首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Freshly isolated rat hepatocytes were cultured at periportal- (13% O2) or perivenous-like (4% O2) oxygen tension and exposed to subtoxic exposure levels of cyproterone acetate (CPA: 10–330 μM), phenobarbital (PB: 0.75-6 mM), and dimethylsulfoxide (DMSO: 0.1–3.3%) from 24–72 h after seeding. Induced alterations in ploidy, in the number of S-phase cells, the degree of binuclearity, and cellular protein content were determined by twin parameter protein/DNA flow cytometry analysis of intact cells and isolated nuclei. CPA and PB increased whereas DMSO decreased dose dependently the total number of S-phase cells. The changes differed within individual ploidy classes and were modulated by the oxygen tension. CPA increased and DMSO decreased the number of S-phase cells preferentially among the diploid hepatocytes at periportal-like oxygen tension. In contrast, PB increased binuclearity and S-phase cells mainly among the tetraploid hepatocytes at perivenous-like oxygen tension. Cellular protein content increased dose dependently after exposure to the hepatomitogens (CPA, PB) and decreased after exposure to DMSO at both oxygen tensions. Comparison with in vitro data proves that chemicals which interact with cells from the progenitor liver compartment (CPA, DMSO) exert their mitogenic activity best in cultures at periportal-like oxygen tension preferentially in diploid hepatocytes, whereas chemicals which affect cells from the functional compartment show a higher activity at perivenous-like oxygen tension. Physiological oxygen tension seems to be an effective modulator of the proliferative response of cultured rat hepatocytes similar to that expected for periportally or perivenously derived hepatocytes. © 1993 Wiley-Liss, Inc.  相似文献   

2.
Primary hepatocytes were cultured at oxygen tensions similar to those reported to be present in periportal (13% O2) and pericentral (4% O2) regions of the liver lobules. Cellular DNA and protein content of individual hepatocytes were determined simultaneously by two-parameter (DNA/protein) flow cytometry after 1, 4, and 7 days in culture. pO2 tensions monitored on line in conventional plastic culture dishes revealed that the depletion of the pO2 in the culture medium depended on the number of hepatocytes plated. When cultured as monolayer after 4-7 days at periportal (13% O2) and more pronounced at pericentral oxygen concentration (4% O2), up to 90% of the hepatocytes showed degenerated nuclei but normal protein content. By using culture dishes with teflon membrane bottoms the oxygen tension in the culture medium was accurately maintained by the incubator atmosphere. At pericentral oxygen tension the fraction of 2N cells increased by about 20%. That of the 4N cell was not affected, and the contribution of 8N hepatocytes dropped to 70% compared to cultures at periportal oxygen tension. Concomitantly, in the 4% O2 hepatocyte cultures the protein content of the 2N and the 4N cells was better preserved and increased by up to 10%. These results suggest that in vitro at pericentral oxygen conditions (4% O2) ageing of hepatocytes is delayed, regenerating processes are better maintained, and, furthermore, freshly isolated 4N hepatocytes have the potency to adapt their metabolism in vitro to periportal as well as to perivenous oxygen tensions.  相似文献   

3.
We tested the effects of low 20% O2) and high (70% O2) oxygen tension on the morphological and biochemical integrity of human liver slices incubated for up to 72 h in supplemented Williams' E medium in a dynamic rotating culture system. High oxygen tension was more effective than low oxygen tension for preserving morphological integrity in long-term culture 48–72 h). After 72 h of culture with 70% O2, the lobular pattern was well preserved, and the survival of hepatocytes approximately 80%) and other cell types was good. Immunohistochemical studies showed good preservation of the region-specific expression of CYP2E1 and CYP3A4 isoenzymes for up to 72 h of incubation in 70% O2. As compared to 20% O2, the oxidized glutathione content and reactive oxygen species production were slightly increased in 70% O2, suggesting that minimal oxidative stress occurred with the high oxygen tension. In conclusion, despite slight oxidative stress associated with high oxygen tension, 70% O2 appeared more appropriate than 20% O2 for preserving the morphological and biochemical integrity of human liver slices cultured in a dynamic organ culture system for up to 72 h. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
The development of techniques allowing the culturing of primary mammalian hepatocytes has provided great insights into liver physiology. For most applications, it is desirable for hepatocytes in culture to mimic hepatocytes in vivo. We used stable isotope resolved metabolomics (SIRM) to assess glucose and glutamine utilization in primary rat and human hepatocytes maintained in standard culture media. Primary rat hepatocytes readily metabolized 13C-glucose and 13C-glutamine made evident by 13C incorporation into glycogen, glycolytic end products, and Krebs cycle intermediates and responded to insulin and glucagon appropriately. In contrast, no glucose or glutamine consumption was detected in primary human hepatocytes over 4 h of exposure to high media concentrations of 13C-glucose or 13C-glutamine even in the presence of insulin. Nonetheless, cultured human hepatocytes were metabolically active and viable, as demonstrated by incorporation of media 13C-octanoic acid into Krebs cycle intermediates and ketone bodies. The failure to utilize glucose was not due to inhibition of glucokinase (hexokinase IV) since the human hepatocytes could readily incorporate 13C-glucose into glucuronic acid, as demonstrated by the production of 13C-glucuronide conjugates after addition of acetaminophen to the media. These novel observations support inhibition of phosphofructokinase-1, the other regulatory enzyme in glycolysis. Parts of this phenotype could be reproduced in the rat hepatocytes by replacing insulin with glucagon to the media. We conclude that under standard culture conditions human hepatocytes are in an extreme starved state. We believe this may result from prolonged fasting in the human liver donors combined with exposure to stress hormones such as, epinephrine, glucagon, and cortisol. Efforts should now be exerted to find culture conditions that will reverse this state to achieve more metabolically relevant cultures of human hepatocytes.  相似文献   

5.
Summary Cell viability, cytochrome P-450 content, cell respiration, and lipid peroxidation were all investigated as a function of oxygen tension in adult rat hepatocytes in short-term culture (less than 9 h). The various oxygen tensions used in this study were obtained by equilibrating culture medium with air, air + nitrogen, or air + oxygen. Cell viability, as assessed by trypan blue exclusion, was significantly greater at all time points tested when hepatocytes were cultured in Ham's F12 medium containing 132 μM O2, as compared to medium equilibrated with air (220 μM O2) or air + oxygen (298 μM O2). Cells cultured in 220 μM O2 (air) also exhibited a gradual loss of cytochrome P-450, so that by 9 h of incubation less than 60% of the active material remained. This loss of P-450 was minimized when cells were cultured in 163 μM O2 and abolished when cells were cultured in 132 μM O2. The 132 μM O2 exposure conditions also maintained cell respiration at the 1 h incubation values, whereas there was a continuous loss in cell respiration over time when the cells were cultured in either 220 μM O2 (air) or 298 μM O2 (air:O2). These cytotoxicity findings may be related to oxidative cell damage inasmuch as it was additionally demonstrated that lipid peroxidation (as measured by malondieldehyde equivalents) was consistantly lower in hepatocytes cultured in air:N2 as compared to air or air:O2. These results suggest that hepatocyte culture in low oxygen tension improves not only cell viability but also maintains other functional characteristics of the cell. This work was supported by a Biomedical Research Support Grant S-S07-RR 05448 awarded to the University of Minnesota School of Public Health by the Biomedical Research Grant Program, Division of Research and Resources, National Institutes of Health, Bethesda, MD.  相似文献   

6.
Glucose homeostasis in mammals is dependent on the opposing actions of insulin and glucagon. The Golgi N-acetylglucosaminyltransferases encoded by Mgat1, Mgat2, Mgat4a/b/c, and Mgat5 modify the N-glycans on receptors and solute transporter, possibly adapting activities in response to the metabolic environment. Herein we report that Mgat5−/− mice display diminished glycemic response to exogenous glucagon, together with increased insulin sensitivity. Glucagon receptor signaling and gluconeogenesis in Mgat5−/− cultured hepatocytes was impaired. In HEK293 cells, signaling by ectopically expressed glucagon receptor was increased by Mgat5 expression and GlcNAc supplementation to UDP-GlcNAc, the donor substrate shared by Mgat branching enzymes. The mobility of glucagon receptor in primary hepatocytes was reduced by galectin-9 binding, and the strength of the interaction was dependent on Mgat5 and UDP-GlcNAc levels. Finally, oral GlcNAc supplementation rescued the glucagon response in Mgat5−/− hepatocytes and mice, as well as glycolytic metabolites and UDP-GlcNAc levels in liver. Our results reveal that the hexosamine biosynthesis pathway and GlcNAc salvage contribute to glucose homeostasis through N-glycan branching on glucagon receptor.  相似文献   

7.
This study compares the effects of reduced (5%) or normal (5% CO2 in air; 20% O2) oxygen tension on the in vitro maturation of early preantral ovarian follicles isolated from 14-day-old (C57BI/6J × CBAca) F1 mice. Intact follicles (100–130 μm) are singly cultured in 20 μl droplets α-MEM enriched with FCS and rFSH under mineral oil at 37°C and 100% humidity. In this culture system the follicles are allowed to attach to the bottom of the petri dishes. Follicle in vitro growth, hormone secretory capacity, and in vitro ovulation were studied under the two oxygen tensions. Spontaneous oocyte release from the follicle during a 16-day culture period was observed significantly more under 5% oxygen. Antrallike cavity formation was not observed under 5% O2. The follicles in the 5% O2 cultures reaching day 16 were stripped of their granulosa cell layers, and 83% of the retrieved oocytes had already undergone spontaneous germinal-vesicle breakdown (GVBD). Under 20% O2, the GV stage was maintained until day 16 in 77% of the oocytes. Under 5% O2, intact follicle survival up to day 12 was significantly reduced as compared to the 5% CO2 in air conditioning. The hCG stimulus on day 12 induced mucification in a significantly larger proportion of follicles cultured under 20% O2 (79% vs. 47%). Germinal-vesicle breakdown (20% O2:95%, 5%, O2:42%) and first polar body extrusion (20% O2:40%, 5% O2:15%) were significantly more prevalent under normal oxygen tension. A reduced secretory capacity of E2 and inhibin was demonstrated for follicles cultured under 5% O2. The histological study of serially sectioned follicles showed increased areas of centrally located granulosa cell necrosis and pyknosis in the cumulus cells. Gassing follicle cultures using 5% CO2 in air provided appropriate conditions for normal growth, enhanced whole-follicle survival, differentiation, and hormone production, and improved the yield of meiotic competent oocytes. © 1996 Wiley-Liss, Inc.  相似文献   

8.
Isolated hepatocytes converted exogenous [α-32P]ATP to cyclic [32P]AMP at high rates. This system was used for kinetic studies of the effects of glucagon, fluoride, free magnesium and free ATP4? on adenylate cyclase. In the absence or presence of glucagon, free Mg2+ activated adenylate cyclase by decreasing the Km for MgATP2? without changing V. Free ATP4? was not a potent inhibitor of adenylate cyclase and the only effect of glucagon was to increase V.Fluoride also increased the V of adenylate cyclase, but, in contrast to the results obtained with glucagon, the effect increased as the concentration of free Mg2+ increased. One explanation of the effect of fluoride, consistent with the idea that free Mg2+ activates adenylate cyclase and free ATP is not an inhibitor, is that fluoride increases the affinity of the enzyme for Mg2+. Weak inhibition of adenylate cyclase by ATP4? in the presence of fluoride cannot be excluded.  相似文献   

9.
Oxygen supply is a critical issue in the optimization of in vitro hepatocyte microenvironments. Although several strategies have been developed to balance complex oxygen requirements, these techniques are not able to accurately meet the cellular oxygen demand. Indeed, neither the actual oxygen concentration encountered by cells nor the cellular oxygen consumption rates (OCR) was assessed. The aim of this study is to define appropriate oxygen conditions at the cell level that could accurately match the OCR and allow hepatocytes to maintain liver specific functions in a normoxic environment. Matrigel overlaid rat hepatocytes were cultured on the polydimethylsiloxane (PDMS) membranes under either atmospheric oxygen concentration [20%‐O2 (+)] or physiological oxygen concentrations [10%‐O2 (+), 5%‐O2 (+)], respectively, to investigate the effects of various oxygen concentrations on the efficient functioning of hepatocytes. In parallel, the gas‐impermeable cultures (polystyrene) with PDMS membrane inserts were used as the control groups [PS‐O2 (?)]. The results indicated that the hepatocytes under 10%‐O2 (+) exhibited improved survival and maintenance of metabolic activities and functional polarization. The dramatic elevation of cellular OCR up to the in vivo liver rate proposed a normoxic environment for hepatocytes, especially when comparing with PS‐O2 (?) cultures, in which the cells generally tolerated hypoxia. Additionally, the expression levels of 84 drug‐metabolism genes were the closest to physiological levels. In conclusion, this study clearly shows the benefit of long‐term culture of hepatocytes at physiological oxygen concentration, and indicates on an oxygen‐permeable membrane system to provide a simple method for in vitro studies. © 2014 American Institute of Chemical Engineers Biotechnol. Prog., 30:1401–1410, 2014  相似文献   

10.
Summary The effects of glucagon and dexamethasone on the activities of the enzymes involved in cyclic adenosine 3′∶5′-monophosphate (cyclic AMP) metabolism in primary monolayer cell cultures of adult rat hepatocytes were examined. Short-term experiments indicated that the magnitude of the cultured cells' response to glucagon, as measured by production of cyclic AMP, was essentially the same as that for freshly isolated hepatocytes. However, the time course of this response was markedly different. Although the activity of adenylate cyclase is maintained throughout the culture period at a level similar to that of the freshly isolated hepatocytes, the activity of both low and highK m forms of phosphodiesterase decreases rapidly with length of time in vitro. This is reflected by an increase in cyclic AMP produced in response to glucagon and theophylline by cells of different ages. Dexamethasone caused an increased loss of phosphodiesterase activity, as well as increased cyclic AMP accumulation in the presence or absence of theophylline. Various agents failed to restore the lost phosphodiesterase activity. These results may indicate that phosphodiesterase activity is more sensitive to the inevitable inadequacies of the in vitro environment of cultured hepatocytes than adenylate cyclase. It was also found that a modification of the method of Seglen (1) for the preparation of isolated hepatocytes yielded cells that had less phosphodiesterase activity than those prepared by the method of Berry and Friend (2). This work was supported by grants from the Medical Research Council of New Zealand and the Medical Research Distribution Committe.  相似文献   

11.
Prostaglandins E1 or E2 (PGE1, PGE2)1 stimulated adenylate cyclase(s) from particulate fractions of whole liver homogenates 5- to 6-fold, but caused only slight (1.5- to 2-fold) stimulation of the enzyme from homogeneous hepatocytes. In contrast, glucagon stimulated enzyme from hepatocytes 12- to 15-fold and enzyme from whole liver 8- to 10-fold. Accordingly, most of the total prostaglandin-sensitive adenylate cyclase in cell suspensions was recovered in fractions containing non-parenchymal cells, and most of the total glucagon-sensitive activity was recovered with hepatocytes. PGE1 did not change adenosine-3′,5′-monophosphate (cyclic AMP) concentrations, or alter cyclic AMP increases caused by glucagon in hepatocytes. Glucagon consistently increased hepatocyte cyclic AMP concentrations and stimulated glycogenolysis by 35 to 40%. PGE1 did not affect basal or glucagon-stimulated glycogenolysis in the intact cells.  相似文献   

12.
Primary cultures of adult rat hepatocytes were kept for 46 h with either insulin ('insulin cells') or glucagon ('glucagon cells') as the dominant hormone under different oxygen concentrations with 13% (v/v) O2 mimicking arterial and 4% hepatovenous levels. Thereafter metabolic rates were measured for a 2 h period under the same ('overall long-term O2 effects') or a different ('short-term O2 effects') oxygen concentration. From the differences of the two effects the 'intrinsic long-term O2 effects' were derived. Glycolysis, as measured in 'insulin-cells', was stimulated by low O2 levels. It was about threefold faster in cells cultured and tested under 4% O2 as compared to cells cultured and tested under 13% O2, indicating the overall long-term effect. Glycolysis was about twofold faster in cells cultured and tested under 4% O2 as compared to cells cultured under 4% O2 but tested under 13% O2, demonstrating the short-term effect. Glycolysis was about 1.5-fold faster in cells cultured and tested under 4% O2 as compared to cells cultured under 13% O2 but tested under 4% O2, showing the intrinsic long-term effect. This difference was roughly parallel to the difference in levels of glucokinase and pyruvate kinase. Gluconeogenesis, as measured in 'glucagon cells', was stimulated by high O2 levels. Similar to glycolysis overall long-term, short-term and intrinsic long-term effects could be distinguished. The intrinsic long-term effects determined under 13% O2 corresponded to a 1.5-fold stimulation and paralleled the difference in phosphoenolpyruvate carboxykinase levels. The present results show that physiological oxygen concentrations also modulate hepatic carbohydrate metabolism by long-term effects and that the O2 gradient over the liver parenchyma thus contributes to the metabolic differences between periportal and perivenous hepatocytes in vivo.  相似文献   

13.
Tissues and organs in vivo are under a hypoxic condition; that is, the oxygen tension is typically much lower than in ambient air. However, the effects of such a hypoxic condition on tendon stem cells, a recently identified tendon cell, remain incompletely defined. In cell culture experiments, we subjected human tendon stem cells (hTSCs) to a hypoxic condition with 5% O2, while subjecting control cells to a normaxic condition with 20% O2. We found that hTSCs at 5% O2 had significantly greater cell proliferation than those at 20% O2. Moreover, the expression of two stem cell marker genes, Nanog and Oct-4, was upregulated in the cells cultured in 5% O2. Finally, in cultures under 5% O2, more hTSCs expressed the stem cell markers nucleostemin, Oct-4, Nanog and SSEA-4. In an in vivo experiment, we found that when both cell groups were implanted with tendon-derived matrix, more tendon-like structures formed in the 5% O2 treated hTSCs than in 20% O2 treated hTSCs. Additionally, when both cell groups were implanted with Matrigel, the 5% O2 treated hTSCs showed more extensive formation of fatty, cartilage-like and bone-like tissues than the 20% O2 treated cells. Together, the findings of this study show that oxygen tension is a niche factor that regulates the stemness of hTSCs, and that less oxygen is better for maintaining hTSCs in culture and expanding them for cell therapy of tendon injuries.  相似文献   

14.

Objectives

The mechanisms by which low oxygen availability are associated with the development of insulin resistance remain obscure. We thus investigated the relationship between such gluco-insular derangements in response to sustained (hypobaric) hypoxemia, and changes in biomarkers of oxidative stress, inflammation and counter-regulatory hormone responses.

Methods

After baseline testing in London (75 m), 24 subjects ascended from Kathmandu (1,300 m) to Everest Base Camp (EBC;5,300 m) over 13 days. Of these, 14 ascended higher, with 8 reaching the summit (8,848 m). Assessments were conducted at baseline, during ascent to EBC, and 1, 6 and 8 week(s) thereafter. Changes in body weight and indices of gluco-insular control were measured (glucose, insulin, C-Peptide, homeostasis model assessment of insulin resistance [HOMA-IR]) along with biomarkers of oxidative stress (4-hydroxy-2-nonenal-HNE), inflammation (Interleukin-6 [IL-6]) and counter-regulatory hormones (glucagon, adrenalin, noradrenalin). In addition, peripheral oxygen saturation (SpO2) and venous blood lactate concentrations were determined.

Results

SpO2 fell significantly from 98.0% at sea level to 82.0% on arrival at 5,300 m. Whilst glucose levels remained stable, insulin and C-Peptide concentrations increased by >200% during the last 2 weeks. Increases in fasting insulin, HOMA-IR and glucagon correlated with increases in markers of oxidative stress (4-HNE) and inflammation (IL-6). Lactate levels progressively increased during ascent and remained significantly elevated until week 8. Subjects lost on average 7.3 kg in body weight.

Conclusions

Sustained hypoxemia is associated with insulin resistance, whose magnitude correlates with the degree of oxidative stress and inflammation. The role of 4-HNE and IL-6 as key players in modifying the association between sustained hypoxia and insulin resistance merits further investigation.  相似文献   

15.
Long-term (24–48 h) and short-term (10–30 min) regulation by hormones of hepatic pyruvate kinase activity was investigated in adult rat hepatocytes cultured under serum-free conditions. In the absence of hormones, pyruvate kinase total activity decreased to 83%, 67% and 39% of the initial level at 24, 48 and 72 h of culture. Insulin (100 nM) maintained total activity significantly above control levels throughout this period. In contrast, glucagon (100 nM) and dexamethasone (100 nM) accelerated the gradual decrease within 24 h (glucagon) or 48 h (dexamethasone) of culture. In these long-term experiments, activity at non-saturating concentrations of phosphoenolpyruvate was decreased by glucagon and dexamethasone but not directly modulated by insulin. However, insulin increased the cellular content of the pyruvate kinase activator fructose-1,6-diphosphate. In short-term experiments on cells cultured under serum- and hormone-free conditions for 48 h, both glucagon and dexamethasone independently caused a rapid, dose-dependent increase of the K0.5 for phosphoenolpyruvate within 10 min, while Vmax was not affected. Insulin inhibited this action of glucagon and dexamethasone and, in their absence, significantly increased substrate affinity for phosphoenolpyruvate within 30 min. Cellular fructose-1,6-diphosphate contents remained unchanged under these conditions. The data identify glucocorticoids and insulin - in addition to glucagon - as short-term regulators of the catalytic properties of pyruvate kinase. All three hormones are effective in the long-term control of total enzyme activity.  相似文献   

16.
Rat liver hepatocytes were isolated by collagenase in vitro perfusion technique and the effect of epinephrine, glucagon and insulin on glycogenolysis was studied. Both glucagon and epinephrine at the concentration of 10?6M, stimulated gluconeogenesis by 80–100%. Addition of insulin (33 μUnits/ml) completely abolished the epinephrine-stimulated glycogenolysis whereas only 50% inhibition was observed with insulin in glucagon stimulated glycogenolysis. This stimulation was observed within 2–5 min after the addition of the hormones. These results suggest that hepatocytes isolated with low concentrations of collagenase retain glucagon, epinephrine and insulin receptor sites.  相似文献   

17.
The effects of pancreatic hormones and cyclic AMP on the induction of ketogenesis and long-chain fatty acid oxidation were studied in primary cultures of hepatocytes from fetal and newborn rabbits. Hepatocytes were cultivated during 4 days in the presence of glucagon (10(-6) M), forskolin (2 x 10(-5) M), dibutyryl cyclic AMP (10(-4) M), 8-bromo cyclic AMP (10(-4) M) or insulin (10(-7) M). Ketogenesis and fatty acid metabolism were measured using [1-14C]oleate (0.5 mM). In hepatocytes from fetuses at term, the rate of ketogenesis remained very low during the 4 days of culture. In hepatocytes from 24-h-old newborn, the rate of ketogenesis was high during the first 48 h of culture and then rapidly decreased to reach a low value similar to that measured in cultured hepatocytes from term fetuses. A 48 h exposure to glucagon, forskolin or cyclic AMP derivatives is necessary to induce ketone body production in cultured fetal hepatocytes at a rate similar to that found in cultured hepatocytes from newborn rabbits. In fetal liver cells, the induction of ketogenesis by glucagon or cyclic AMP results from changes in the partitioning of long-chain fatty acid from esterification towards oxidation. Indeed, glucagon, forskolin and cyclic AMP enhance oleate oxidation (basal, 12.7 +/- 1.6; glucagon, 50.0 +/- 5.5; forskolin, 70.6 +/- 5.4; cyclic AMP, 77.5 +/- 3.4% of oleate metabolized) at the expense of oleate esterification. In cultured fetal hepatocytes, the rate of fatty acid oxidation in the presence of cyclic AMP is similar to the rate of oleate oxidation present at the time of plating (85.1 +/- 2.6% of oleate metabolized) in newborn rabbit hepatocytes. In hepatocytes from term fetuses, the presence of insulin antagonizes in a dose-dependent fashion the glucagon-induced oleate oxidation. Neither glucagon nor cyclic AMP affect the activity of carnitine palmitoyltransferase I (CPT I). The malonyl-CoA concentration inducing 50% inhibition of CPT I (IC50) is 14-fold higher in mitochondria isolated from cultured newborn hepatocytes (0.95 microM) compared with fetal hepatocytes (0.07 microM), indicating that the sensitivity of CPT I decreases markedly in the first 24 h after birth. The addition of glucagon or cyclic AMP into cultured fetal hepatocytes decreased by 80% and 90% respectively the sensitivity of CPT I to malonyl-CoA inhibition. In the presence of cyclic AMP, the sensitivity of CPT I to malonyl-CoA inhibition in cultured fetal hepatocytes is very similar to that measured in cultured hepatocytes from 24-h-old newborns.  相似文献   

18.
The development and optimization of preantral follicle culture methods are crucial in fertility preservation strategies. As preantral follicle dynamics are usually assessed by various invasive techniques, the need for alternative noninvasive evaluation tools exists. Recently, neutral red (NR) was put forward to visualize preantral follicles in situ within ovarian cortical fragments. However, intense light exposure of NR-stained tissues can lead to cell death because of increased reactive oxygen species production, which is also associated with elevated oxygen tension. Therefore, we hypothesize that after repeated NR staining, follicle viability and dynamics can be altered by changes in oxygen tension. In the present study, we aim (1) to determine whether NR can be used to repeatedly assess follicular growth, activation, and viability and (2) to assess the effect of a low (5% O2) or high (20% O2) oxygen tension on the viability, growth, and stage transition of preantral follicles cultured in vitro by means of repeated NR staining. Cortical slices (n = 132; six replicates) from bovine ovaries were incubated for 3 hours at 37 °C in a Leibovitz medium with 50 μg/mL NR. NR-stained follicles were evaluated in situ for follicle diameter and morphology. Next, cortical fragments were individually cultured in McCoy's 5A medium for 6 days at 37 °C, 5% CO2, and 5% or 20% O2. On Days 4 and 6, the fragments were restained by adding NR to the McCoy's medium and follicles were reassessed. In both low and high oxygen tension treatment groups, approximately 70% of the initial follicles survived a 6-day in vitro culture, but no significant difference in follicle survival on Day 4 or 6 could be observed compared with Day 0 (P > 0.05). A significant decrease in the number of primordial and increase in primary and secondary follicles was observed within 4 days of culture (P < 0.001). In addition, a significant increase of the mean follicle diameter in NR-stained follicles was observed (P < 0.001), resulting in an average growth of 11.82 ± 0.81 μm (5% O2) and 11.78 ± 1.06 μm (20% O2) on Day 4 and 20.94 ± 1.24 μm (5% O2) and 19.12 ± 1.36 μm (20% O2) on Day 6 compared with Day 0. No significant differences in follicle growth rate or stage transition could be observed between 5% and 20% O2 (P > 0.05). In conclusion, after repeated NR staining, we could not find a difference between low and high oxygen tension in terms of follicle viability, stage transition, or growth. Therefore, under our culture conditions follicle dynamics are not determined by the oxygen tension in combination with quality assessment protocols using repeated NR staining.  相似文献   

19.
Chicken hepatocytes synthesize glucose and fatty acids at rates which are faster than rat hepatocytes. The former also consume exogenous lactate and pyruvate at a much faster rate and, in contrast to rat hepatocytes, do not accumulate large quantities of lactate and pyruvate by aerobic glycolysis. α-Cyano-4-hydroxycinnamate, an inhibitor of pyruvate transport, causes lactate and pyruvate accumulation by chicken hepatocytes. Glucagon and N6,O2′-dibutyryl adenosine 3′,5′-monophosphate (dibutyryl cyclic AMP) convert pyruvate kinase (EC 2.7.1.40) of rat hepatocytes to a less active form. This effect explains, in part, inhibition of glycolysis, inhibition of lipogenesis, stimulation of gluconeogenesis, and inhibition of the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment by these compounds. In contrast, pyruvate kinase of chicken hepatocytes is refractory to inhibition by glucagon or dibutyryl cyclic AMP. Rat liver is known to have predominantly the type L isozyme of pyruvate kinase and chicken liver predominantly the type K. Thus, only the type L isozyme appears subject to interconversion between active and inactive forms by a cyclic AMP-dependent, phosphorylation-dephos-phorylation mechanism. This explains why the transfer of reducing equivalents from the mitochondrial compartment to the cytoplasmic compartment of chicken hepatocytes is insensitive to cyclic AMP. However, glucagon and dibutyryl cyclic AMP inhibit net glucose utilization, inhibit fatty acid synthesis, inhibit lactate and pyruvate accumulation in the presence of α-cyano-4-hydroxycinnamate, and stimulate gluconeogenesis from lactate and dihydroxyacetone by chicken hepatocytes. Thus, a site of action of cyclic AMP distinct from pyruvate kinase must exist in the glycolytic-gluconeogenic pathway of chicken liver.  相似文献   

20.
The activity of pyruvate kinase from the isolated rat hepatocyte was studied under conditions which allow investigation into the hormonal regulation of the enzyme. Incubating hepatocytes from fed or fasted rats with 1 μm glucagon gives approximately 60% inhibition of the enzyme activity determined at 1.6 mm P-enolpyruvate. A good correlation between the regulation of pyruvate kinase and lactate formation from 10 mm dihydroxyacetone is observed in hepatocytes from fasted rats. When hepatocytes are incubated in a Krebs-Ringer phosphate buffer, the inhibition of the pyruvate kinase activity by 1 μm glucagon is not accompanied by a marked inhibition of lactate production from fructose. Half-maximal regulation is observed at 0.26 ± 0.02 nm glucagon and 0.37 ± 0.05 nm glucagon for the enzyme and lactate formation from dihydroxyacetone respectively. Incubating hepatocytes with 10 mm l-alanine enhances inhibition of pyruvate kinase by physiological concentrations of glucagon, lowering the half-maximally effective concentration of glucagon from 0.3 nm to approximately 0.1 nm. A small but consistent inhibition of pyruvate kinase by 10 μm epinephrine is also observed and this inhibition is enhanced by 0.5 mm theophylline and by 10 mm l-alanine. The inhibition of pyruvate kinase by epinephrine both in the absence and presence of theophylline is blocked by the α-adrenergic antagonist phenoxybenzamine. The β-adrenergic blocker propranolol has no influence on the inhibition of the enzyme by epinephrine. Adenosine 3′:5′-monophosphate, N6O2-dibutyryl adenosine 3′:5′-monophosphate, and guanosine 3′:5′-monophosphate also inhibit glycolysis from dihydroxyacetone and modulate pyruvate kinase activity in hepatocytes from fasted rats. Oleate, ethanol, and 3-hydroxybutyrate inhibit dihydroxyacetone glycolysis, but they do not influence the activity of pyruvate kinase. The divalent metal ionophore A23187 slightly stimulates lactate synthesis from dihydroxyacetone, but it has no influence on pyruvate kinase activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号