首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Oocytes and follicular components obtained from ovaries recovered from mature Hereford cows at slaughter were used to determine follicular influence on oocyte maturation. Some oocytes were fixed immediately to determine the stage of maturation. The remaining oocytes were cultured for 32 to 34 hr in various environments to determine the influences of the granulosum and follicular fluids on meiotic changes. All noncultured oocytes had dictyate nuclei except one in premetaphase. Oocytes cultured in 50 or 100% follicular fluid or in contact with stratum granulosum cells showed some meiotic inhibition both before and after germinal vesicle breakdown (GVB). The least resumption of meiosis occurred in oocytes cultured in their intact follicles.  相似文献   

2.
The effect of follicular cells and their conditioned media on the FSH-induced oocyte maturation of oocytes surrounded by cumulus cells connected to the membrana granulosa (COCGs) was investigated. COCGs and cumulus oocyte complexes (COCs) were cultured for 22 hr in M199 supplemented with 0.05 IU FSH/ml in either the presence of pieces of theca cell layer or in the presence of pieces of membrana granulosa. COCGs and COCs were also cultured for 22 hr in either theca-cell conditioned medium (CMt) or in granulosa cell conditioned medium (CMg), both supplemented with 0.05 IU FSH/ml. To investigate the importance of cell–cell contacts between granulosa cells and cumulus cells, oocytes were cultured as COCs in CMt, as COCs in CMt supplemented with pieces of membrana granulosa, or as COCGs in CMt. In all groups the medium was supplemented with 0.05 IU FSH/ml. After culture the nuclear status of the oocytes was assessed using orcein staining. Culture of COCGs in the presence of theca cells as well as in CMt resulted in a significantly decreased proportion of oocytes that had undergone germinal vesicle breakdown (GVBD) at the end of the culture period as compared to the control. Of the oocytes that resumed meiosis in the presence of theca cells or in CMt, the proportion of oocytes that progressed up to the MII stage was significantly reduced. This indicates the production of a meiosis-inhibiting factor by theca cells. Culture with COCs instead of COCGs resulted in comparable results although the effect was less pronounced. The significant effect on the progression of meiosis of oocytes cultured as COCGs or as COCs, obtained in the presence of granulosa cells or in CMg, was much weaker than the effect of theca cells or culture in CMt. Culture of COCs in CMt supplemented with layers of membrana granulosa and 0.05 IU FSH/ml, resulted in significantly less oocytes that resumed meiosis as compared to culture of COCs in CMt. Of the oocytes that showed GVBD, the proportion that progressed up to the MII stage was significantly reduced. Attachment of the COCs to the membrana granulosa enhanced this inhibiting action of CMt on the progression of meiosis. It is concluded that theca cells secrete a stable factor that inhibits the progression of FSH-mediated meiosis in oocytes of COCGs. Mol. Reprod. Dev. 51:315–321, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

3.
Cumulus oocyte complexes (COCs) and cumulus oocyte complexes connected to a piece of the membrane granulosa (COCGs) were isolated from bovine antral follicles with a diameter of 2 to 8 mm. After culture of COCGs without gonadotrophic hormones for 22 hr approximately 50% of the oocytes were still in the germinal vesicle (GV) stage Histology of the COCGs showed that the pieces of the membrana granulosa were free of thecal cells and parts of the basal membrane. This indicates that the membrana granulosa solely inhibits the progression of meiosis. To investigate the effect of gonadotropins on the resumption of meiosis of oocytes from small and medium sized antral follicles, COCs and COCGs were cultured with or without rec-hFSH or hCG. Addition of 0.05 IU rec-hFSH to the culture medium of COCGs resulted in germinal vesicle breakdown in 97.8% of the oocytes compared to 46% in the control group, and an increase of the diameter of the COCs (479 μm vs. 240 μm in the control group). Addition of 0.05 IU hCG to the culture medium had no effect on nuclear maturation (47.2% GV vs. 48.5% GV in the control group nor on cumulus expansion (246 μm vs. 240 μm in the control group). RT-PCR on cDNA of the follicular wall, cumulus cells, granulosa cells, COCs, and oocytes revealed that mRNA for FSH receptor was present in all cell types except oocytes. mRNA of the LH receptor was detected exclusively in thecal cells. Nucleotide sequence analysis and alignment of the cloned PCR products showed the presence of two isoforms of the FSH receptor mRNA and two isoforms of the LH receptor mRNA. It is concluded that, in vitro, resumption of meiosis of oocytes, originating from small and medium sized antral follicles and meiotically arrested by the membrana granulosa, is triggered by FSH and not by LH. This is supported by the fact that receptors for FSH, but not for LH, are transcribed in the cumulus and granulosa cells of these follicles. © 1996 Wiley-Liss, Inc.  相似文献   

4.
In this study 2 phosphatidylinositol 3-kinase (PI 3-kinase)-specific inhibitors, wortmannin and 2-[4-Morpholinyl]-8-phenyl-4H-1-benzopyran-4-one (LY294002), were used to investigate whether PI 3-kinase is involved in the signal transduction that leads to bovine oocyte maturation. Bovine follicular oocytes were cultured in vitro for 24 h in a basic medium consisting of tissue culture medium-199 supplemented with LH, FSH, fetal cow serum, Na-pyruvate and gentamicin. The oocytes were then examined for the stage of meiotic progression and degree of cumulus expansion. In Experiment 1, in cumulus-oocyte complexes (COCs), wortmannin, at any level tested (10(-8) M, 10(-7) M or 10(-6) M), had no effect on resumption of meiosis as judged by germinal vesicle breakdown and progression to prometaphase I or metaphase I. However, wortmannin significantly (P < 0.01) decreased the proportion of oocytes developing to metaphase II in a dose-dependent manner. In Experiment 2, when denuded oocytes were cultured with wortmannin at 0, 10(-7) M and 10(-6) M concentrations, the same pattern of response for COCs was observed, with no effect on meiotic resumption and a significant (P < 0.01) decrease in the proportion of oocytes reaching metaphase II. In Experiment 3, half of the recovered COCs were denuded and both denuded and intact COCs were cultured in the presence of 0, 2.5 x 10(-5) M, 5.0 x 10(-5) M and 7.5 x 10(-5) M LY 294002 before being examined for meiotic progression. Whereas LY294002, at any examined level, had no effect on the percentage of oocytes developing to metaphase I, it significantly (P < 0.01) decreased the proportion of metaphase II oocytes when used at 5.0 x 10(-5) or 7.5 x 10(-5) M for both intact COCs and denuded oocytes. In Experiment 4, no significant difference in the degree of cumulus expansion was scored after the COCs were cultured in the presence of wortmannin or LY294002 or in the absence of either treatment. These results provide indirect evidence for a role of PI 3-kinase in the bovine oocyte itself in regulating meiotic progression beyond metaphase I.  相似文献   

5.
The objective was to evaluate the effects of angiotensin II (Ang II), insulin-like growth factor-I (IGF-I) and insulin on the nuclear and cytoplasmic maturation of bovine oocytes in the presence of follicular cells. Cumulus-oocyte complexes (COCs) were cultured for 22h in the presence of follicular cells (control with cells) and Ang II, IGF-I or insulin (treatments), or in the absence of follicular cells (control without cells). Using these five groups, Experiment 1 was conducted with and without the addition of gonadotrophins. Only oocytes in the Ang II group resumed meiosis at rates (88.2+/-1.8% and 90.7+/-4.3% for oocytes cultured in the absence or presence of LH/FSH, respectively) similar to those observed for oocytes cultured in the absence of follicular cells (89.7+/-0.3% and 92.6+/-2.6%; P<0.01). In Experiment 2, the effect of Ang II alone and in combination with IGF-I or insulin on oocyte maturation for 7h (germinal vesicle breakdown), 12h (metaphase I) and 22h (metaphase II) was evaluated in a design similar to that of the first experiment. Ang II plus IGF-I or insulin induced the resumption of meiosis, irrespective of the presence of gonadotrophins (P<0.01). Experiment 3 used groups similar Experiment 2 to determine the rate of subsequent embryo development, using fetal calf serum (FCS) in the culture medium. The COCs were cultured in maturation medium for 1h (1+23h), 12h (12+12h) or 24h in the presence of follicular cells and the respective treatments and for the remaining period in the absence of follicular cells to complete 24h. In Experiment 4, BSA was used in lieu of serum in the maturation medium in a 12+12h maturation system. Oocytes matured using the 12+12h system with BSA or FCS in the presence of Ang II+IGF-I had higher rates of blastocyst formation than the other treatments (P<0.05). In conclusion, Ang II reversed the inhibitory effect of follicular cells on nuclear maturation of bovine oocytes, irrespective of the presence of gonadotrophins, IGF-I and insulin. However, oocyte cytoplasmatic maturation (i.e., subsequent embryo development), was higher when Ang II and IGF-I were present in the maturation medium containing follicular cells cultured for 12+12h.  相似文献   

6.
We have investigated the effect of co-culture with porcine spermatozoa on in vitro maturation of porcine germinal vesicle (GV) oocytes before fertilization. Most oocytes were arrested at the first prophase of meiosis when oocytes were cultured in TCM 199 alone, but the proportion of oocytes that reached metaphase II was significantly elevated by co-incubation with spermatozoa in vitro. The oocyte maturation effect was observed with intact and parts of spermatozoa (head and tail) collected from adult swine (regardless of source). However, gonocytes from the newborn porcine testis were not able to enhance in vitro maturation of porcine germinal vesicle oocytes. Interestingly, the oocyte maturation effect by spermatozoa was not decreased with heat treatment, but the maturation effect of oocyte treatment disappeared with exposure to detergent in sperm suspension. Porcine spermatozoa were also observed to stimulate meiosis of oocytes, which was maintained at meiotic arrest using dibutyryl cyclic AMP or forskolin. The study suggests that (i) membrane of porcine spermatozoa contains a substance(s) that can enhance in vitro maturation of oocytes prior to fertilization, (ii) the putative meiosis-enhancing substance(s) of spermatozoa from adult testes retains the oocyte maturation effect during transportation of spermatozoa through epididymis, and (iii) the putative meiosis-enhancing substance(s) is able to overcome the inhibitory effect of dibutyryl cyclic AMP or forskolin by inducing germinal vesicle breakdown of porcine cumulus-oocyte complexes maintained in meiotic arrest.  相似文献   

7.
Four hypotheses were tested using isolated bovine oocytes. (1) Cumulus oocyte complexes (COCs) or denuded oocytes (DOs) were cultured with the protein kinase A (PKA) inhibitor, H-89, to test if meiotic arrest induced by forskolin or IBMX was due to cAMP-stimulated PKA activity or nonspecific effects of these cAMP elevators. (2) COCs were cultured with a protein kinase C (PKC) stimulator (PDDβ) or inhibitor (GF109203x) to test if PKC modulation altered oocyte maturation. (3) COCs were prestimulated for 15 min with (a) PDDβ followed by cotreatment with forskolin, or (b) with H-89 or H-7 followed by cotreatment with GF109203x, to test for interaction between the PKA and PKC signal transduction pathways. (4) H-89 was added to spontaneously maturing COCs at intervals 0–18 hr to test if H-89 interfered with the transition between meiosis I and II. The results were as follows: H-89 interfered with forskolin or IBMX arrested oocytes in a dose-response manner (IBMX ED50 = 41 μM for COCs; forskolin ED50 = 9 μM for denuded oocytes). Prestimulation with PKC induced meiotic resumption in COCs in spite of the presence of forskolin [PDDβ followed by PDDβ + forskolin: 41–47% germinal vesicle (GV) oocytes; forskolin alone: 90–95% GV], while PKC inhibition induced meiotic arrest to a similar extent as forskolin (GF109230x, 85% GV; forskolin, 67–80% GV). Additionally, pretreatment of COCs with H-89 interfered with GF109203x induced arrest (41% vs. 90% GV, respectively). Finally, H-89 interfered with the timely progression of COCs from meiosis I and II. These results indicate that the PKA and PKC pathways can modulate the maturation of bovine oocytes in vitro. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Time-dependent changes in the level of adenosine cyclic AMP (cAMP) in porcine oocytes during meiotic progression from the germinal vesicle stage (GV stage) to the metaphase II stage (MII stage) were examined using reversed-phase HPLC with UV detection. The concentration of cAMP in oocytes reached a peak at 8 hr of cultivation of cumulus-oocyte complexes (COCs), but it was dramatically decreased after 12-hr cultivation. After a 28-hr cultivation period, the level of cAMP in the oocytes had significantly reduced further, and the basal level of cAMP was observed in oocytes cultured at 32 hr and for up to 48 hr. When phosphatidylinositol 3-kinase (PI 3-kinase) or protein kinase C (PKC) in cumulus cells [which were required for meiotic progression to the MII stage in porcine oocytes (Shimada and Terada, 2001: Biol Reprod 64:1106-1114)] was suppressed by each specific inhibitor following initial 24-hr cultivation of COCs, cAMP level in the oocytes was significantly increased. After 24-hr cultivation in the maturation medium, COCs, which were cultured for an additional 24 hr in the presence of either forskolin or 3-isobutyl-1-methylxanthine (IBMX), exhibited a significant increase in the oocyte cAMP level to the similar level of that in oocytes cultured with PI 3-kinase inhibitor or PKC inhibitor, and the addition of each agent significantly suppressed meiotic progression from the MI to the MII stage and the activity of mitogen-activated protein kinase (MAPK) and p34(cdc2) kinase. These results demonstrated that when transported into oocytes from the cumulus cells via gap junctions, cAMP plays an important role not only in meiotic resumption, but also in the regulation of meiotic progression beyond the MI stage in porcine oocytes.  相似文献   

9.
Hypoxanthine (HX) inhibition of in vitro meiotic resumption in goat oocytes   总被引:7,自引:0,他引:7  
To improve in vitro maturation and to understand the mechanism for meiotic resumption of oocytes, meiotic progression, and its control by hypoxanthine (HX) were studied in goat oocytes. Ovaries were obtained from a local abattoir, and cumulus-oocyte complexes (COCs) and follicular fluid were collected from follicles of different surface diameters (SDs). The meiotic competence and progression of oocytes were observed, and the concentration of HX in the follicular fluid and culture media was measured by high-performance liquid chromatography (HPLC). Full meiotic competence of goat oocytes was acquired in follicles of >/=1.5 mm in SD with 90% of the oocytes developing to metaphase II (MII) stage after 24 hr in culture. The HX concentration in follicular fluid decreased with follicle development, from the highest level of 1.16 mM in /=5 mm follicles. HX inhibited meiotic resumption of goat oocytes in a concentration-related manner but this inhibitory effect declined gradually. When we renewed the medium at 4 hr of HX-199 (TCM-199 supplemented with 4 mM HX) culture, the percentage of oocytes with intact germinal vesicle (GV) did not increase but decreased significantly instead. HPLC measurement of HX in the HX-199 culture drops indicated that the HX concentration declined from 0 hr to 4 hr of culture and after medium renewal at 4 hr of culture. By adding dibutyryl cAMP (db-cAMP) at medium renewal, we found that db-cAMP held up the decline of GV percentages. Together, these results were consistent with the possibility that the decline of HX inhibitory effect was not due to HX depletion but rather due to the negative feedback of the metabolites on its further uptake by oocytes. Goat oocytes were capable of normal nuclear maturation and activation after temporal arrest by HX, but prolonged exposure to HX induced spontaneous activation.  相似文献   

10.
11.
Porcine cumulus oocyte complexes (COCs) were cultured together in 10-microliters droplets of culture medium. When 10 COCs were cultured for 24 h, germinal vesicle breakdown (GVBD) occurred in 81% of them. When more COCs (20 or 40) were put into the same volume of medium the frequency of GVBD gradually decreased. This inhibition was not observed in denuded oocytes. The process of GVBD was adversely influenced when 10 COCs were cultured in cumulus-preconditioned medium. It is concluded that porcine cumulus cells produced a factor inhibiting GVBD. After removing the inhibitory block and extensive washing, GVBD of arrested oocytes was significantly accelerated. The addition of LH or heparin only partially overcame the inhibitory action. This factor produced by porcine cumulus cells negatively influenced maturation of bovine oocytes; however, a similar effect was not demonstrated in the mouse. Our results suggest that a high concentration of porcine cumulus cells exerts a quantitative inhibitory effect upon GVBD of porcine and cattle oocytes cultured in vitro.  相似文献   

12.
The ability of mammalian oocytes to resume meiosis and to complete the first meiotic division is acquired sequentially during their growth phase. The acquisition of meiotic competence in goat oocytes has been previously correlated with follicular size (9). Since protein phosphorylation/dephosphorylation play a key role in oocyte maturation, it could be that in meiotically incompetent oocytes, such post-translational modifications are inadequate. The aim of this study was to analyze whether changes in oocyte proteins phosphorylation occurred during the acquisition of meiotic competence. For this propose, goat oocytes were divided into 4 classes according to follicular size and meiotic competence: Class A oocytes from follicles < 0.5 mm in diameter: Class B oocytes from follicles 0.5-0.8 mm; Class C oocytes from follicles 1-1.8 mm and class D oocytes from follicles > 3 mm. The protein phosphorylation patterns of these classes of oocytes were studied at different times of in vitro maturation. After 4h of culture, when all oocytes were in the germinal vesicle stage, only the oocytes from Class D displayed the phosphoproteins at 110 kD, 31 kD and around 63 kD. In contrast to Class D oocytes Classes B and C oocytes were partially competent to mature, they underwent germinal vesicle breakdown later than fully competent Class D oocytes and remained in early prometaphase I or in metaphase I, respectively. They exhibited the phosphoprotein changes that are associated with commitment to resume meiosis; but the changes occurred later than in Class D oocytes, which were fully competent to reach metaphase II. After 27 h of culture, the phosphorylation patterns of Class B, C and D oocytes were identical, whereas the meiotic stages reached were quite different. The phosphoprotein changes associated with oocyte maturation did not occur in meiotically incompetent Class A oocytes, which were blocked at the germinal vesicle stage. From these results it can be concluded that, at the GV stage, meiotically incompetent and competent goat oocytes display different patterns of protein phosphorylation. Once oocytes are able to resume meiosis they undergo specific phosphorylation changes, but whether these changes are markers or regulators of maturation events remains to be determined.  相似文献   

13.
14.
This study addresses the role of cAMP hydrolytic isoenzyme phosphodiesterase type 3 (PDE 3) modulation on human oocyte maturation in vitro. Presence of phosphodiesterase type 3 A (PDE 3A) mRNA was confirmed in human germinal vesicle-stage (GV) oocytes. Making use of a selective PDE 3 inhibitor, Org 9935 (10 microM), oocytes retrieved from immature follicles were arrested in prophase I with a high efficiency for up to 72 h. Cumulus oocyte complexes (COCs) were retrieved in the follicular phase of the cycle before or after exposure to endogenous LH or hCG administration in vivo and randomly distributed into maturation medium with or without the PDE 3 inhibitor. Previous exposure of small follicles to LH activity in vivo had no influence on the arresting capacity of the PDE 3 inhibitor. Reversal from pharmacological arrest leads to a progression through meiosis in a normal time frame with formation of a well-aligned metaphase plate. Ultrastructure analysis of COC derived from follicles between 8 and 12 mm showed that the induced extension of prophase I arrest in vitro resulted in cytoplasm changes but not in apparent nuclear changes during culture.  相似文献   

15.
The possibility that the intracellular signals generated upon phosphoinositide hydrolysis are involved in regulating bovine oocyte spontaneous meiotic resumption was investigated. Oocytes were mass-harvested and cultured in 2A-BMOC medium supplemented with 0.5% bovine serum albumin in the presence or absence of neomycin (an inhibitor of phosphoinositide hydrolysis) or phorbol myristate acetate (an activator of protein kinase C). The role of intracellular calcium was examined by preloading with BAPTA/AM (a calcium chelator) prior to culture. Meiotic maturation was scored cytogenetically. 1) Neomycin induces an irreversible inhibition of germinal vesicle breakdown which does not exceed 60% and is apparent at concentrations of 5 mM or above. Progression of meiosis past metaphase I is inhibited at concentrations of 2.5 mM or above. The full effect of neomycin is only apparent if it is presented to the oocytes within 3 h of follicular release, although germinal vesicle breakdown is not observed until 9 h culture under control conditions. 2) PMA alone has negligible effect on germinal vesicle breakdown, but it acts synergistically with 2 mM IBMX to inhibit this process. PMA has a dual effect on the progression of meiosis past metaphase I: 1 nM PMA has a stimulatory effect while 1 microM PMA blocks the ability of oocytes to reach anaphase I or beyond. These observations are not found with a non-tumor-promoting phorbol ester. 3) Spontaneous meiotic resumption is not significantly affected in the absence of added exogenous calcium. However, oocytes preloaded with BAPTA/AM exhibit a dose-dependent inhibition of germinal vesicle breakdown, even in the presence of extracellular calcium.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

16.
Roscovitine, a potent inhibitor of M-phase promoting factor kinase activity, was used to maintain calf oocytes at the germinal vesicle stage for a 24h culture period. Cumulus-oocyte complexes were first prematured for 24h in the presence of different levels of roscovitine (12.5, 25, 50 and 100 microM). Roscovitine was shown to block germinal vesicle breakdown in calf oocytes in a concentration dependent manner. Significantly greater inhibitory effect was observed at 50 and 100 microM with 64.6% and 63.2% oocytes being blocked in the germinal vesicle stage when compared to the control (0.0%) and the 12.5 microM (2.9%) and 25 microM (18.8%) groups. However, this inhibitory effect of roscovitine was fully reversible since a substantial number of the oocytes resumed meiosis and reached the metaphase II stage after a further 24h of culture in a permissive medium. Cleavage rates and blastocyst yields were not significantly different for oocytes cultured under 50 microM roscovitine inhibition compared to oocytes not subjected to prematuration culture (rates of 76.7% cleavage and 8.7% blastocysts for control oocytes compared to 69.8% and 6.3%, respectively, for oocytes pretreated with 50 microM roscovitine). The morphology of the meiotic spindle was typical of metaphase II in 75.8% and 82.1% of the oocytes reaching the metaphase II stage after pretreatment with 50 microM roscovitine compared to control, respectively. A normal distribution of actin filaments was observed in 97.0% and 98.2% of oocytes exposed to 50 microM roscovitine compared to control, respectively. These results demonstrate the feasibility of maintaining calf oocytes in artificial meiotic arrest without compromising their subsequent developmental competence.  相似文献   

17.
Experiments were conducted to determine the effects of meiosis-inhibiting-agents and gonadotropins on nuclear maturation of canine oocytes. The culture medium was TCM199 + 10 ng/ml epidermal growth factor supplemented with 25 microM beta-mercaptoethanol, 0.25 mM pyruvate, and 1.0 mM L-glutamine (Basal TCM). Initially, oocytes were cultured in Basal TCM alone or in Basal TCM + dibutylryl cyclic adenosine monophosphate (0.5, 1, 5, or 10 mM dbcAMP) for 24 hr. Dibutylryl cAMP inhibited resumption of meiosis in a dose-dependent manner; 60% of oocytes remained at the germinal vesicle (GV) stage after being cultured for 24 hr in 5 mM dbcAMP. The meiosis-inhibitory effect of dbcAMP appeared to be reversible, as the oocytes resumed meiosis and completed nuclear maturation after being cultured for an additional 48 hr in its absence. Oocytes were then cultured in Basal TCM alone or in Basal TCM + roscovitine (12.5, 25, or 50 microM) for 24 hr. Although approximately 60% of oocytes cultured in 25 microM roscovitine remained at the GV stage, this percentage was not significantly different from the 48% that also remained at the GV stage when cultured in its absence. Oocytes were cultured in Basal TCM + 25 microM roscovitine for 17 hr, exposed briefly to equine chorionic gonadotropin (eCG), and then cultured in Basal TCM for 48 hr. Short exposure of oocytes to eCG was beneficial, as it significantly increased the proportion of oocytes developing beyond germinal vesicle breakdown (P < 0.05) with approximately 20-30% of these were metaphase I (MI) oocytes. Study of the kinetics of nuclear maturation demonstrated that large numbers of oocytes remained at MI even after being cultured for 52 hr following brief exposure to eCG. This study showed that in vitro maturation of canine oocytes can be somewhat improved by short exposure of oocytes to eCG. However, further studies are still required to derive effective methods to mature canine oocytes in vitro.  相似文献   

18.
In this study we have shown that butyrolactone I (BL-I), a potent inhibitor of cyclin-dependent kinases, inhibits meiotic resumption in bovine oocytes by blocking germinal vesicle breakdown in a dose-dependent manner. A concentration 100 microM blocked over 60% of oocytes, while 150 microM inhibited almost all oocytes compared to the control in which over 80% resumed meiosis. Following a second 24 hr culture under conditions permissive to normal maturation, almost all (95%) of blocked oocytes resumed meiosis and progressed to metaphase II. In terms of developmental competence, oocytes maintained in meiotic arrest for 24 hr with 100 microM exhibited a similar capacity to develop to the blastocyst stage as nonblocked control oocytes following maturation, fertilization, and culture in vitro. Cryopreservation was employed as a tool to detect differences in the oocyte viability between blocked and control oocytes. Cleavage of oocytes was significantly reduced following vitrification and activation both in BL-I treated (40.2% vs. 71.9%, P < 0.05) and the control groups (45.6% vs. 81.7%, P < 0.05). However, BL-I treated oocytes were less likely to develop into blastocysts following vitrification (20.0% from vitrified vs 42.5% from nonvitrified cleaved oocytes, P < 0.05, based on cleaved oocytes) compared to nontreated oocytes (34.0% from vitrified vs. 42. 9% from nonvitrified oocytes, P < 0.05). These results demonstrate the feasibility of maintaining bovine oocytes in artificial meiotic arrest without compromising their subsequent developmental competence and may represent a tool for improving the development of less competent oocytes.  相似文献   

19.
The role of granulosa cells in the regulation of mouse ovarian oocyte metabolism was investigated. Fully grown antral oocytes, isolated from surrounding cumulus cells, were cultured on monolayers of preantral granulosa cells in the presence of dbcAMP to prevent the resumption of meiosis. Under these conditions metabolic cooperativity was established between the two cell types as early as 1 hr after seeding. Moreover, cocultured oocytes phosphorylated two polypeptides of 74 and 21 kDa which are normally phosphorylated in follicle-enclosed growing oocytes but not in cumulus cell-enclosed fully grown oocytes at the germinal vesicle stage. When cocultured oocytes were allowed to resume meiosis, the 74 and 21 kDa proteins were synthesized but no longer phosphorylated even though intercellular coupling between the two cell types was maintained during radiolabeling. It appears therefore: a) that the different protein kinase activity of growing and fully grown germinal vesicle-stage mouse oocytes is related to the differentiative state of granulosa cells, and b) that the regulation of oocyte protein phosphorylation activity by granulosa cells is dependent on the meiotic stage of the oocyte.  相似文献   

20.
Ovine cumulus-enclosed oocytes collected from antral follicles (3-5 mm in diameter) were cultured in vitro with 2 x 10(6) granulosa cells/ml in the presence or absence of gonadotropins or in the presence of cytochalasin D (CD). The maturation rate was assessed after 24 h of culture. In the control group, in the presence of gonadotropins (follicle-stimulating hormone-luteinizing hormone (FSH-LH; -10 micrograms/ml) 100% of the oocytes reached metaphase II. Whereas intercellular junctions were no longer present after 6-7 h of culture, germinal vesicle breakdown (GVBD) occurred by the same time. In contrast, in the absence of gonadotropin, the majority of the oocytes (59%) remained blocked in GV stage. The inhibition exerted by the granulosa cells on meiotic resumption was overcome when the cumulus-oocyte complexes (COCs) were incubated in CD (5 micrograms/ml) for 6 h at the beginning of the culture. Under these conditions, 85% of the oocytes matured with extrusion of the first polar body. Cytological analysis by cytofluorescence (NBD phallacidin) and electron microscopy showed that, after 6 h of treatment, CD provoked a redistribution of the microfilaments, mainly in the cumulus cells and to a lesser extent in the oocyte cortex. Intercellular junctions disappeared concomitantly with a significant decrease of the intercellular transport of tritiated uridine. The initiation of GVBD occurred at the same time. These results indicate that the resumption of meiosis was correlated with a loss of both junctional complexes (intermediate and gap junctions) between the cumulus cells and the oocyte.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号