共查询到20条相似文献,搜索用时 15 毫秒
1.
Bae GS Kim MS Jeong J Lee HY Park KC Koo BS Kim BJ Kim TH Lee SH Hwang SY Shin YK Song HJ Park SJ 《Biochemical and biophysical research communications》2011,(3):382-388
Piperine is a phenolic component of black pepper (Piper nigrum) and long pepper (Piper longum), fruits used in traditional Asian medicine. Our previous study showed that piperine inhibits lipopolysaccharide-induced inflammatory responses. In this study, we investigated whether piperine reduces the severity of cerulein-induced acute pancreatitis (AP). Administration of piperine reduced histologic damage and myeloperoxidase (MPO) activity in the pancreas and ameliorated many of the examined laboratory parameters, including the pancreatic weight (PW) to body weight (BW) ratio, as well as serum levels of amylase and lipase and trypsin activity. Furthermore, piperine pretreatment reduced the production of tumor necrosis factor (TNF)-α, interleukin (IL)-1β, and IL-6 during cerulein-induced AP. In accordance with in vivo results, piperine reduced cell death, amylase and lipase activity, and cytokine production in isolated cerulein-treated pancreatic acinar cells. In addition, piperine inhibited the activation of mitogen-activated protein kinases (MAPKs). These findings suggest that the anti-inflammatory effect of piperine in cerulein-induced AP is mediated by inhibiting the activation of MAPKs. Thus, piperine may have a protective effect against AP. 相似文献
2.
Background
The mitogen activated protein kinases (MAPK) family pathway is implicated in diverse cellular processes and pathways essential to most organisms. Its evolution is conserved throughout the eukaryotic kingdoms. However, the detailed evolutionary history of the vertebrate MAPK family is largely unclear.Methodology/Principal Findings
The MAPK family members were collected from literatures or by searching the genomes of several vertebrates and invertebrates with the known MAPK sequences as queries. We found that vertebrates had significantly more MAPK family members than invertebrates, and the vertebrate MAPK family originated from 3 progenitors, suggesting that a burst of gene duplication events had occurred after the divergence of vertebrates from invertebrates. Conservation of evolutionary synteny was observed in the vertebrate MAPK subfamilies 4, 6, 7, and 11 to 14. Based on synteny and phylogenetic relationships, MAPK12 appeared to have arisen from a tandem duplication of MAPK11 and the MAPK13-MAPK14 gene unit was from a segmental duplication of the MAPK11-MAPK12 gene unit. Adaptive evolution analyses reveal that purifying selection drove the evolution of MAPK family, implying strong functional constraints of MAPK genes. Intriguingly, however, intron losses were specifically observed in the MAPK4 and MAPK7 genes, but not in their flanking genes, during the evolution from teleosts to amphibians and mammals. The specific occurrence of intron losses in the MAPK4 and MAPK7 subfamilies might be associated with adaptive evolution of the vertebrates by enhancing the gene expression level of both MAPK genes.Conclusions/Significance
These results provide valuable insight into the evolutionary history of the vertebrate MAPK family. 相似文献3.
Cellier E Duchêne J Pécher C Alric C Bascands JL Schanstra JP Girolami JP 《Canadian journal of physiology and pharmacology》2002,80(4):341-345
Several experimental data document an activation of the mitogen-activated protein kinases Erk1 and Erk2 by bradykinin (BK), an agonist of the kinin B2 receptor (B2R). In contrast, other reports showed an inhibitory modulation of mitogenesis by BK. Therefore, we explored in the isolated glomeruli the effect of B2R activation on the signaling of insulin-like growth factor-1 (IGF-1), platelet-derived growth factor-BB (PDGF-BB), and high glucose (HG), three factors that are believed to be involved in the development of glomerulosclerosis via the phosphorylation of Erk1 and Erk2. We observed that the activation of B2R negatively modulates the phosphorylation of Erk1 and Erk2 induced by IGF-1, PDGF-BB, and HG in the glomerulus. These effects are consistent with the hypothesis of a protective role for BK in the kidney during development of glomerulosclerosis and renal pathologies associated with a hyperproliferative state. 相似文献
4.
5.
A Tingstr?m C Reuterdahl P Lindahl C H Heldin K Rubin 《Journal of immunology (Baltimore, Md. : 1950)》1992,148(2):546-554
Stimulation of human fibroblasts by platelet-derived growth factor (PDGF)-BB leads to a down-regulation of PDGF beta-receptors and a concomitant appearance of intracellular granular accumulations of receptors, as determined by stainings with the mAb PDGFR-B2. The granules contained both the ligand and PDGF beta-receptors, as revealed by double-immunofluorescence staining, and were formed in response to PDGF-BB but not in response to other cytokines tested. The formation of intracellular PDGF beta-receptor granules was dependent on PDGF-BB concentration and time of stimulation. The granular PDGF beta-receptor staining on cells treated with PDGF-BB for 1 h at 37 degrees C was used to investigate the effects of macrophage-derived cytokines on PDGF beta-receptor expression. The number of PDGF beta-receptor granules was found to be reduced in fibroblasts grown for 48 h in the presence of PDGF-BB, TNF-alpha, or IL-1; PDGF-AA under the same conditions had no effect. The reduction observed was paralleled by a decrease in cell surface expression of PDGF beta-receptors, measured as binding of 125I-PDGF-BB and of the PDGFR-B2 antibody. Furthermore, both TNF-alpha and IL-1 decreased the detergent-extractable pool of PDGF-beta receptors in the fibroblasts, as revealed by immunoblotting of detergent cell extracts. Finally, the decrease in PDGF beta-receptors after culturing of the cells in the presence of TNF-alpha and IL-1 was accompanied by a decreased incorporation of [3H]thymidine in response to PDGF-BB stimulation. In conclusion, our data suggest that certain macrophage-derived cytokines can modulate the expression of PDGF beta-receptors by cultured fibroblasts, which may contribute in part to their reduced responsiveness to PDGF. 相似文献
6.
Confluent AKR-2B fibroblasts rapidly disintegrate after serum deprivation.27 ATP or adenosine added immediately after serum removal afforded substantial protection against cell death even for a long period of 24 h. ED50 values were 14 and 110 microM for ATP and adenosine, respectively. In the presence of 5 microg/ml cycloheximide the protective effect of both substances was suppressed, indicating that protein synthesis is required. The protective effect of ATP was highly specific since among numerous tested derivatives only ATP-[gamma-S] exhibited a substantial protective effect.The ability of ATP and adenosine to modulate cell division was analyzed. Both substances did not exhibit any mitogenic effect. Adenosine completely blocked PDGF-BB induced cell division, whereas ATP had no effect. Unlike adenosine, ATP strongly stimulated Ca2+-release from intracellular stores. On the other hand, adenosine stimulated an increase in the intracellular concentration of cAMP from 0.4 - 1.5 microM, whereas ATP decreased the content below 0.1 microM. ATP stimulated the phosphorylation of MAP-kinase, RSK and p70S6-kinase; adenosine was inactive. After complexation of [Ca2+]i the protective effect of ATP was greatly lost while adenosine was still active. Surprisingly neither ATP nor adenosine caused an activation of PKC-isoforms. After incubation with pertussis toxin, the protection by ATP was reduced indicating an involvement of Gi-proteins in the signal transduction induced by ATP. Our results indicate that ATP as well as adenosine are potent inhibitors of cell death caused by serum deprivation and that this protective effect apparently occurs via distinct pathways. However, both pathways must converge at the point of caspase activation, since the stimulation of DEVDase- and VEIDase-activities, respectively, are suppressed by either ATP or adenosine. 相似文献
7.
8.
Malignant transformation of human cells by constitutive expression of platelet-derived growth factor-BB 总被引:3,自引:0,他引:3
Govindarajan B Shah A Cohen C Arnold RS Schechner J Chung J Mercurio AM Alani R Ryu B Fan CY Cuezva JM Martinez M Arbiser JL 《The Journal of biological chemistry》2005,280(14):13936-13943
Platelet-derived growth factors (PDGFs) comprise a family of growth factors strongly implicated in human oncogenesis. A number of human tumors overexpress PDGF family members or have translocations activating PDGF receptors. Whereas the epidemiologic evidence implicating PDGF in human tumors is strong, malignant transformation of human cells by overexpression of PDGF has not been demonstrated. We have previously developed a human cell line by the sequential introduction of large T cells and telomerase, and we have demonstrated that these cells express functionally active PDGF receptor (PDGFR) beta. In order to determine whether growth factor-mediated transformation of human cells could occur, these cells were transduced with a retrovirus encoding PDGF-BB. Constitutive expression of PDGF-BB led to malignant transformation in nude mice. This is the first demonstration of constitutive signaling causing malignant transformation of human cells. Some of the changes that occur because of constitutive growth factor expression can be reversed by the clinically approved tyrosine kinase inhibitor Glivec, whereas other changes are not reversible by tyrosine kinase inhibitors. Our model allows the assessment of epigenetic changes that occur during human carcinogenesis. In addition, these studies provide insight into the clinical failure of tyrosine kinase inhibitors as monotherapy for advanced malignancy. 相似文献
9.
Kumar D Menon V Ford WR Clanachan AS Jugdutt BI 《Molecular and cellular biochemistry》2004,258(1-2):211-218
Mitogen-activated protein kinases (MAPKs) have been implicated during ischemia-reperfusion (IR) and angiotensin II (AngII) type 2 receptor (AT2R) blockade has been shown to induce cardioprotection involving protein kinase Cepsilon (PKCepsilon) signaling after IR. We examined whether the 3 major MAPKs, p38, c-Jun NH2-terminal kinase (JNK-1 and JNK-2), and extracellular signal regulated kinases (ERK-1 and ERK-2) are activated after IR and whether treatment with the AT2R antagonist PD123,319 (PD) alters their expression. Isolated rat hearts were randomized to control (aerobic perfusion, 80 min), IR (no drug; 50 min of perfusion, 30 min global ischemia and 30 min reperfusion; working mode), and IR + PD (0.3 micromol/l) and left ventricular (LV) work was measured. We measured LV tissue content of p38, p-p38, p-JNK-1 (54 kDa), p-JNK-2 (46 kDa), p-ERK-1 (44 kDa), p-ERK-2 (42 kDa) and PKCepsilon proteins by immunoblotting and cGMP by enzyme immunoassay. IR resulted in significant LV dysfunction, increase in p-p38 and p-JNK-1/-2, no change in p-ERK-1/-2 or PKCepsilon, and decrease in cGMP. PD improved LV recovery after IR, induced a slight increase in p-p38 (p < 0.01 vs. control), normalized p-JNK-1, did not change p-ERK-1/-2, and increased PKCepsilon and cGMP. The overall results suggest that p38 and JNK might play a significant role in acute IR injury and the cardioprotective effect of AT2R blockade independent of ERK. The activation of p38 and JNKs during IR may be linked, in part, to AT2R stimulation. 相似文献
10.
D D Woo S P Fay R Griest W Coty I Goldfine C F Fox 《The Journal of biological chemistry》1986,261(1):460-467
Purified preparations of insulin, epidermal growth factor (EGF), and platelet-derived growth factor (PDGF) receptors were compared for their abilities to phosphorylate purified hen oviduct progesterone receptors. The specific activities of all three peptide hormone-induced receptor kinases were first defined using a synthetic tridecapeptide tyrosine protein kinase substrate. Next, equivalent ligand-activated activities of the three receptor kinases were tested for their abilities to phosphorylate hen oviduct progesterone receptor. Both the insulin and EGF receptors phosphorylated progesterone receptor at high affinity, exclusively at tyrosine residues and with maximal stoichiometries that were near unity. In contrast, the PDGF receptor did not recognize progesterone receptor as a substrate. Insulin decreased the Km of the insulin receptor for progesterone receptor subunits as substrates, but had no significant effect on Vmax values. On the other hand, EGF increased the Vmax of the EGF receptor for progesterone receptor subunits as substrates. Phosphorylation of progesterone receptor by the insulin and EGF receptor kinases differed in two additional ways. 1) EGF-activated receptor phosphorylated the 80- and 105-kDa progesterone receptor subunits to an equal extent, whereas insulin-activated receptor preferentially phosphorylated the 80-kDa subunit. 2) Phosphopeptide fingerprinting analyses revealed that while insulin and EGF receptors phosphorylated one identical major site on both progesterone receptor subunits, they differed in their specificities for other sites. 相似文献
11.
Dystrophin, a product of the Duchenne muscular dystrophy gene, is a cytoskeletal protein of skeletal and cardiac muscle fibers. Dystrophin-deficient muscle fibers are abnormally vulnerable to mechanical stress including physical exercise, which is a powerful stimulator of mitogen-activated protein kinases (MAPKs). To examine how treadmill exercise affects MAPK family members in dystrophin-deficient skeletal muscle, we subjected both mdx mice, an animal model for Duchenne muscular dystrophy, and C57BL/10 mice to treadmill exercise and examined the phosphorylated protein levels of extracellular-signal regulated kinase (ERK1/2), p38 MAPK and c-Jun N terminal kinase 1 and 2 (JNK1 and JNK2) in the gastrocnemius muscle. Phosphorylation of ERK1/2, p38 MAPK and JNK2, but not JNK1, increased more in the muscles of exercise trained mdx mice than in muscles of trained C57BL/10 or untrained mdx mice. These results show that physical exercise aberrantly up-regulates the phosphorylated form of ERK1/2, p38 MAPK and JNK2 in dystrophin-deficient skeletal muscle and that their up-regulation might play a role in the degeneration and regeneration process of dystrophic features. 相似文献
12.
U S Murthy M A Anzano J M Stadel R Greig 《Biochemical and biophysical research communications》1988,152(3):1228-1235
We have investigated the signal transduction mechanisms by which TGF-beta stimulates proliferation of AKR-2B murine fibroblasts. Enhanced incorporation of [3H]-thymidine into TGF-beta challenged cells was inhibited in a dose-dependent manner by pertussis toxin. EGF stimulated DNA synthesis was unaffected. Parallel biochemical analysis of pertussis toxin-challenged cells revealed that TGF-beta-induced inhibition of DNA synthesis was associated with ADP-ribosylation of a 41 kDa membrane component and a concomitant decrease in TGF-beta stimulated GTPase activity. These data, along with the observation that Gpp(NH)p decreases the affinity of the TGF-beta receptor for its ligand, strongly suggest that a GTP-binding protein is involved in TGF-beta-induced mitogenesis in AKR-2B cells. 相似文献
13.
The protein kinase C (PKC) family of serine/threonine protein kinases is involved in intracellular signals that regulate growth, differentiation, and apoptosis. AKR-2B cells express the PKC isoforms alpha, gamma, epsilon, lambda, mu, und zeta (J. Hoppe, R. Sch?fer, V. Hoppe, and A. Sachinidis, Cell Death Differ. 6, 546-556). Here we show that during serum starvation only PKC-epsilon was cleaved. An N-terminal fragment of 42 kDa remained associated with subcellular components, presumably the Golgi apparatus. The C-terminal part (catalytic domain) was further degraded and was no longer detectable in vivo. As published before, the activation of the DEVDase in AKR-2B cells is prevented by numerous agents like PDGF, TPA, and DEVD.cmk (R. Sch?fer, D. Karbach, and J. Hoppe, Exp. Cell Res. 240, 28--39). All these agents completely prevented PKC-epsilon cleavage, indicating a tight correlation between DEVDase activity and PKC-epsilon cleavage. By using recombinant caspase-3 or highly purified DEVDase from cytosolic extracts we localized by Edman degradation the cleavage site in recombinant PKC-epsilon to asp383 in the hinge region between regulatory and catalytic domains. The corresponding tetrapeptide sequences SSPD and SATD for human and mouse PKC-epsilon, respectively, are unusual for caspase-3. Expression of the catalytic domain or of the cleavage-resistant mutant D383A had no effect on cell death in AKR-2B cells. 相似文献
14.
Mitogen activated protein kinase cascades function in eukaryotic responses to the environment and stress. Trypanosomatid parasites possess protein kinases with sequences characteristic of kinases in such cascades. In this report we use gene knockouts to demonstrate that two mitogen activated kinase kinase genes, MKK1 (Tb927.3.4860) and MKK5 (Tb927.10.5270), are not essential in the pathogenic bloodstream stage of Trypanosoma brucei, either in vitro or in vivo. Bloodstream forms lacking MKK1 showed decreased growth at 39 °C as compared to the parental line. However, unlike its Leishmania orthologue, T. brucei MKK1 does not appear to play a significant role in flagellar biogenesis. 相似文献
15.
Phosphorylation sites for ribosomal S6 protein kinases in mouse 3T3 fibroblasts stimulated with platelet-derived growth factor 总被引:5,自引:0,他引:5
Platelet release products and purified platelet-derived growth factor stimulated the phosphorylation of ribosomal protein S6 in cultured mouse Balb/c 3T3 fibroblasts. The post-nuclear fraction of the stimulated cells was enriched in S6 kinase activity specific for sites resembling those phosphorylated within intact cells in response to PDGF as determined by tryptic peptide mapping. 3T3-S6 sites closely resembled those phosphorylated in S6 of rat hepatocytes stimulated with insulin and included sites for both cAMP-dependent and independent kinases. 相似文献
16.
《FEBS letters》1994,340(3):269-275
Treatment of Chinese hamster ovary (CHO) cells over-expressing the human insulin receptor (CHO-HIRc) with the insulin mimetic agent, vanadate, resulted in a dose- and time-dependent tyrosine phosphorylation of two proteins with apparent molecular sizes of 42 kDa (p42) and 44 kDa (p44). However, vanadate was unable to stimulate the tyrosyi phosphorylation of theβ-subunit of the insulin receptor. By using myelin basic protein (MBP) as the substrate to measure mitogen-activated protein (MAP) kinase activity in whole cell lysates, vanadate-stimulated tyrosyl phosphorylation of p42 and p44 was associated with a dose- and time-dependent activation of MAP kinase activity. Furthermore, affinity purification of cell lysates on anti-phosphotyrosine agarose column followed by immunoblotting with a specific antibody to MAP kinases demonstrated that vanadate treatment increased the tyrosyl phosphorylation of both p44mapk and p42mapk by several folds, as compared to controls, in concert with MAP kinase activation. In addition, retardation in gel mobility further confirmed that vanadate treatment increased the phosphorylation of p44mapk and p42mapk in CHO-HIRc. A similar effect of vanadate on MAP kinase tyrosyl phosphorylation and activation was also observed in CHO cells over-expressing a protein tyrosine kinase-deficient insulin receptor (CHO-1018). These results demonstrate that the protein tyrosine kinase activity of the insulin receptor may not be required in the signaling pathways leading to the vanadate-mediated tyrosyl phosphorylation and activation of MAP kinases. 相似文献
17.
18.
19.
The requirement for co-stimulatory molecules in T-cell stimulation by mitogens and superantigens in the absence of antigen-presenting cells (APC) was investigated. Phytohemagglutinin (PHA) induced interleukin (IL)-2 receptor (IL-2R) expression on purified T-cells, but proliferation occurred only when exogenous IL-2 was added. In contrast, the proliferative response to a pepsin-extracted type 5 M-protein from Streptococcus pyogenes (pep M5), a recently identified superantigen, required signals provided by phorbol 12-myristate 13-acetate (PMA), IL-1 and IL-6. pep M5 alone did not induce IL-2R expression; however, when combined with PMA, IL-1 and IL-6, IL-2R was expressed. Differences were also observed in the response of the leukemic T-cell line, Jurkat, to PHA and pep M5. Soluble PHA, but not pep M5, induced IL-2 production by these cells in the presence of PMA. Cross-linking by its specific antibody or adsorption of pep M5 to microtiter plates was required to activate Jurkat cells. Both PHA and pep M5 induced Ca2+ mobilization in Jurkat cells; however, only PHA induced a rise in intracellular Ca2+ in purified T-cells, whereas pep M5 was unable to induce this activity unless IL-1, IL-6 and PMA were added. Our data provide biochemical evidence that mitogenic and superantigenic stimulation of T-cells is different. 相似文献
20.