首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present study was undertaken to investigate the possible protective effect of L-carnosine (CAR), an endogenous dipeptide of alanine and histidine, on carbon tetrachloride (CCl4)-induced hepatic injury. Liver injury was induced in male Sprague-Dawley rats by intraperitoneal (i.p.) injections of CCl4, twice weekly for six weeks. CAR was administered to rats daily, at dose of 250 mg/kg, i.p. At the end of six weeks, blood and liver tissue specimens were collected. Results show that CAR treatment attenuated the hepatic morphological changes, necroinflammation and fibrosis induced by CCl4, as indicated by hepatic histopathology scoring. In addition, CAR treatment significantly reduced the CCl4-induced elevation of liver-injury parameters in serum. CAR treatment also combated oxidative stress; possibly by restoring hepatic nuclear factor erythroid 2-related factor 2 (Nrf-2) levels. Moreover, CAR treatment prevented the activation of hepatic stellate cells (HSCs), as indicated by reduced α-smooth muscle actin (α-SMA) expression in the liver, and decreased hepatic inflammation as demonstrated by a reduction in hepatic tumor necrosis factor-α (TNF-α) and restoration of interleukin-10 (IL-10) levels. In conclusion, CCl4-induced hepatic injury was alleviated by CAR treatment. The results suggest that these beneficial, protective effects are due, at least in part, to its anti-oxidant, anti-inflammatory and anti-fibrotic activities.  相似文献   

2.
Prior administration of aminotriazole (3-amino-1,2,4-triazole) or pyrazole to rats resulted in a significant prevention of the CCl4-induced decrease in the liver microsomal P-450 content. In A/J mice the CCl4 activation and P-450 destruction occurred in absolute absence of lipid peroxidation as determined by uv absorption. The data suggest that P-450 destruction is mainly mediated by direct attack of CCl4 metabolites rather than by CCl4-induced lipid peroxidation.  相似文献   

3.
Summary.  The results regarding taurine pretreatment on CCl4-induced hepatic injury are controversial. To assess the therapeutic efficacy of taurine on rat liver injury, hepatic malondialdehyde, glutathione, and hydroxyproline levels together with morphologic alterations in the liver following CCl4 administration were investigated. The rats were divided into three groups. Taurine-treated animals received 15 ml/kg/day of a 5% taurine solution by a gastric tube for 5 days before administering CCl4 (2 ml/kg, intraperitoneally, in a single dose). CCl4-treated rats received the same amount of saline solution. Control animals received no treatment. The increase of hepatic malondialdehyde formation in the CCl4-treated group was partially prevented by taurine pretreatment, but taurine had no significant effect on the glutathione and hydroxyproline content in the CCl4-treated rats. Taurine pretreatment induced a marked beneficial effect regarding the prevention of hepatocellular necrosis and atrophy as demonstrated morphologically. In conclusion, these results suggest that taurine pretreatment might not significantly change the biochemical parameters, but prevents the morphologic damage caused by CCl4 in the early stages. Received March 17, 2001 Accepted July 18, 2001  相似文献   

4.
The irreversible binding of14C from14CCl4 to microsomal lipids is decreased in animals treated with 3-methylcholantrene (3-MC), while it is increased in animals induced with phenobarbital (PB). CCl4-induced lipid peroxidation in 3-MC treated rats is as intense as in controls. Destruction of glucose 6-phosphatase (G6P-ase) by CCl4 is smaller in 3-MC treated rats than in controls. Destruction of total cytochrome P-450 (P-450 + P1-450) by CCl4 is smaller in 3-MC treated than in PB treated rats but similar to that obtained in controls. Results would indicate that P-450 would participate in CCl4 activation much more effectively than P1-450.  相似文献   

5.
Chronic liver diseases are accompanied by changes in the biochemical pathways related to the regulation of apoptosis and extra-cellular matrix deposition. The present study was designed to investigate, using low density arrays, changes in the hepatic gene expression together with hepatic biochemical and histological alterations in rats that had liver impairment induced by chronic exposure to CCl4. Further, we examined the possible recovery of genetic and pathological changes following the cessation of the hepatotoxic injury. Experimental fibrosis was induced in male Wistar rats by CCl4 administration. Animals were subdivided into two groups. One group was given CCl4 and animals were killed at 8 and 12 weeks of treatment. The other group was treated with CCl4 for 6 weeks, the CCl4 was then stopped and, subsequently, subgroups of animals were killed after 1 and 2 weeks of recovery. CCl4 administration over 12 weeks was associated with significant changes in B-cell leukemia/lymphoma 2, procollagen type I α 2, matrix metalloproteinases 3 and 8, tissue inhibitors of metalloproteinases 1, 2, and 3 and the inhibitor of apoptosis 4 gene expressions. Recovery after CCl4 cessation was associated with changes in procollagen type I α 2, matrix metalloproteinase 7, tissue inhibitors of metalloproteinases 1 and 2, inhibitor of apoptosis 4, and survivin gene expressions. This study shows an association between changes in the expression of several genes regulating hepatic cell apoptosis, the fibrosis process, and the recovery of the hepatic function after removal of the toxic injury.  相似文献   

6.
The present study was designed to evaluate the hepatoprotective effects of newly isolated stigmast-4, 20 (21), 23-trien-3-one (STO) against carbon tetrachloride-induced hepatic injury in Wistar albino rats. Hepatotoxicity was induced by the administration of a single intraperitoneal dose of CCl4 (0.5 mL/kg CCl4 in olive oil) in experimental rats. Three different doses (2.5, 5.0, and 10 mg/kg, p.o) of STO was administered to the test groups during whole experimental protocol. Changes in the activity of serum ALT, AST, ALP, TB, and TP, anti-oxidant enzymes like SOD, CAT, GPx, GST, and LPO were studied in CCl4-induced hepatocellular carcinogenesis. The altered levels of serum ALT, AST, ALP, TB, and TP restored toward normalization significantly by STO in a dose dependant manner. The biochemical observations were supplemented with histopathological examination of rat liver sections. Meanwhile, it also produced a significant and dose-dependent reversal of CCl4-diminished activity of anti-oxidant enzymes like SOD, CAT, GPx, GST, and the reduced CCl4-elevated level of LPO. STO significantly prevented the increased levels of serum markers, also suppressed the free radical processes by scavenging hydroxyl radicals. It also modulates the levels of LPO and markedly increases the endogenous anti-oxidant enzymes level in CCl4-induced hepatic injury.  相似文献   

7.
We have previously demonstrated the partial protection of the rat liver by 16,16-dmPGE2 (DMPG) against a number of hepatotoxins including carbon tetrachloride (CCl4). However, it has not been determined whether hepatoprotection by DMPG represents a true “cytoprotective” action or if merely accomplished through inhibition of CCl4 metabolism to reactive, toxic trichoromethyl (CCl3·) free radicals. This report details a series of experiments in which the effects of DMPG on CCl4 metabolism was evaluated in the rat.These data indicate that pretreatment with DMPG may reduce the hepatic concentration of the toxic CCl3· free radicals in CCl4 poisoned rats. Evidence is presented which suggests that this reduction in binding may have been due to a decrease in the rate of CCl4 metabolism. However, DMPG did not affect the hepatic concentration of total microsomal cytochrome P450, the necessary enzyme in this metabolic process. On the other hand, free radical spin trapping experiments indicate that the rate of free radical formation from CCl4 was slowed by treatment. Also, indirect evidence suggests that the metabolism of another cytochrome P450 substrate, phenobarbital, was slowed in DMPG treated rats. We conclude that the rate of CCl4 metabolism may be reduced by pretreatment with DMPG. Furthermore, some measure of hepatic protection might be expected to occur as a result of the reduction in the rate of CCl4 metabolism. However, we are unable to determine if this action was solely responsible for the observed hepatic protection.  相似文献   

8.
There is a higher activity of ethyl morphine N-demethylase (EM-ase) and cytochrome P-450 (P-450) reductase as well as higher P-450 content in the smooth endoplasmic reticulum (SER) than in the rough endoplasmic reticulum (RER). The extent of the irreversible binding of the14C from14CCl4 to lipids and proteins, as well as the CCl4-induced destruction of P-450 is more intense in SER than in RER while the opposite was found for glucose 6-phosphatase (G6P-ase) destruction. CCl4-induced lipid peroxidation is as intense in SER as is in RER.14C from14CCl4 gets irreversibly bound to ribosomal proteins.  相似文献   

9.
The mechanism by which chlordecone (CD) amplifies the hepatotoxicity of halomethanes such as CCl4, CHCl3, and BrCCl3 has been a subject of intense study. Recent work has shown that suppression of hepatocellular regeneration leads to accelerated progression of liver injury leading to complete hepatic failure due to an unusual interaction between individually nontoxic low-dose combination of CD and CCl4. Since polyamines are involved in cell division, their levels reflect the extent to which there is suppression of hepatocellular regeneration during CD and CCl4 interaction. The present studies were designed to investigate the polyamine levels and associated enzymes in livers of rats treated with BrCCl3 alone or CD and BrCCl3 low-dose combination in order to confirm whether the sequence of events of hepatotoxicity is similar to that seen in CCl4 toxicity or that seen during CD and CCl4 interaction. The extent of liver toxicity in rats fed 10 ppm chlordecone (CD) for 15 days prior to the injection of a single low dose of BrCCl3 (15 μL/kg body weight) or after exposure to a high dose of BrCCl3 (80 μL/kg body weight) without CD pretreatment, was similar 6 and 24 hr later as assessed by plasma transaminase levels. There was also an increase in transaminase levels, in rats exposed to a single low dose of BrCCl3 alone (15 μL/kg body weight) but this increase was far below the high-dose exposure alone or the combination treatment. Hepatic levels of ornithine decarboxylase, S-adeno-sylmethionine decarboxylase, N1-acetylputrescine, N1-acetylspermidine, putrescine, spermidine, and spermine at the end of 24 hr increased after exposure to a low dose of BrCCl3 alone as compared to exposure to a high dose alone or the low-dose combination of CD and BrCCl3. Liver spermidine N1-acetyltrans-ferase was elevated at 2, 6, and 24 hr after exposure to a high dose of BrCCl3 alone as compared to treatment with a low-dose combination of CD and BrCCl3 suggesting decreased synthesis of this enzyme, in spite of a greater need as seen from liver transaminase levels. In general, it was observed that there is significant elevation in some polyamines and related enzymes during toxicity of a low dose of BrCCl3 which seemed to stabilize within 24 hr. This was not observed with the other two groups of rats exposed either to BrCCl3 high dose alone or the low-dose combination of CD and BrCCl3. Results indicate that CD and BrCCl3 low-dose combination treatment causes increased liver toxicity resulting in compromised polyamine metabolism which is coincidental with suppressed hepatocellular regeneration leading to accelerated progressive phase of liver injury culminating in complete hepatic failure. These findings point to the possibility that the mechanism of potenti-ation of BrCCl3 hepatotoxicity by CD is similar to that seen for CD and CCl4 interaction.  相似文献   

10.
11.
The role of polyamines in carbon tetrachloride (CCl4)-induced organ injury was studied in syngenic rats and transgenic rats with activated polyamine catabolism. In syngenic rats, administration of CCl4 resulted in the induction of hepatic spermidine/spermine N 1-acetyltransferase (SSAT), accumulation of putrescine, reduction in spermine level and appearance of moderate hepatic injury within 24 h. Upon treatment with CCl4, transgenic rats overexpressing SSAT displayed induction of both hepatic and pancreatic SSAT, with subsequent accumulation of putrescine and decrease of both spermidine and spermine pools. Administration of CCl4 in SSAT transgenic rats induced not only massive hepatic injury, but also severe acute necrotizing pancreatitis. Pretreatment of the animals with catabolically stable functional polyamine mimetic, α-methylspermidine (MeSpd) prevented pancreatic and hepatic injury in SSAT rats and markedly reduced liver damage in syngenic animals. As assessed by immunostaining of proliferating cell nuclear antigen, MeSpd increased the amount of regenerating hepatocytes in both genotypes. These results show that CCl4 induces hepatic and pancreatic polyamine catabolism, and the extent of organ damage correlates with the degree of polyamine depletion. Furthermore, MeSpd protects against CCl4-induced hepatic and pancreatic damage and promotes tissue regeneration.  相似文献   

12.
‘Mandur bhasma’, an ayurvedic preparation of iron is used in traditional medicine against hepatitis. In the present study the hepatoprotective property of this drug was tested in albino rats during CC14 induced hepatic injury. The effect of mandur bhasma on the activities of the lipolytic enzymes of rat liver, kidney and adipose tissue were studied during hepatitis induced by CCl4. The activities of acid lipase, alkaline lipase, lipoprotein lipase and hormone sensitive lipase exhibited significant alterations during CCl4 induced hepatic injury, indicating a role for these enzymes in the mobilization of fat from adipose tissue and accumulation of fat in liver and kidney. Simultaneous treatment with mandur bhasma prevented the paraffin mediated and CC14 mediated changes in the enzyme activities. These results suggest the hepatoprotective role of mandur bhasma during CCl4 induced hepatic injury.  相似文献   

13.
Diammonium glycyrrhizinate (DG), a constitutent of Glycyrrhiza uralensis, has a protective effect on hepatic injury, hepatisis and cirrhosis. To date, the mechanism has been poorly understood, especially at the metabolic level. A metabolomic profiling study was performed to characterize the carbon tetrachloride (CCl4) induced global metabolic alteration and the protective effects of DG in Sprague-Dawley rats. Urinary and hepatic tissue metabolic profiling revealed that CCl4 perturbed the amino acid metabolism (alanine, glycine, leucine), tricarboxylic acid cycle (citrate), lipid metabolism (unsaturated fatty acids) and gut microbiota related metabolites. Our results also indicated that DG was able to attenuate CCl4 perturbed metabolic pathways and ameliorated biochemical markers of alanine aminotransferase (ALT), aspartate aminotransferase (AST), and Total cholesterol (TCHO). This global metabolomic approach also revealed full metabolic recovery takes longer than apparent and conventional histological and biochemical markers.  相似文献   

14.
The resiliency of rats during early postnatal development to CCl4 or to an interactive hepatotoxicity of chlordecone (CD) + CCl4 has been shown to be due to an efficient stimulation of tissue repair. The objective of the current study was to investigate if this is due to efficient expression of transforming growth factor-α (TGF-α) and proto-oncogenes. Postnatally developing (20 day old) and adult (60 day old) male Sprague–Dawley rats were challenged with a single low dose of CCl4 (100 μL/kg, ip) or corn oil. Liver samples were collected during a time course (0–96 h) after the administration of CCl4 and used to examine TGF-α and early (c-fos) and late (H-ras and K-ras) proto-oncogenes mRNA expressions. Significant increases in TGF-α, H-ras, and K-ras gene expressions were evident as early as 12 hours after CCl4 and peaked between 24 and 48 hours in an age-dependent manner as detected by slot-blot analysis. Results of the study revealed three- and twofold increases in TGF-α gene expression in 20 and 60 day old rats, respectively, after CCl4. There were 3.5- and 2.5-fold increases in H-ras and 4.4- and 3.4-fold increases in K-ras in 20 and 60 day old rats, respectively. In contrast, a 10-fold increase in c-fos mRNA expression was evident in 20 day old rats 1 hour after CCl4 treatment, returning to the baseline value by 3 hours, whereas in 60 day old rats, this increase was less than twofold. The overall findings of this study indicate that TGF-α and the early and late proto-oncogene mRNA expressions were enhanced in an age- and time-dependent manner in response to a low dose of CCl4. These results further strengthen the view that the remarkable resiliency of rats to hepatotoxicants during early postnatal development is due to substantial increases in stimulation of hepatocellular regeneration and tissue repair mechanisms, leading to regression of liver injury and recovery. © 1996 John Wiley & Sons, Inc.  相似文献   

15.
Hepatoprotective agents could prevent tissue damage and reduce morbidity and mortality rates; such agents may include folkloric or alternative treatments. The present study evaluated the protective effects of the flavonoid-rich fraction from rhizomes of Smilax glabra Roxb. (SGF) on carbon tetrachloride (CCl4)-induced hepatotoxicity in rats. Sprague-Dawley male rats were orally treated with SGF daily and received CCl4 intraperitoneally twice a week for 4 weeks. Our results showed that SGF at doses of 100, 300 and 500 mg/kg significantly reduced the elevated activities of serum aminotransferases (ALT and AST), alkaline phosphatase and lactate dehydrogenase and the level of hepatic thiobarbituric acid–reactive substances compared to the CCl4-treated group. Moreover, SGF treatment was also found to significantly increase the activities of superoxide dismutase, catalase, glutathione peroxidase, glutathione reductase, glutathione-S-transferase and glutathione compared with CCl4-induced intoxicated liver. Histopathologic examination revealed that CCl4-induced hepatic damage was markedly reversed by SGF. The results suggest that SGF has hepatoprotective and antioxidant properties in CCl4-induced liver injury in rats.  相似文献   

16.
17.
Ecto-nucleoside triphosphate diphosphohydrolases (E-NTPDases) are cell surface-located transmembrane ecto-enzymes of the CD39 superfamily which regulate inflammation and tissue repair by catalyzing the phosphohydrolysis of extracellular nucleotides and modulating purinergic signaling. In the liver, NTPDase2 is reportedly expressed on portal fibroblasts, but its functional role in regulating tissue regeneration and fibrosis is incompletely understood. Here, we studied the role of NTPDase2 in several models of liver injury using global knockout mice. Liver regeneration and severity of fibrosis were analyzed at different time points after exposure to carbon tetrachloride (CCl4) or 3,5-diethoxycarbonyl-1,4-dihydrocollidine (DDC) or partial hepatectomy in C57BL/6 wild-type and globally NTPDase2-deficient (Entpd2 null) mice. After chronic CCl4 intoxication, Entpd2 null mice exhibit significantly more severe liver fibrosis, as assessed by collagen content and histology. In contrast, deletion of NTPDase2 does not have a substantial effect on biliary-type fibrosis in the setting of DDC feeding. In injured livers, NTPDase2 expression extends from the portal areas to fibrotic septae in pan-lobular (CCl4-induced) liver fibrosis; the same pattern was observed, albeit to a lesser extent in biliary-type (DDC-induced) fibrosis. Liver regeneration after partial hepatectomy is not substantively impaired in global Entpd2 null mice. NTPDase2 protects from liver fibrosis resulting from hepatocellular injury induced by CCl4. In contrast, Entpd2 deletion does not significantly impact fibrosis secondary to DDC injury or liver regeneration after partial hepatectomy. Our observations highlight mechanisms relating to purinergic signaling in the liver and indicate possible therapeutic avenues and new cellular targets to test in the management of hepatic fibrosis.  相似文献   

18.
In order to define the site of bioactivation of CCl4, CHCl3 and CBrCl3 in the NADPH cytochrome c reductase-cytochrome P-450 coupled systems of liver microsomes, the 14C-labeled hepatotoxins were incubated invitro with isolated rat liver microsomes and a NADPH-generating system. The covalent binding of radiolabel to microsomal protein was used as a measure of the conversion of the hepatotoxins to reactive intermediates. Omission of NADPH, incubation under CO:O2 (8:2) and addition of a cytochrome c reductase specific antisera mardedly reduced the covalent binding of all three compounds. When cytochrome P-450 was reduced to less than 25% of normal by pretreatment of rats with allylisopropylacetamide (AIA), but cytochrome c reductase activity was unchanged, the covalent binding of CCl4, CHCl3, and CBrCl3 was decreased by 63, 83, 70%, respectively. Incubation under an atmosphere of N2 enhanced the binding of CCl4, inhibited the binding of CHCl3 and did not influence the binding of CBrCl3. It is concluded that cytochrome P-450 is the site of bioactivation of these three compounds rather than NADPH cytochrome c reductase and that CCl4 bioactivation proceeds by cytochrome P-450 dependent reductive pathways, while CHCl3 activation proceeds by cytochrome P-450 dependent oxidative pathways.  相似文献   

19.
Carbon tetrachloride (CCl4) represents an excellent model to study oxidative injury of cells. It is widely accepted that hepatocellular injury is a consequence of the metabolic conversion of CCl4 into highly reactive, free radical intermediates. Among the direct toxic effects of CCl4, stimulation of lipid peroxidation and the binding of the electrophilic radicals to membrane lipids have been suggested to play important roles in the pathogenesis of irreversible cell damage. CCl4-induced liver damage was modeled in cultures of rat hepatocytes with the focus on alterations of phosphatidylcholine (PC). The PC acyl chain composition was analyzed by 31P NMR spectroscopy and MALDI-TOF mass spectrometry. The content of the membrane arachidonoyl PC was decreased by almost 30% after incubation of the cells with CCl4. This relative decrease was found to correlate with increased concentrations of the corresponding saturated lysophosphatidylcholine (LPC). It is concluded that LPC represents a useful biomarker of CCl4-mediated damaging of hepatocytes. It is also speculated that de novo biosynthesis of PC is influenced by CCl4.  相似文献   

20.
Carbon tetrachloride (CCl4) is known to have hepatotoxic and nephrotoxic effects. During the two-month CCl4 exposure of Wistar rats, propolis extract (PE) and royal jelly (RJ) were added in order to test the potential protective effect against hepato-renal injury. Ketonuria, proteinuria, high creatinine and urea levels are the result of CCl4-induced nephrotoxicity. Severe disorders of hematological indicators indicate anemia; high values of leukocytes indicate inflammatory condition. Cytogenetic impairments in hepatocytes, aggregation of platelets, and hypoproteinemia indicate severe liver impairment. Results suggest a more significant protective role of RJ compared to PE. Both extracts regulated proteinuria, ketonuria, hypoproteinemia and reduced platelet aggregation in the hepatic circulation. The increase in the number of erythrocytes (RBC) suggest protective effects against anemia; the decrease in the number of leukocytes can be linked to anti-inflammatory effects. PE and RJ have a beneficial effect against hepato-renal injury, anemia and anti-inflammatory conditions caused by CCl4.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号