首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
2.
To assess the roles of developmental factors in the regulation of sheep IGFBP production at the cellular level, we characterized and compared the IGFBPs released by fetal, postnatal, and maternal sheep skin fibroblasts in culture with those in fetal, postnatal, and maternal sheep plasma. Sheep fibroblasts produced seven IGFBPs: a 36.5-41 kDa protein induced in vitro by IGF-I, likely representing oIGFBP-3; a 28.5 kDa protein that reacted with antisera to human IGFBP-2, likely representing oIGFBP-2; 25 and 27 kDa proteins induced in fetal fibroblasts by IGF-I; a 22 kDa protein that was inhibited by IGF-I, likely representing oIGFBP-4; and 21 and 23 kDa proteins labelled only by IGF-II, suggesting their similarities to IGFBP-6. The developmental pattern of IGFBP production by sheep fibroblasts in culture was similar in several respects to that observed in sheep plasma. For example, relative amounts of the 21, 22, and 28.5 kDa IGFBPs exceeded that of the 36.5-41 kDa protein in early fetal fibroblast conditioned media and in fetal plasma, while the relative concentrations of the 36.5-41 kDa protein increased markedly during the perinatal period. Sheep plasma differed, however, in two major respects from fibroblast conditioned media: First, fetal, and to a far lesser extent maternal, plasma contained a 200 kDa IGF-II-selective BP, likely to be the circulating form of the IGF-II receptor; and second, plasma, unlike conditioned media, contained a 26 kDa IGFBP, likely to be oIGFBP-1. The results of our studies suggest that the production and release of IGFBPs by isolated sheep fibroblasts is regulated by developmental factors operative under in vitro culture conditions. The differences in the relative levels of IGFBPs in conditioned media from fetal, postnatal, and maternal sheep fibroblasts resemble in several respects the differences in the relative concentrations of the various IGFBPs in fetal, postnatal, and maternal sheep plasma. Thus, sheep fibroblasts provide a useful though imperfect model system by which to examine the nutritional and hormonal regulation of sheep IGFBP production at various developmental stages.  相似文献   

3.
In the circulation, most of the insulin-like growth factors (IGFs), IGF-binding proteins (IGFBPs), and IGFBP proteases are bound in high molecular mass complexes of > or =150 kDa. To investigate molecular interactions between proteins involved in IGF.IGFBP complexes, Cohn fraction IV of human plasma was subjected to IGF-II affinity chromatography followed by reversed-phase high pressure liquid chromatography and analysis of bound proteins. Mass spectrometry and Western blotting revealed the presence of IGFBP-3, IGFBP-5, transferrin, plasminogen, prekallikrein, antithrombin III, and the soluble IGF-II/mannose 6-phosphate receptor in the eluate. Furthermore, an IGFBP-3 protease cleaving also IGFBP-2 but not IGFBP-4 was co-purified from the IGF-II column. Inhibitor studies and IGFBP-3 zymography have demonstrated that the 92-kDa IGFBP-3 protease belongs to the class of serine-dependent proteases. IGF-II ligand blotting and surface plasmon resonance spectrometry have been used to identify plasminogen as a novel high affinity IGF-II-binding protein capable of binding to IGFBP-3 with 50-fold higher affinity than transferrin. In combination with transferrin, the overall binding constant of plasminogen/transferrin for IGF-II was reduced 7-fold. Size exclusion chromatography of the IGF-II matrix eluate revealed that transferrin, plasminogen, and the IGFBP-3 protease are present in different high molecular mass complexes of > or =440 kDa. The present data indicate that IGFs, low and high affinity IGFBPs, several IGFBP-associated proteins, and IGFBP proteases can interact, which may result in the formation of binary, ternary, and higher molecular weight complexes capable of modulating IGF binding properties and the stability of IGFBPs.  相似文献   

4.
In previous studies, we have shown that insulin-like growth factor II (IGF-II) stimulates basal as well as ACTH-induced cortisol secretion from bovine adrenocortical cells more potently than IGF-I [1]. The steroidogenic effect of both IGFs is mediated through interaction with the IGF-I receptor, and modified by locally produced IGF-binding proteins (IGFBPs). In the present study, we therefore characterized the IGFBPs secreted by bovine adrenocortical cells in primary culture, and investigated the effect of corticotropin (ACTH) and recombinant human IGF-I and IGF-II on the regulation of IGFBP synthesis. By Western ligand blotting, four different molecular forms of IGF-binding proteins were identified in conditioned medium of bovine adrenocortical cells with apparent molecular weights of 39-44 kDa, 34 kDA, 29-31 kDa, and 24 kDa. In accordance to their electrophoretic mobility, glycosylation status and binding affinity, these bands were identified by immunoprecipitation and immunoblotting as IGFBP-3, IGFBP-2, IGFBP-1, and deglycosilated IGFBP-4, respectively. Quantification of the specific bands by gamma counting revealed that, in unstimulated cells, IGFBP-3 accounts for approximately half of the detected IGFBP activity, followed by IGFBP-1, IGFBP-2 and IGFBP-4. ACTH treatment predominantly increased the abundance of IGFBP-1 and to a lesser extent IGFBP-3 in a time and dose-dependent fashion. In contrast, IGF-I or IGF-II (6.5 nM) preferentially induced the accumulation of IGFBP-3 (1.9-fold) and to a lesser extent of IGFBP-4, but did not show any effect on IGFBP-1. When ACTH and IGFs were combined, an additive stimulatory effect on the accumulation of IGFBP-3 and IGFBP-4 was observed. In contrast to their different steroidogenic potency, no significant difference in the stimulatory effect of IGF-I and IGF-II on IGFBP secretion was found. In conclusion, bovine adrenocortical cells synthesize IGFBP-1, IGFBP-2, IGFBP-3, and IGFBP-4, and their secretion is regulated differentially by ACTH and IGFs. These results, together with earlier findings, suggest that IGF-binding proteins play a modulatory role in the regulation of differentiated adrenocortical functions. Therefore, bovine adult adrenocortical cells provide a useful tissue culture model in which the complex interactions between two IGF-ligands, at least four IGF binding proteins and two IGF-receptors can be evaluated.  相似文献   

5.
In the present study we examined the production of insulin-like growth factor binding proteins (IGFBPs), in chromaffin cells, a model system for sympathetic neurons. Four IGFBPs of approximately 27, approximately 31, approximately 36 and a doublet of approximately 45-50 kDa, detected in Western ligand blots of conditioned medium, were identified in Western immunoblots as IGFBP-4, IGFBP-5, IGFBP-2 and IGFBP-3, respectively. In ligand blots IGFBP-3 and IGFBP-4 appeared as the most prominent species. IGF-I (1 nM) enhanced release of IGFBP-3 while dexamethasone (1 nM) diminished release of IGFBP-4. No significant proteolytic degradation of the IGFBPs was demonstrated. Cycloheximide completely attenuated release of the IGFBPs, indicating dependency on new synthesis of the proteins. These findings are consistent with autocrine modulation of the IGF system in bovine adrenomedullary chromaffin cells by IGFBPs. Furthermore, the specific stimulatory and inhibitory effects of IGF-I and dexamethasone, respectively, on release of the predominant species of IGFBP-3 and IGFBP-4, suggested that IGFBP production may be selectively modulated in a positive and negative manner.  相似文献   

6.
Using monolayer cultures of costal chondrocytes established from four week old Clun Forest lambs, we have demonstrated that, under serum free conditions the cells release three IGFBPs (32, 29 and 21 kDa) into the medium. The most abundant of these—the 32 kDa BP-was shown to be IGFBP-2 by Western blotting. Furthermore we demonstrate that the levels of IGFBP 2 in conditioned medium are acutely increased (6, 12 and 24 h time points) following treatment of cells with bovine GH (1–100 ng/ml).In a parallel set of experiments, using ovine fibroblasts (derived from dermis) we show that IGFBPs of Mr 32, 29 and 21 kDa are also secreted by this cell type. However the relative abundance of these BPs differed from that seen in the chondrocyte cultures, with the 21 kDa species now the most abundant. In addition, prolonged exposure of autoradiographs indicated that fibroblasts secreted a higher Mr IGFBP (most probably ovine BP-3) that was not detected in any of our chondrocyte cultures. Most significant however was the demonstration that bGH did not dramatically affect the levels of IGFBPs in fibroblast cell cultures. We conclude that GH stimulates BP-2 production from chondrocytes and this is a cell-type specific effect in as much as it is not replicated in cultures of dermal fibroblasts.Abbreviations BCIP 5-bromo-4-chloro-3-indolyl phosphate - CM conditioned medium - DMEM Dulbecco's Modified Eagles Medium - FCS foetal calf serum - IGF insulin-like growth factor - IGFBP insulin-like growth factor binding protein - HBSS Hanks' Balanced Salt Solution - GH growth hormone - NBT nitroblue tetrazolium - SFM serum free medium - TBS tris buffered saline  相似文献   

7.
Insulin-like growth factor-II (IGF-II) is an autocrine modulator of epiphyseal chondrogenesis in the fetus. The cellular availability of IGFs are influenced by the IGF-binding proteins (IGFBPs). In this study, we investigated the control of expression and release of IGFBPs from isolated epiphyseal growth plate chondrocytes from the ovine fetus by hormones and growth factors implicated in the chondrogenic process. Chondrocytes were isolated from the proliferative zone of the fetal ovine proximal tibial growth plate and maintained in monolayer culture at early passage number. Culture media conditioned by chondrocytes under basal conditions released IGFBPs of 24, 34, and 29 kDa, and a less abundant species of 39-43 kDa that were identified immunologically as IGFBP-4, IGFBP-2, IGFBP-5, and IGFBP-3, respectively. Messenger RNAs encoding each species were identified by Northern blot analysis within chondrocytes, as was mRNA encoding IGFBP-6. Exposure to IGF-I or IGF-II (13 or 26 nM) caused an increase in expression and release of IGFBP-3. The release of IGFBP-2 and IGFBP-5 were also potentiated without changes to steady state mRNA, and for IGFBP-5 this was due in part to a release from the cell membrane in the presence of IGF-II. Insulin (16.7 or 167 nM) selectively increased mRNA and the release of IGFBP-3, while cortisol (1 or 5 microM) inhibited both mRNA and release of IGFBP-2 and IGFBP-5. Transforming growth factor-beta1 (TGF-beta1) (0.1 or 0.2 nM) increased the expression and release of IGFBP-3, and caused an increase in mRNAs encoding IGFBP-2 and IGFBP-5. Neither growth hormone (GH), fibroblast growth factor-2, nor thyroxine (T(4)) had any effect on IGFBP expression or release. The results suggest that IGFBP expression and release within the developing growth plate can be modulated by IGF-II and other trophic factors, thus controlling IGF availability and action.  相似文献   

8.
Insulin-like growth factor-I (IGF-I) is an important stimulator of collagen biosynthesis and prolidase activity in connective tissue cells. The disturbances in skin collagen metabolism (reflected by significant decrease in skin collagen content, collagen biosynthesis and prolidase activity) in fasted rats were accompanied by decrease in serum IGF-I level. Fasted rat serum was found to contain about 58% of IGF-I (101.6 +/- 15.4 ng/ml) as compared to control rat serum (175.7 +/- 19.8 ng/ml), while the skin of control and fasted rats contained similar concentrations of IGF-I (about 77 ng/g tissue). The insulin-like growth factor binding proteins (IGFBPs) of sera and tissue extracts (known to regulate IGF-I activity) were analysed by ligand blotting. In the serum of control rats one IGFBP band of about 46 kDa (corresponding to the acid-dissociated IGFBP-3) was detected. In the serum of fasted rats the 46 kDa IGFBP was not observed, however, an other IGFBP of about 30 kDa (corresponding to low molecular weight IGFBPs, e.g. IGFBP-1 or IGFBP-2) was found. The intensity of IGF-I binding to the 30 kDa IGFBP was much higher than that of IGFBP-3, found in control rat serum. Control and fasted rat skin contained similar IGFBPs, however their IGF-I binding abilities were much lower, compared to their serum counterparts. It was found that 46 kDa and 30 kDa proteins, observed in ligand blotting represent IGFBP-3 and IGFBP-1 or IGFBP-2. respectively as demonstrated by western immunoblot analysis. An increase in IGF-binding to 30 kDa IGFBP-1 and/or IGFBP-2 (known as an inhibitors of IGF-dependent functions) in the skin of fasted rats may explain the mechanism of reduced collagen biosynthesis and deposition in tissues during fasting.  相似文献   

9.
We examined the relationship between signal transduction and the expression of insulin-like growth factor I (IGF-I), IGF-I receptor level, and IGF binding proteins (IGFBPs) in murine clonal osteoblastic MC3T3-E1 cells. 12–O-Tetradecanoylphorbol-13-acetate (TPA), an activator of protein kinase C, decreased the secretion of immunoreactive IGF-I into the medium, whereas dibutyryl cAMP (Bt2cAMP) augmented the secretion In contrast, TPA increased the level of type IIGF receptor on the cells. Furthermore, MC3T3-E1 cells produced and secreted at least three different IGFBPs with molecular masses of 24, 30, and 34 kDa, and the 24-kDa IGFBP was predominant under normal conditions. However, TPA specifically increased the secretion of the 34-kDa IGFBP. The N-terminal amino acid sequence of the purified 34-kDa IGFBP was nearly identical with that of rat IGFBP-2. Furthermore, the 34-kDa IGFBP was immunoreactive to anti-IGFBP-2 antiserum. The level of IGFBP-2 mRNA in the cells was increased by TPA, indicating that the increase in IGFBP-2 secretion results from the stimulation of IGFBP-2 production. In contrast, Bt2cAMP affected neither IGF-l receptor number nor the IGFBP secretion. These results indicate that the production of IGF-l and the expression of IGF-l receptors and IGFBP-2 are up-regulated by the activation of adenylate cyclase and protein kinase C, respectively, in osteoblastic MC3T3-E1 cells. © 1994 Willey-Liss, Inc.  相似文献   

10.
Glucocorticoids (GCs) modulate insulin-like growth factor action in cartilage through mechanisms that are complex and insufficiently defined, especially in the context of cranio-facial growth. Because the family of IGF-binding proteins (IGFBP-1 to -6) is important in the regulation of IGF availability and bioactivity, we examined the effect of GCs on chondrocyte differentiation in correlation with IGFBP production in cultured fetal rat chondrocytes isolated from nasal septum cartilage of fetal rat. Dexamethasone (DEX) effects were tested before and at the onset of extracellular matrix maturation. DEX induced a dose-dependent increase in the size of cartilage nodule formed, (45)Ca incorporation into extracellular matrix, alkaline phosphatase activity, and sulfatation of glycosaminoglycans, maximal effects being obtained with a 10-mM DEX concentration. The IGFBPs produced by cultured chondrocytes were characterized in culture medium which had been conditioned for 24 h under serum-free conditions by these cells. Western ligand blotting with a mixture of [(125)I]IGF-I and -II revealed bands of 20, 24, 29, a 31-32 kDa doublet and a 39-41 kDa triplet which were differently regulated by DEX. Immunoblotting showed that following DEX exposure, IGFBP-3 and -6 were up-regulated whereas IGFBP-2, -5, and the 24 kDa band were down-regulated. The effect of DEX on both differentiation and IGFBP production showed a same dependence, and developed when extracellular matrix maturation had been just induced. The results obtained in this chondrocyte culture system show that production of IGFBPs is modulated by DEX at physiological concentrations thus regulating IGF availability and action, a control which could promote the primordial role of the rat nasal septum in craniofacial growth.  相似文献   

11.
Insulin-like growth factor binding proteins (IGFBPs) are found both associated with cells and in extracellular fluids. Cell-associated IGFBPs increase [125I]-IGF binding to cell monolayers, whereas extracellular (soluble, released) IGFBPs decrease binding. In the current study, we show that either IGFBP-3 or IGFBP-5 are the major forms of IGFBP released from monolayers of human GM10 fibroblasts, T98G glioblastoma cells and forskolin-treated bovine MDBK cells. IGFBPs represent the most abundant [125I]-IGF-I binding site on GM10 and T98G cell monolayers, but 4-17% of the total cell-associated IGFBPs are released from the cell monolayer at 8°C during their quantification. Most of the IGFBPs (> 70%) are released from MDBK cells. Quantitative estimates of [125I]-IGF binding to the cell monolayers are altered because of the ability of the released IGFBPs to reduce the amount of radiolabeled ligand that is available to bind to the cell surface. Lanthanum (La3+) depresses IGFBP release from all three cell types (> 80% for GM10 and T98G cells and > 65% for MDBK cells). The effect was cation specific, noted with La3+ or Zn2+ but not with either Mn2+, Sr2+ or Se3+. The effect was also IGFBP specific; La3+ markedly depressed the release of IGFBP-3 and IGFBP-5, but had less of an effect on IGFBP-2 and IGFBP-4. Concomitant with a decrease in IGFBP-3 and IGFBP-5 release, La3+ caused an increase in [125I]-IGF-I binding to cell-associated IGFBPs and type I IGF receptors. The released soluble IGFBPs have a three- to 20-fold greater affinity (Ka) for [125I]-IGF-I compared to cell-associated IGFBPs. La3+ did not alter the affinity constants of cell-associated IGFBPs. In summary, we have identified a means to prevent loss of IGFBPs from cell monolayers during binding assays. This procedure will be useful in accurately quantifying the levels of IGFBPs on cell monolayers and in determining the role of cell-associated IGFBPs in controlling IGF activity. Retention of cell-associated low affinity IGFBPs may be important in controlling the size of the pericellular IGF pool and in regulating IGF-I access to the type I IGF receptor. J. Cell. Biochem. 66:256-267. © 1997 Wiley-Liss, Inc.  相似文献   

12.
13.
Proteolysis of insulin-like growth factor binding proteins (IGFBPs) is the major mechanism of releasing IGFs from their IGFBP complexes. Analysis of fibroblasts deficient for the lysosomal cysteine protease cathepsin L (CTSL) revealed an accumulation of IGFBP-3 in the medium which was due neither to alterations in IGFBP-3 mRNA expression nor to extracellular IGFBP-3 protease activity. Incubation of CTSL-deficient fibroblasts with radiolabeled IGFBP-3 followed by subcellular fractionation indicates that both intact and fragmented IGFBP-3 accumulate transiently in endosomal and lysosomal fractions of CTSL-deficient cells. This suggests the involvement of CTSL in the intracellular degradation of IGFBP-3 representing a new mechanism to regulate the extracellular concentration of IGFBP-3.  相似文献   

14.
15.
IGFs are required for normal prenatal and postnatal growth. Although actions of IGFs can be modulated by a family of IGF-binding proteins (IGFBPs) in vitro, these studies have identified a complicated pattern of stimulatory and inhibitory IGFBP effects, so that understanding relevant aspects of IGFBP action in vivo has been limited. Here we have produced a null mutation of one specific IGFBP, IGFBP-4, which is coexpressed with IGF-II early in development. Surprisingly, mutation of IGFBP-4, believed from in vitro studies to be exclusively inhibitory, leads to a prenatal growth deficit that is apparent from the time that the IGF-II growth deficit first arises, which strongly suggests that IGFBP-4 is required for optimal IGF-II-promoted growth during fetal development. Mice encoding a mutant IGFBP-4 protease (pregnancy-associated plasma protein-A), which facilitates IGF-II release from an inactive IGF-II/IGFBP-4 complex in vitro, are even smaller than IGFBP-4 mutant mice. However, the more modest IGFBP-4 growth deficit is completely restored in double IGFBP-4/pregnancy-associated plasma protein-A-deficient mice. Taken together these results indicate not only that IGFBP-4 functions as a local reservoir to optimize IGF-II actions needed for normal embryogenesis, but also establish that IGFBP-4 proteolysis is required to activate most, if not all, IGF-II mediated growth-promoting activity.  相似文献   

16.
The bioavailability and action of the insulin-like growth factors (IGFs) are determined by specific IGF-binding proteins (IGFBP) to which they are complexed. Complementary DNA clones have been isolated that encode three related IGFBPs: human IGFBP-1 (hIGFBP-1), human IGFBP-3 (hIGFBP-3), and rat IGFBP-2 (rIGFBP-2). IGFBP-1 and IGFBP-3 are regulated differently in human plasma, suggesting that they have different functions. In order to study the molecular basis of the regulation of the different IGFBPs, we have identified a panel of rat cell lines that express a single predominant binding protein and developed an assay strategy to distinguish the different binding proteins. Proteins in conditioned medium were examined by ligand blotting, and by immunoprecipitation and immunoblotting using antibodies to rIGFBP-2 and hIGFBP-1; RNAs were hybridized to cDNA probes for rIGFBP-2 and hIGFBP-1. 1) C6 glial cells and B104 neuroblastoma cells express an approximately 40 kilodalton (kDa) glycosylated binding protein that most likely represents rIGFBP-3, the binding subunit of the 150 kDa IGF: binding protein complex in adult rat serum. The C6 and B104 binding proteins do not react with antibodies to rIGFBP-2, and RNAs from C6 and B104 cells do not hybridize to cDNA probes for rIGFBP-2 or hIGFBP-1. 2) BRL-3A, Clone 9, and TRL 12-15 cell lines derived from normal rat liver express rIGFBP-2, a 30 kDa nonglycosylated IGF-binding protein that is recognized by antibodies to rIGFBP-2 but not by antibodies to hIGFBP-1. RNAs from these cells hybridize to a rIGFBP-2 cDNA probe, but not to a hIGFBP-1 probe. 3) H35 rat hepatoma cells express a 30 kDa nonglycosylated IGFBP that is presumptively identified as rIGFBP-1. It does not react with antibodies to rIGFBP-2, but is recognized by polyclonal and monoclonal antibodies to hIGFBP-1. RNA from H35 cells hybridizes to a hIGFBP-1 cDNA probe, but not to a rIGFBP-2 probe. Expression of rIGFBP-1 by the H35 cell line has enabled us to establish and validate specific assays for this protein that allow us to study its regulation in intact rats. Identification of a panel of rat cell lines expressing specific IGFBPs should be useful in elucidating the molecular mechanisms of IGFBP regulation.  相似文献   

17.
Insulin-like growth factor (IGF)-I and IGF-II are expressed at biologically effective levels by bone cells. Their stability and activity are modulated by coexpression of IGF binding proteins (IGFBPs). Secreted IGFBPs may partition to soluble, cell-associated, and matrix-bound compartments. Extracellular localization may sequester, store, or present IGFs to appropriate receptors. Of the six IGFBPs known, rat osteoblasts synthesize all but IGFBP-1. Of these, IGFBP-3, -4, and -5 mRNAs are induced by an increase in cAMP. Little is known about extracellular IGFBP localization in bone and nothing about IGFBP expression by nonosteoblastic periosteal bone cells. We compared basal IGFBP expression in periosteal and osteoblast bone cell cultures and assessed the effects of changes in cAMP-dependent protein kinase A or protein kinase C. Basal IGFBP gene expression differed principally in that more IGFBP-2 and -5 occurred in osteoblast cultures, and more IGFBP-3 and -6 occurred in periosteal cultures. An increase in cAMP enhanced IGFBP-3, -4, and -5 mRNA and accordingly increased soluble IGFBP-3, -4, and -5 and matrix-bound IGFBP-3 and -5 in both bone cell populations. In contrast, protein kinase C activators suppressed IGFBP-5 mRNA, and its basal protein levels remained very low. We also detected low Mr bands reactive with antisera to IGFBP-2, -3, and -5, suggesting proteolytic processing or degradation. Our studies reveal that various bone cell populations secrete and bind IGFBPs in selective ways. Importantly, inhibitory IGFBP-4 does not significantly accumulate in cell-associated compartments, even though its secretion is enhanced by cAMP. Because IGFBPs bind IGFs less tightly in cell-bound compartments, they may prolong anabolic effects by agents that increase bone cell cAMP. J. Cell. Biochem. 71:351–362, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

18.
Summary The current study was designed to examine the effects of muscle and fat stem cell coculture on the secretion of insulinlike growth factor (IGF)-I and -II and IGF binding proteins (IGFBP) by these cells. Two sheep satellite cell strains with negligible or high potential for differentiation (10A and 01, respectively) were placed in coculture with 3T3-L1 preadipocytes using a filter support to separate the two cell types. Media conditioned by the cells grown alone or in coculture were analyzed for IGFs by RIA or IGFBPs by ligand blotting. The numbers of satellite cells and preadipocytes declined throughout the 5-d culture period, although coculture slowed the 3T3-L1 decline but hastened the satellite cell decline. The satellite cell strains and 3T3-L1 cells secreted small amounts of IGF-I (≤2 ng/ml) and IGF-II (<10 ng/ml) over the 5-d culture period. Coculture did not increase the amount of IGF-I and -II in conditioned media. The lowly differentiating 10A cells secreted barely detectable amounts of the low molecular weight IGFBP-3 subunit (34 kDa), IGFBP-2 (28 kDa), and IGFBP-4 (18 kDa). Coculture of 10A and 3T3-L1 cells potentiated secretion of IGFBP-2 and-3. Strain 01, which readily differentiates, secreted high levels of both IGFBP-3 subunits (34 and 39 kDa) and IGFBP-2 (28 kDa), as well as significant amounts of the 18 kDa IGFBP-4. Coculture did not alter IGFBP secretion of 01 cells. This study showed that while IGF-I and -II levels in media conditioned by sheep satellite cell strains are low and relatively invariant, the intensity and complexity of IGFBP patterns increases with time in culture and with the potential for differentiation of the satellite cell strains. Coculture with preadipocytes appeared to potentiate IGFBP secretion while reducing satellite cell viability.  相似文献   

19.
Maternal malnutrition adversely affects fetal body and brain growth during late gestation. We utilized a fetal brain cell culture model to examine whether alternations in circulating factors may contribute to reduce brain growth during maternal starvation; we then used specific immunoassay and western blotting techniques, and purified peptides to investigate the potential role that altered levels of insulin-like growth factors (IGFs) and IGF binding proteins (IGFBPs) may play in impaired growth during maternal nutritional restriction.Fetal, body, liver, and brain weight were reduced after 72 hr maternal starvation, and plasma from starved fetuses were less potent than fed fetal plasma in stimulating brain cell growth. Circulating levels of IGF-I were reduced in starved compared to fed fetuses, while levels of IGF-II were similar in both groups. In contrast, [125I]-IGF-I binding assay demonstrated an increase in the availability of plasma IGFBPs following starvation. Western ligand blotting and densitometry indicated that levels of 32 Kd IGFBPs were 2-fold higher in starved compared to fed fetal plasma. Immunoblotting and immunoprecipitation with antiserum against rat IGFBP-1 confirmed that heightened levels of immunoreactive IGFBP-1 accounted for the increase in 32 Kd IGFBPs in starved plasma. Levels of 34 Kd BPs, representing IGFBP-2, were unaffected by starvation. Reconstitution experiments in cell culture showed that IGF-I promoted fetal brain cell growth, and that when they were supplemented with IGF-I, the growth promoting activity of starved fetal plasma was restored to fed levels. These changes were measured using MTT to assess mitochondrial reductase activity. Conversely, addition of physiological amounts of rat IGFBP-1 inhibited the effects of fed fetal plasma on brain cell growth, and bioactivity was reduced even further with higher concentrations of IGFBP-1. Based on these results, we conclude that reciprocal changes in circulating levels of IGFBP-1 (increased) and IGF-I (decreased) may combine to reduce the availability of IGF-I to this tissue and limit fetal brain cell growth when maternal nutrition is impaired.  相似文献   

20.
The insulin-like growth factors (IGFs) have been implicated in the growth regulation of human breast cancer. Since the IGFs are associated with specific binding proteins (IGFBPs) which may modulate receptor/ligand interactions, production of IGFBPs by breast cancer cells could alter their IGF-dependent growth. This study examined the expression of IGFBPs 4, 5, and 6 in eight breast cancer cell lines (BCCLs) using ribonuclease (RNase) protection assays. IGFBP-4 mRNA was detected in all BCCLs studied. IGFBP-5 expression was higher in estrogen receptor (ER) positive cells, while IGFBP-6 mRNA was detected in only two ER negative BCCLs. We also found that E2 treatment enhanced the expression of IGFBPs 2, 4, and 5 in T47-D cells. We next studied IGFBP mRNA expression in 40 primary breast tumors. All tumors expressed mRNA for IGFBPs 2–6 but none expressed IGFBP-1 message. IGFBP-3 expression was higher in ER negative tumors, while that of IGFBP-4 and -5 was higher in ER positive specimens. These differences were statistically significant (P < .05). Ligand blot analysis of tumor extracts confirmed the presence of IGFBPs in breast cancer tissues. Thus, differential IGFBP expression in ER positive and negative tumors suggests an important role for this protein in breast cancer biology.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号