首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Some females of Orchestia gammarellus generate offspring which include too many females as well as intersexual males. This thelygeny related to intersexuality is temperature sensitive; it disappears above 22°C. It is induced by a feminising parasite described in another work. We have studied how the temperature acts on pubescent thelygenic females having either a known or unknown genotype (♀ 2AYY). The increase of female breeding temperature up to 25 or 30°C has two kinds of consequences for their offspring: (i) an increase in the male ratio, that is to say the expression of the normal genetic sex in potential neo females, and (ii) a correlative decrease in the proportion of intersexual males. The strength of these effects varies according to several parameters: temperature, exposure duration and genotype of tested females.  相似文献   

2.
The effect of temperature on the development of immature stages of the predator Cheyletus malaccensis Oudemans, produced by either fertilized or virgin females, was studied at 17.5, 20, 25, 30, 32.5, and 35°C, 80 ± 5% relative humidity, in complete darkness, and fed Tyrophagus putrescentiae (Schrank). The population maintained at 15°C failed to reproduce. The thermal data obtained were used for the estimation of the thermal requirements (developmental thresholds, thermal constant, optimum temperature) of this predator by a linear and nonlinear model (Logan type I model). Upper and lower developmental thresholds ranged between 37.4–37.8 and 11.6–12.0°C, respectively. Optimum temperature for development was estimated at between 33.1 and 33.5°C. The thermal constant ranged between 238.1 and 312.5 degree-days. Based on the data of the total pre-imaginal period, immatures’ survival peaked at 25°C. Arrhenotokous parthenogenesis (haplodiploidy) is confirmed in the species: virgin females always produce males, whereas fertilized females give rise to offspring of both sexes. Survival of the immature stages and offspring sex ratio were not significantly influenced by temperature.  相似文献   

3.
The parental influences on three progeny traits (survival to eyed‐embryo stage, post‐hatching body length and yolk‐sac volume) of Arctic charr Salvelinus alpinus were studied under two thermal conditions (2 and 7° C) using a factorial mating design. The higher temperature resulted in elevated mortality rates and less advanced development at hatching. Survival was mostly attributable to maternal effects at both temperatures, but the variation among families was dependent on egg size only at the low temperature. No additive genetic variation (or pure sire effect) could be observed, whereas the non‐additive genetic effects (parental combination) contributed to offspring viability at 2° C. In contrast, any observable genetic variance in survival was lost at 7° C, most likely due to the increased environmental variance. Irrespective of temperature, dam and sire–dam interaction contributed significantly to the phenotypic variation in both larval length and yolk size. A significant proportion of the variation in larval length was also due to the sire effect at 2° C. Maternal effects were mediated partly through egg size, but as a whole, they decreased in importance at the high temperature, enabling a concomitant increase in non‐additive genetic effects. For larval length, however, the additive component, like maternal effects, decreased at 7° C. The present results suggest that an exposure to thermal stress during incubation can modify the genetic architecture of early developmental traits in S. alpinus and presumably constrain their short‐term adaptive potential and evolvability by increasing the amount of environmentally induced variation.  相似文献   

4.
The sycamore lace bug, Corythucha ciliata (Say) (Hemiptera: Tingidae), is an invasive exotic pest on Platanus trees in China. This study assessed the thermotolerance of C. ciliata in the laboratory. Detailed experiments were conducted on the effects of high temperature (35, 37, 39, 41, 43, and 45 °C), duration of exposure (0.5, 1, 2, 4, 6, and 8 h), and developmental stage (egg, nymph, and adult) on survival of the bug. Meanwhile, the effects of heat hardening on survival at lethal temperature (exposure to 33, 35, 37, 39, and 41 °C for 1 h prior to transfer to 43 °C for 2 h) were also assessed for nymphs and adults. Survival of eggs, nymphs, and adults was not affected by temperatures between 35 and 39 °C, but declined rapidly with increasing duration of exposure (from 0.5 to 8 h) at temperatures ≥41 °C. The lethal temperature that caused mortality of 50% (Ltemp50) of all developmental stages decreased with increasing duration of exposure from 0.5 to 8 h. The Ltemp50 for nymphs was 44.3, 42.0, and 39.0 °C after 0.5, 2, and 8 h exposure, respectively. Thermotolerance was the highest in eggs, followed by adults and then nymphs. Thermotolerance was slightly greater for adult males than for adult females. The ability of nymphs, females, and males to survive exposure to 43 °C for 2 h significantly increased by heat hardening, i.e., by exposure to a non‐lethal high temperature for 1 h; the optimal heat‐hardening temperature was 37 °C. The results indicate that survival of C. ciliata at heat‐shock temperatures depended on both the temperature and the duration of exposure, and the tolerance to heat shock was enhanced by heat hardening. The thermotolerance of C. ciliata may partially explain why C. ciliata has been rapidly spreading on Platanus trees in southern provinces of China.  相似文献   

5.
The temporal dynamics of heat shock protein 70 (HSP70) expression in response to longer‐term acclimation and rapid hardening in the butterfly Lycaena tityrus is investigated. After a 1‐h exposure to 1 °C or 37 °C, HSP70 is quickly up‐regulated within 1 h and down‐regulated within 2 h. The fast dynamic of HSP70 expression is in contrast to the patterns found in organisms inhabiting more stable thermal environments, and is interpreted as an adaptation to the large and rapid temperature variation experienced by flying ectotherms. HSP70 expression is higher in males than in females, as well as in animals reared at 27 °C than at 20 °C, although it is very similar across the high and low induction temperatures. Animals reared at the higher temperature, however, respond less strongly to high‐temperature stress.  相似文献   

6.
The thermal environment can induce substantial variation in important life-history traits. Experimental manipulation of the thermal environment can help researchers determine the contribution of this factor to phenotypic variation in life-history traits. During the reproductive season, we kept female northern grass lizards, Takydromus septentrionalis (Lacertidae), in three temperature-controlled rooms (25, 28 and 32 °C) to measure the effect of the maternal thermal environment on reproductive traits. Maternal thermal environment remarkably affected reproductive frequency and thereby seasonal reproductive output, but had little effect on reproductive traits per clutch or hatchling traits. Females kept at 32 °C produced more clutches and thus had shorter clutch intervals than females from 28 to 25 °C. Clutch size, clutch mass, relative clutch mass, egg size and hatchling traits did not vary among the three treatments. The eggs produced by the females were incubated at 27 °C and the traits of hatchlings were measured. The result that egg (offspring) size was independent of maternal thermal environments is consistent with the prediction of the optimal egg size (offspring) theory. The eggs produced by low temperature females (28 and 25 °C) took longer time to complete their post-oviposition development than did eggs produced by high temperature females (32 °C). This suggests that the eggs from low temperatures might have been laid when the embryos were at relatively early stages. Therefore, maternal thermal environment prior to oviposition could affect post-oviposition development in T. septentrionalis.  相似文献   

7.
In most animals, males gain a fitness benefit by mating with many females, whereas the number of progeny per female is unlikely to increase as a function of additional mates. Furthermore, males of internally fertilizing species run the risk of investing in offspring of other males if they provide parental care. Nevertheless, males of many avian species and a minority of mammalian species provide parental care, and females of various species mate with multiple males. I investigate a two-locus genetic model for evolution of male parental care and female multiple mating in which females gain a direct benefit by multiple mating from the paternal care they thereby elicit for their offspring. The model suggests that, first, male parental care can evolve when it strongly enhances offspring survival and the direct costs of female multiple mating (e.g., loss of energy, risk of injury, exposure to infectious diseases) are greater than its indirect benefit (e.g., acquisition of good genes, increased genetic diversity among offspring); second, female multiple mating can evolve when paternal care is important for offspring survival or the indirect benefit of multiple mating is larger than its direct cost; and, finally, male parental care and female multiple mating can co-occur.  相似文献   

8.
Production of doubled haploids via mitotic gynogenesis is a useful tool for the creation of completely inbred fish. In order to produce viable doubled haploid channel catfish, we utilized hydrostatic pressure or thermal treatments on eggs fertilized with sperm that had been exposed to ultraviolet light. At 1.5 h post-fertilization, the embryos were exposed to either 590 kg/cm2 hydrostatic pressure for 3 min, 37°C for 5 min, or 41°C for 3 min. In the pressure-treated group, only 21 offspring hatched from five spawns with family sizes of one, two, two, four, and 12 offspring each. Eight embryos from the 37°C treatment and 32 embryos from the 41°C treatment survived to hatch. Genotype analysis using microsatellite loci demonstrated all 21 offspring resulting from pressure treatment were homozygous at the 64 loci tested, and none contained alleles unique to the donor male. Eleven of 32 offspring from the 41°C treatment were homozygous at the 18 loci tested, while 21 offspring were heterozygous at six to 12 of these loci. Again, no offspring contained alleles unique to the donor male. However, all eight offspring from the 37°C treatment were heterozygous at multiple loci, and one contained unambiguous paternal alleles. These experiments demonstrated our ability to produce viable homozygous, doubled haploid channel catfish. Doubled haploid catfish can be used to create completely inbred populations for genetic analyses, and homozygous genomic templates will be useful in gene identification and genome characterization.  相似文献   

9.
Using half-sib analysis, we analysed the consequences of extreme rearing temperatures on genetic and phenotypic variations in the morphological and life-history traits of Drosophila ananassae. Paternal half-sib covariance contains a relatively small proportion of the epistatic variance and lacks the dominance variance and variance due to maternal effect, which provides more reliable estimates of additive genetic variance. Experiments were performed on a mass culture population of D. ananassae collected from Kanniyakumari (India). Two extremely stressful temperatures (18°C and 32°C) and one standard temperature (25°C) were used to examine the effect of stressful and non-stressful environments on the morphological and life-history traits in males and females. Mean values of various morphological traits differed significantly among different temperature regimens in both males and females. Rearing at 18°C and 32°C resulted in decreased thorax length, wing-to-thorax (w/t) ratio, sternopleural bristle number, ovariole number, sex comb-tooth number and testis length. Phenotypic variances increased under stressful temperatures in comparison with non-stressful temperatures. Heritability and evolvability based on among-sires (males), among-dams (females), and the sum of the two components (sire + dam) showed higher values at both the stressful temperatures than at the non-stressful temperature. These differences reflect changes in additive genetic variance. Viability was greater at the high than the low extreme temperature. As viability is an indicator of stress, we can assume that stress was greater at 18°C than at 32°C in D. ananassae. The genetic variations for all the quantitative and life-history traits were higher at low temperature. Variation in sexual traits was more pronounced as compared with other morphometric traits, which shows that sexual traits are more prone to thermal stress. Our results agree with the hypothesis that genetic variation is increased in stressful environments.  相似文献   

10.
Reaction norms across three temperatures of development were measured for thorax length, wing length and wing length/thorax length ratio for ten isofemale lines from each of two populations of Drosophila aldrichi and D. buzzatii. Means for thorax and wing length in both species were larger at 24 °C than at either 18 °C or 31 °C, with the reduction in size at 18 °C most likely due to a nutritional constraint. Although females were larger than males, the sexes were not different for wing length/thorax length ratio. The plasticity of the traits differed between species and between populations of each species, with genetic variation in plasticity similar for the two species from one locality, but much higher for D. aldrichi from the other. Estimates of heritabilities for D. aldrichi generally were higher at 18 °C and 24 °C than at 31 °C, but for D. buzzatii they were highest at 31 °C, although heritabilities were not significantly different between species at any temperature. Additive genetic variances for D. aldrichi showed trends similar to that for heritability, being highest at 18 °C and decreasing as temperature increased. For D. buzzatii, however, additive genetic variances were lowest at 24 °C. These results are suggestive that genetic variation for body size characters is increased in more stressful environments. Thorax and wing lengths showed significant genetic correlations that were not different between the species, but the genetic correlations between each of these traits and their ratio were significantly different. For D. aldrichi, genetic variation in the wing length/thorax length ratio was due primarily to variation in thorax length, while for D. buzzatii, it was due primarily to variation in wing length. The wing length/thorax length ratio, which is the inverse of wing loading, decreased linearly as temperature increased, and it is suggested that this ratio may be of greater adaptive significance than either of its components.  相似文献   

11.
Replicated lines of Drosophila melanogaster were allowed to evolve in population cage culture at 16.5° C or 25° C for five years. Their larval and pupal development times, larval growth rates, larval critical weights for pupariation and pre-adult survival rates were then measured at both temperatures. Pre-adult survival showed evidence of adaptation of the lines to their thermal selection regimes, with each set of lines showing superior survival when tested at the temperature at which they had been evolving. Pupal periods were similar for all lines when growing at 16.5° C but, at 25° C, the low temperature lines had the longer pupal periods. Irrespective of experimental temperature, low temperature lines grew faster and had shorter larval development periods than the high temperature lines. Larval critical weights for pupariation were higher in the low temperature lines at the low experimental temperature, and higher in the high temperature lines at the higher experimental temperature. The correlations between these traits induced by thermal evolution were in general different from or opposite to the genetic correlations found within a single temperature.  相似文献   

12.
Thermal tolerance varies at all hierarchical levels of biological organization: among species, populations, individuals, and even within individuals. Age- or developmental stage- and sex-specific thermal effects have received relatively little attention in the literature, despite being crucial for understanding thermal adaptation in nature and responses to global warming. We document stage- and sex- specific heat tolerance in the yellow dung fly Scathophaga stercoraria (Diptera: Scathophagidae), a species common throughout the northern hemisphere that generally favours cool climates. Exposure of eggs to temperatures up to 32 °C did not affect larval hatching rate, but subsequent egg-to-adult survival at a benign temperature was reduced. Permanent transfer from benign (18 °C) to hot temperatures (up to 31 °C) at different larval and pupal stages strongly decreased egg-to-adult survival, though survival continuously improved the later the transfer occurred. Temporary transfer for only two days increased mortality more weakly, survival being lowest when temperature stress was imposed early during the larval or pupal stages. Adult flies provided with sugar and water tolerated 31 °C longer than previously thought (5 days in males to 9 days in females). Eggs were thus less susceptible to thermal stress than larvae, pupae or adults, in agreement with the hypothesis that more mobile stages require less physiological protection against heat because they can behaviourally thermoregulate. The probability of mating, of laying a clutch, and hatching success were generally independently reduced by exposure of females or males to warm temperatures (24 °C) during the juvenile or adult stages, with some interactions evident. High temperature stress thus affects survival differentially depending on when it occurs during the juvenile or the pre-reproductive adult life stage, and affects reproductive success via the mating behaviour of both sexes, female physiology in terms of oviposition, and fertility via sperm and/or egg quality. Our results illustrate that temperature stress, even when moderate and temporary, during early development can have profound lethal and non-lethal fitness-consequences later in life.  相似文献   

13.
Insect reproduction is influenced by various external factors including temperature, a well-studied constraint. We investigated to what extent different levels of sperm limitation of males exposed to different heat stresses (34 and 36℃) afFect fem ales' offspring production and sex allocation in Nasonia vitripennis. In this haplodiploid parasitoid wasp attacking different species of pest flies, we investigated the effect of the quantity of sperm females received and stored in their spermatheca on their sperm use decisions, hence sex allocation, over successive ovipositions. In particular, we compared the sex allocation of females presenting three levels of sperm limitation (i.e.,mated with control, 34 ℃ heat-stressed or 36℃heat-stressed males) on each host they parasitized. To disentangle the potential reduction of sperm quality after a heat stress exposure from that of sperm quantity, we also explored the clutch size and sex ratio produced by fem ales that were partially sperm limited after copulating with multiply mated males. Independently of their sperm numbers, all types of fem ales produced a similar total number of offspring, but the more limited ones had fewer daughters. Sperm limitation further affected the distribution of daughters' production across time.In addition to constraints acting on female physiology, male fertility should therefore be considered in studies measuring reproductive outputs of insects submitted to heat stresses.  相似文献   

14.
Austrofundulus limnaeus thrive in ephemeral ponds that may experience temperatures spanning a range of over 20°C on a daily basis. We hypothesized that A. limnaeus may have mechanisms, either behavioral or physiological, that allow them to support successful reproduction in this environment. To evaluate this hypothesis, we exposed male and female adult A. limnaeus to constant 26°C and cycling 21–37°C acclimation regimes in the laboratory and then determined their temperature preference and reproductive fitness. Temperature preference was determined using a thermal gradient. We demonstrated that A. limnaeus is capable of accurate behavioral thermoregulation, has a final thermal preferendum near 26°C, and exhibits a daily cycle of temperature preference. Exposure to a cycling temperature regime has an acute effect on thermal preference that differs between the sexes. Reproductive capability was negatively affected by the cyclic temperature exposure. These findings suggest that thermal partitioning between males and females may be a natural part of the ecology of A. limnaeus. In addition, it appears that behavioral thermoregulation, or partitioning of reproductive events to the cool parts of the thermoperiod, are likely to be critical to support successful reproduction in natural populations of A. limnaeus.  相似文献   

15.
The life table of the indigenous Neoseiulus californicus was studied at different temperatures and 65 ± 5% relative humidity under conditions of 16 h light : 8 h dark (LD 16:8). The total developmental period from egg to adult varied from 3.0 to 14.0 days at 15 to 35°C. Survival to adulthood ranges from 86.21 to 93.94%, with the highest rate at 25°C. The lower threshold temperature from egg to adult stages of females and males was 10.84 and 10.72°C, respectively, and the thermal constant was 57.14 degree‐days (DD) for females and 56.18 DD for males. Total number of eggs laid by each female was the highest (70.38 eggs) at 25°C, whereas average daily fecundity was the highest (3.69 eggs/female/day) at 30°C. The net reproductive rate was the highest (48.49) at 25°C and lowest (26.18) at 30°C. Mean generation time decreased from 19.04 to 11.47 days with increasing temperature from 20 to 30°C. Both intrinsic rate of natural increase (0.284) and finite rate of increase (1.32) were maximum at 30°C. Adult longevity was the highest (42.75 days for females and 32.60 days for males) at 20°C and lowest (22.70 days for females and 15.30 days for males) at 30°C. Sex ratio was female biased and was the highest (78.08) at 25°C and lowest (70.24) at 30°C. Developmental data of five constant temperatures, temperature thresholds and thermal requirements may be used to predict the occurrence, number of generations and population dynamics of N. californicus as an important biocontrol agent of Tetranychus urticae.  相似文献   

16.
We previously demonstrated temperature-specific genetic adaptation in experimental lines of Escherichia coli. Six initially identical populations were propagated for 2000 generations under each of five regimes: constant 20°C, 32°C, 37°C, and 42°C, and a daily switch between 32°C and 42°C. Glucose was the sole carbon source in all cases. Here, we examine the physiological bases of adaptation to determine whether the same mechanisms evolved among the replicate lines within each thermal regime and across different regimes. Specifically, we investigate whether changes in glucose transport may account for the temperature-specific adaptation. We compared each line's direct response of fitness to glucose with its correlated response to maltose; glucose and maltose enter the cell by different pathways, but their catabolism is identical. Except for lines maintained at the ancestral temperature (37°C), almost all derived lines had significantly different fitnesses (relative to their common ancestor) in glucose and maltose, supporting the hypothesis that adaptation involved changes in glucose transport. An alternative explanation, that maltose transport decayed by genetic drift, appears unlikely for reasons that are discussed. Although most lines showed evidence of temperature-specific adaptation in glucose transport, several different mechanisms may underlie these improvements, as indicated by heterogeneity in correlated responses (across temperatures and substrates) among replicate lines adapted to the same regime. This heterogeneity provides a latent pool of genetic variation for responding to environmental change.  相似文献   

17.
Abstract. — Drosophila and other ectotherms show geographic genetic variation in body size, with larger individuals at higher latitudes and altitudes. Temperature is implicated as an important selective agent because long-term laboratory culture of Drosophila leads to the evolution of larger body size at lower temperatures. In this paper, we tested the hypothesis that, in Drosophila melanogaster, larger size is favored at lower temperatures in part because of selection on adult females. We used replicated lines of D. melanogaster artificially selected for increased and decreased wing area with constant cell area. The resulting size differences between the selected lines were due solely to differences in cell number, and thereby were similar to the cellular basis of clinal variation in body size in nature. We examined life-history traits of adult females at 18 and 25°C. Rearing for two generations at the two temperatures did not affect the extent of the size differences between lines from the different selection regimes. There was a strong interaction between temperature and size selection for both survival and lifetime reproductive success, with larger females living significantly longer and producing more offspring over their lifetime only when reared and tested in the colder environment. There was also an increase in average daily progeny production in large-line females relative to the control and small lines again, only in the colder environment. Thus, the females from the large selection lines were relatively fitter at the colder temperature. At both experimental temperatures, especially the lower one, the small- line females rescheduled their progeny production to later ages. Larger body size may have evolved at higher latitudes and altitudes because of the advantages to the adult female of being larger at lower temperatures.  相似文献   

18.
The beet armyworm, Spodoptera exigua, is an important migratory insect pest in tropical and subtropical regions worldwide. The current study investigated genetic variation in the flight capacity of both female and male moths, using a quantitative genetics approach. The offspring–parent regression showed that parents had a significant influence on the flight duration of offspring, and the heritability estimated as 0.302. The upward selection increased mean flight duration from 123.7 to 284.6 min in females and from 113.9 to 254.0 min in males during 8 h of flight test; by contrast, downward selection decreased it from 123.7 to 65.6 min in females and from 113.9 to 29.8 min in males, while it did not change significantly in either females or males of the control line over eight generations. The mean realized heritability was estimated as 0.432 based on upward selection but 0.130 on downward selection, suggesting the asymmetry of response to selection on flight capacity. Reciprocal crosses between the two selected lines confirmed the dominance of ‘long‐flying genes’ in the inheritance of flight capacity. A positive genetic correlation was found between increased flight duration and pupal weight. The presence of such additive genetic variance and covariance for flight capacity and the fitness trait, pupal weight, in the population of S. exigua may have underpinned the evolution of its migratory behaviour.  相似文献   

19.
Thirty isofemale lines collected in three different years from the same wild French population were grown at seven different temperatures (12–31°C). Two linear measures, wing and thorax length, were taken on 10 females and 10 males of each line at each temperature, also enabling the calculation of the wing/thorax (W/T) ratio, a shape index related to wing loading. Genetic correlations were calculated using family means. The W–T correlation was independent of temperature and on average, 0.75. For each line, characteristic values of the temperature reaction norm were calculated, i.e. maximum value, temperature of maximum value and curvature. Significant negative correlations were found between curvature and maximum value or temperature of maximum value. Sexual dimorphism was analysed by considering either the correlation between sexes or the female/male ratio. Female–male correlation was on average 0.75 at the within line, within temperature level but increased up to 0.90 when all temperatures were averaged for each line. The female/male ratio was genetically variable among lines but without any temperature effect. For the female/male ratio, heritability (intraclass correlation) was about 0.20 and evolvability (genetic coefficient of variation) close to 1. Although significant, these values are much less than for the traits themselves. Phenotypic plasticity of sexual dimorphism revealed very similar reaction norms for wing and thorax length, i.e. a monotonically increasing sigmoid curve from about 1.11 up to 1.17. This shows that the males are more sensitive to a thermal increase than females. In contrast, the W/T ratio was almost identical in both sexes, with only a very slight temperature effect.  相似文献   

20.
Bet hedging at reproduction is expected to evolve when mothers are exposed to unpredictable cues for future environmental conditions, whereas transgenerational plasticity (TGP) should be favoured when cues reliably predict the environment offspring will experience. Since climate predictions forecast an increase in both temperature and climate variability, both TGP and bet hedging are likely to become important strategies to mediate climate change effects. Here, the potential to produce variably sized offspring in both warming and unpredictable environments was tested by investigating whether stickleback (Gasterosteus aculeatus) mothers adjusted mean offspring size and within‐clutch variation in offspring size in response to experimental manipulation of maternal thermal environment and predictability (alternating between ambient and elevated water temperatures). Reproductive output traits of F1 females were influenced by both temperature and environmental predictability. Mothers that developed at ambient temperature (17 °C) produced larger, but fewer eggs than mothers that developed at elevated temperature (21 °C), implying selection for different‐sized offspring in different environments. Mothers in unpredictable environments had smaller mean egg sizes and tended to have greater within‐female egg size variability, especially at 21 °C, suggesting that mothers may have dynamically modified the variance in offspring size to spread the risk of incorrectly predicting future environmental conditions. Both TGP and diversification influenced F2 offspring body size. F2 offspring reared at 21 °C had larger mean body sizes if their mother developed at 21 °C, but this TGP benefit was not present for offspring of 17 °C mothers reared at 17 °C, indicating that maternal TGP will be highly relevant for ocean warming scenarios in this system. Offspring of variable environment mothers were smaller but more variable in size than offspring from constant environment mothers, particularly at 21 °C. In summary, stickleback mothers may have used both TGP and diversified bet‐hedging strategies to cope with the dual stress of ocean warming and environmental uncertainty.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号