substratum-attached monolayer cultures. It arrested the cell cycle progression at early G1 phase under both these culture conditions. Rb phosphorylation, cyclin D1 expression, and cdk2 activation in G1 progression were all inhibited by NA22598, but the amounts of cdk2 and p27 were not affected. Among these effects the inhibition of cyclin D1 expression was most prominent, and NA22598 was found to inhibit the synthesis of cyclin D1 without affecting mRNA expression or protein degradation. p27 binding to cdk2 was more markedly increased in suspension cultures than in attached cultures by NA22598, but the compound had no effect on total p27. Apparently, the decrease of cyclin D1 induced redistribution of p27 from the cyclin D1/cdk4 to the cyclin E/cdk2 complexes during G1 phase in the suspension cultures. Because p27 is upregulated during suspension culture, a greater amount of it was associated with cyclin E/cdk2, thus producing greater growth inhibition. An agent, like NA22598, which induces the downregulation of cyclin D1 might offer a new anticancer strategy.  相似文献   

5.
Cyclin D1 is known as a promoting factor for cell growth. We previously showed, however, that the expression of cyclin D1 increases markedly in senescent human fibroblastsin vitro.Here we investigate whether the overexpression of cyclin D1 inhibits cell proliferation. Colony formation after transfection with the cyclin D1 expression vector was repressed in NIH-3T3, TIG-1, CHO-K1, and HeLa cells, compared with those with mock and cyclin E expression vectors. A transient transfection assay demonstrated that the overexpression of cyclin D1 inhibited DNA synthesis of TIG-1 cells. The complexes of cyclin D1 with PCNA and cdk2 increased remarkably in senescent cells, compared with young counterparts. Excessive glutathioneS-transferase (GST)–cyclin D1 inhibited DNA replication and repressed cdk2-dependent kinase activityin vitro.DNA synthesis of NIH-3T3 transfectants with PCNA or cdk2 expression vectors was not inhibited by the overexpression of cyclin D1. These results indicate that an excessive level of cyclin D1 represses cell proliferation by inhibiting DNA replication and cdk2 activity through the binding of cyclin D1 to PCNA and cdk2, as it does in senescent cells.  相似文献   

6.
It is now apparent that apoptosis is closely linked to the control of cell cycle progression. During the G1 to S progression, cyclin D1, p53, and the cyclin dependent kinase inhibitors p21WAF1 and p27kip1 can play roles in induction of apoptosis. During the G2 and M phases, premature activation of Cdk1 can cause cells to enter mitotic catastrophe, which results in apoptosis. In this review we focus on factors acting during G1 and S, particularly cyclin D1, and their effects on cell growth, senescence and apoptosis. We emphasize that cyclin D1 can have diverse effects on cells depending on its level of expression, the specific cell type, the cell context and other factors. Possible mechanisms by which cyclin D1 exerts these diverse effects, via cyclin dependent kinase-dependent and -independent pathways, are discussed.  相似文献   

7.
In this study, we investigated the mechanisms responsible for the growth-inhibitory action of parathyroid hormone-related protein (PTHRP) in A10 vascular smooth muscle cells (VSMC). Fluorescence-activated cell sorting analysis of serum-stimulated VSMC treated with PTHRP or dibutyryl-cAMP (DBcAMP) demonstrated an enrichment of cells in G1 and a reduction in the S phase. Measurement of DNA synthesis in platelet-derived growth factor-stimulated VSMC treated with DBcAMP revealed that cells became refractory to growth inhibition by 12-16 h, consistent with blockade in mid-G1. cAMP treatment blunted the serum-induced rise in cyclin D1 during cell cycle progression without altering levels of the cyclin-dependent kinase cdk4 or cyclin E and its associated kinase, cdk2. Exposure of cells to PTHRP or cAMP resulted in a reduction in retinoblastoma gene product (Rb) phosphorylation. Immunoblotting of extracts from cAMP-treated cells with antibodies to cdk inhibitors revealed a striking increase in p27(kip1) abundance coincident with the G1 block. Immunoprecipitation with an anti-cyclin D1 antibody of cell lysates prepared from cAMP-treated cells followed by immunoblotting with antisera to p27(kip1) disclosed a threefold increase in p27(kip1) associated with cyclin D1 compared with lysates treated with serum alone. We conclude that PTHRP, by increasing intracellular cAMP, induces VSMC cycle arrest in mid-G1. This occurs secondary to a suppression in cyclin D1 and induction of p27(kip1) expression, which in turn inhibits Rb phosphorylation.  相似文献   

8.
9.
Prostaglandin A2 (PGA2) potently inhibits cell proliferation and suppresses tumor growth in vivo, but little is known regarding the molecular mechanisms mediating these effects. Here we demonstrate that treatment of breast carcinoma MCF-7 cells with PGA2 leads to G1 arrest associated with a dramatic decrease in the levels of cyclin D1 and cyclin-dependent kinase 4 (cdk4) and accompanied by an increase in the expression of p21. We further show that these effects occur independent of cellular p53 status. The decline in cyclin D and cdk4 protein levels is correlated with loss in cdk4 kinase activity, cdk2 activity is also significantly inhibited in PGA2-treated cells, an effect closely associated with the upregulation of p21. Immunoprecipitation experiments verified that p21 was indeed complexed with cdk2 in PGA2-treated cells. Additional experiments with synchronized MCF-7 cultures stimulated with serum revealed that treatment with PGA2 prevents the progression of cells from G1 to S. Accordingly, the kinase activity associated with cdk4, cyclin E, and cdk2 immunocomplexes, which normally increases following serum addition, was unchanged in PGA2-treated cells. Furthermore, the retinoblastoma protein (Rb), a substrate of cdk4 and cdk2 whose phosphorylation is necessary for cell cycle progression, remains underphosphorylated in PGA2-treated serum-stimulated cells. These findings indicate that PGA2 exerts its growth-inhibitory effects through modulation of the expression and/or activity of several key G1 regulatory proteins. Our results highlight the chemotherapeutic potential of PGA2, particularly for suppressing growth of tumors lacking p53 function.  相似文献   

10.
Olomoucine (2-(2-hydroxyethylamino)-6-benzylamino-9-methylpurine) has been recently described as a competitive inhibitor (ATP-binding site) of the cell cycle regulating p34cdc2/cyclin B, p33cdk2/cyclin A and p33cdk2/cyclin E kinases, the brain p33cdk5p35 kinase and the ERK1AP-kinase. The unusual specificity of this compound towards cell cycle regulating enzymes suggests that it could inhibit certain steps of the cell cycle. The cellular effects of olomoucine were investigated in a large variety of plant and animal models. This compound inhibits the G1S transition of unicellular algae (dinoflagellate and diatom). It blocks Fucus zygote cleavage and development of Laminaria gametophytes. Stimulated Petunia mesophyl protoplasts are arrested in G1 by olomoucine. By arresting cleavage it blocks the development of Calanus copepod larvae. It reversibly inhibits the early cleavages of Caenorhabditis elegans embryos and those of ascidian embryos. Olomoucine inhibits the serotonin-induced prophase/metaphase transition of clam oocytes; furthermore, it triggers the release of these oocytes from their meiotic metaphase I arrest, and induces nuclei reformation. Olomoucine slows down the prophase/metaphase transition in cleaving sea urchin embryos, but does not affect the duration of the metaphase/anaphase and anaphase/telophase transitions. It also inhibits the prophase/metaphase transition of starfish oocytes triggered by various agonists. Xenopus oocyte maturation, the in vivo and in vitro phosphorylation of elongation factor EF-1 are inhibited by olomoucine. Mouse oocyte maturation is delayed by this compound, whereas parthenogenetic release from metaphase II arrest is facilitated. Growth of a variety of human cell lines (rhabdomyosarcoma cell lines Rh1, Rh18, Rh28 and Rh30; MCF-7, KB-3-1 and their adriamycin-resistant counterparts; National Cancer Institute 60 human tumor cell lines comprising nine tumor types) is inhibited by olomoucine. Cell cycle parameter analysis of the non-small cell lung cancer cell line MR65 shows that olomoucine affects G1 and S phase transits. Olomoucine inhibits DNA synthesis in interleukin-2-stimulated T lymphocytes (CTLL-2 cells) and triggers a G1 arrest similar to interleukin-2 deprivation. Both cdc2 and cdk2 kinases (immunoprecipitated from nocodazole- and hydroxyurea-treated CTLL-2 cells, respectively) are inhibited by olomoucine. Both yeast and Drosophila embryos were insensitive to olomoucine. Taken together the results of this Noah's Ark approach show that olomoucine arrests cells both at the G1S and the G2M boundaries, consistent with the hypothesis of a prevalent effect on the cdk2 and cdc2 kinases, respectively.  相似文献   

11.
12.
The actin cytoskeleton has been found to be required for mitogen-stimulated cells to passage through the cell cycle checkpoint. Here we show that selective disruption of the actin cytoskeleton by dihydrocytochalasin B (H(2)CB) blocked the mitogenic effect in normal Swiss 3T3 cells, leading to cell cycle arrest at mid to late G(1) phase. Cells treated with H(2)CB remain tightly attached to the substratum and respond to mitogen-induced MAP kinase activation. Upon cytoskeleton disruption, however, growth factors fail to induce hyperphosphorylation of the retinoblastoma protein (pRb) and the pRb-related p107. While cyclin D1 induction and cdk4-associated kinase activity are not affected, induction of cyclin E expression and activation of cyclin E-cdk2 complexes are greatly inhibited in growth-stimulated cells treated with H(2)CB. The inhibition of cyclin E expression appears to be mediated at least in part at the RNA level and the inhibition of cdk2 kinase activity is also attributed to the decrease in cdk2 phosphorylation and proper subcellular localization. The expression patterns of cdk inhibitors p21 and p27 are similar in both untreated and H(2)CB-treated cells upon serum stimulation. In addition, the changes in subcellular localization of pRb and p107 appear to be linked to their phosphorylation states and disruption of normal actin structure affects nuclear migration of p107 during G(1)-to-S progression. Taken together, our results suggest that the actin cytoskeleton-dependent G(1) arrest is linked to the cyclin-cdk pathway. We hypothesize that normal actin structure may be important for proper localization of certain G(1) regulators, consequently modulating specific cyclin and kinase expression.  相似文献   

13.
Retinoids are promising agents for the prevention and treatment of several human malignancies including lung cancer. In this study, the effect of retinoic acid (RA) on cell growth and the mechanism of growth modulation were examined in human lung squamous carcinoma CH27 cells. Here we report that RA mediated the dose- and time-dependent growth arrest in G1 phase, accompanied by the up-regulation of p27Kip1 and the down-regulation of the cyclin-dependent kinase 3 (Cdk3) and p21CIP1/Waf1 proteins. Furthermore, RA-induced growth arrest of CH27 cells was also associated with increased retinoic acid receptor β (RARβ) and reduced c-Myc expression. However, RA had no effect on the levels of cyclins A, D1, D3, E, or H, or on Cdk2, Cdk4, Cdk5, CDk6, Cdk7, p16Ink4A, p15Ink4B, p53, or pRb proteins in CH27 cells. Evaluation of the kinase activity of cyclin–Cdk complexes showed that RA increases p27Kip1 expression in CH27 cells leading to markedly reduced cyclin A/Cdk2 kinase activity and slightly reduced cyclin E/Cdk2 kinase activity, with no effect on cyclin D/Cdk4 and cyclin D/Cdk6 activities. Moreover, coincident with the decrease in kinase activity was a drastic increase in cyclin A-bound p27Kip1. These results suggest that increases in the levels of p27Kip1 and its binding to cyclin A, as well as reduction of Cdk3 protein expression, are strong candidates for the cell cycle regulator that prevents the entry into the S phase in RA-treated CH27 cells, with prolongation of G1 phase and inhibition of DNA synthesis.  相似文献   

14.
8-Chloroadenosine, an active dephosphorylated metabolite of the antineoplastic agent 8-chloroadenosine 3',5'-monophosphate (8-Cl-cAMP), induces growth inhibition in multiple carcinomas. Here we report that 8-chloroadenosine inhibits growth in human promyelocytic leukemia HL-60 cells by a G(0)/G(1) phase arrest and terminates cell differentiation along the granulocytic lineage. The mechanism of 8-chloroadenosine-induced G(0)/G(1) arrest is independent of apoptosis. The expressions of cyclin D1 and c-myc in HL-60 are suppressed by 8-chloroadenosine, whereas the cyclin-dependent kinases inhibitor p21(WAF1/CIP1) is up-regulated. 8-Chloroadenosine has less effect on the expressions of cyclin-dependent kinase (cdk)2 and cdk4, G(1) phase cyclin-dependent kinases, and only moderately induces the expression of transforming growth factor beta1 (TGFbeta1) and the mitotic inhibitor p27(KIP1). Telomerase activity is reduced in extracts of 8-chloroadenosine treated HL-60 cells, but 8-chloroadenosine does not directly inhibit the catalytic activity of telomerase in vitro. Therefore, anti-proliferation of HL-60 cells by 8-chloroadenosine involves coordination of cyclin D1 suppression, reduction of telomerase activity, and up-regulation of p21(WAF1/CIP1) that arrest cell-cycle progression at G(0)/G(1) phase and terminate cell differentiation.  相似文献   

15.
16.
Cyclic AMP is a second messenger for various hormones that inhibits cell multiplication and DNA synthesis in cultured astrocytes. We examined the effects of increasing intracellular cyclic AMP on the catalytic (cdks) and regulatory (cyclins and ckis) components of cyclin-dependent protein kinases, which regulate progression of the cell cycle before completion of DNA synthesis, in primary cultured astrocytes and in an astrocytic cell line C.LT.T.1.1. The amount of cdk4 changed little during the cell cycle and was not affected by cyclic AMP. There was little cdk1 and cdk2 in quiescent cells, and their expression increased during the G1-S phases. Cyclic AMP strongly inhibited cdk1 and cdk2 expression. Transforming growth factor beta also inhibited cdk1 expression in primary astrocytes. Cyclic AMP did not affect the two ckis p27KIP1 and p21CIP1. There was little cyclin D1 in quiescent cells, but it increased during the G1 phase and was reduced by cyclic AMP. Cyclin E increased during the G1-S phases and was not affected by cyclic AMP in primary astrocytes. The amount of cyclin A was low in quiescent cells and increased during the G1-S phases. Expression of its mRNA and protein was inhibited by cyclic AMP. The protein kinase activities associated with complexes of cyclins and cdks were increased by growth factors and prevented by cyclic AMP. We conclude that cyclic AMP inhibits progression of the cell cycle in astrocytes at least by preventing the expression of the regulatory subunits, cyclins D1 and A, and catalytic subunits, cdk1 and cdk2, of cyclin-regulated protein kinases. Key Words: Cyclin-dependent protein kinases-Glial cells-Cyclic AMP.  相似文献   

17.
Spontaneous differentiation of normal diploid osteoblasts in culture is accompanied by increased cyclin E associated kinase activity on (1) the retinoblastoma susceptibility protein pRB, (2) the p107 RB related protein, and (3) two endogenous cyclin E-associated substrates of 78 and 105 kD. Activity of the differentiation-related cyclin E complexes (diff.ECx) is not recovered in cdc2 or cdk2 immunoprecipitates. Phosphorylation of both the 105 kD endogenous substrate and the p107 exogenous substrate is sensitive to inhibitory activity (diff.ECx-i) present in proliferating osteoblasts. This inhibitory activity is readily recruited by the cyclin E complexes of differentiated osteoblasts but is not found in cyclin E immunoprecipitates of the proliferating cells themselves. Strong inhibitory activity on diff.ECx kinase activity is excerted by proliferating ROS 17/2.8 osteosarcoma cells. However, unlike the normal diploid cells, the diff.ECx-i activity of proliferating ROS 17/2.8 cells is recovered by cyclin E immunoprecipitation. The cyclin-dependent kinase inhibitor p21CIP1/WAF1 inhibits diff.ECx kinase activity. Thus, our results suggest the existence of a unique regulatory system, possibly involving p21CIP1/WAF1, in which inhibitory activity residing in proliferating cells is preferentially targeted towards differentiation-related cyclin E-associated kinase activity. J. Cell. Biochem. 66:141-152, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

18.
Transforming growth factor beta 1 (TGF beta 1) is a potent inhibitor of epithelial cell proliferation. We present data which indicate that epithelial cell proliferation is inhibited when TGF beta 1 is added throughout the prereplicative G1 phase. Cultures become reversibly blocked in late G1 at the G1/S-phase boundary. The inhibitory effects of TGF beta 1 on cell growth occur in the presence of the RNA synthesis inhibitor 5,6-dichloro-1-beta-D-ribofuranosylbenzimidazole. Associated with this inhibitory effect is a decrease in the phosphorylation and histone H1 kinase activity of the p34cdc2 protein kinase. These data suggest that TGF beta 1 growth inhibition in epithelial cells involves the regulation of p34cdc2 activity at the G1/S transition.  相似文献   

19.
K cyclin encoded by Kaposi's sarcoma-associated herpesvirus confers resistance to the cyclin-dependent kinase (cdk) inhibitors p16Ink4A, p21Cip1, and p27Kip1 on the associated cdk6. We have previously shown that K cyclin expression enforces S-phase entry on cells overexpressing p27Kip1 by promoting phosphorylation of p27Kip1 on threonine 187, triggering p27Kip1 down-regulation. Since p21Cip1 acts in a manner similar to that of p27Kip1, we have investigated the subversion of a p21Cip1-induced G1 arrest by K cyclin. Here, we show that p21Cip1 is associated with K cyclin both in overexpression models and in primary effusion lymphoma cells and is a substrate of the K cyclin/cdk6 complex, resulting in phosphorylation of p21Cip1 on serine 130. This phosphoform of p21Cip1 appeared unable to associate with cdk2 in vivo. We further demonstrate that phosphorylation on serine 130 is essential for K cyclin-mediated release of a p21Cip1-imposed G1 arrest. Moreover, we show that under physiological conditions of cell cycle arrest due to elevated levels of p21Cip1 resulting from oxidative stress, K cyclin expression enabled S-phase entry and was associated with p21Cip1 phosphorylation and partial restoration of cdk2 kinase activity. Thus, expression of the viral cyclin enables cells to subvert the cell cycle inhibitory function of p21Cip1 by promoting cdk6-dependent phosphorylation of this antiproliferative protein.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号