首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Insulin-like growth factor (IGF)-I and IGF-II play a number of important roles in growth and differentiation, and IGF-binding proteins (IGFBPs) modulate IGF biological activity. IGF-I has been shown previously to be essential for normal uterine development. Therefore, we used in situ hybridization assays to characterize the unique tissue- and developmental stage-specific pattern of expression for each IGF and IGFBP gene in the rat uterus during perinatal development (gestational day [GD]-20 to postnatal day [PND]-24). IGF-I and IGFBP-1 mRNAs were expressed in all uterine tissues throughout this period. IGFBP-3 mRNA was not detectable at GD-20 but became detectable beginning at PND-5, and the signal intensity appeared to increase during stromal and muscle development. IGFBP-4 mRNA was abundant throughout perinatal development in the myometrium and in the stroma, particularly near the luminal epithelium. IGFBP-5 mRNA was abundantly expressed in myometrium throughout perinatal development. IGFBP-6 mRNA was detected throughout perinatal development in both the stroma and myometrium in a diffuse expression pattern. IGF-II and IGFBP-2 mRNAs were not detected in perinatal uteri. Our results suggest that coordinated temporal and spatial expression of IGF-I and its binding proteins (IGFBP-1,-3,-4,-5, and -6) could play important roles in perinatal rodent uterine development.  相似文献   

5.
Premature cranial suture fusion, or craniosynostosis, can result in gross aberrations of craniofacial growth. The biology underlying cranial suture fusion remains poorly understood. Previous studies of the Sprague-Dawley rat posterior frontal suture, which fuses at between 12 and 20 days, have suggested that the regional dura mater beneath the cranial suture directs the overlying suture's fusion. To address the dura-suture paracrine signaling that results in osteogenic differentiation and suture fusion, the authors investigated the possible role of insulin-like growth factors (IGF) I and II. The authors studied the temporal and spatial patterns of the expression of IGF-I and IGF-II mRNA and IGF-I peptide and osteocalcin (bone morphogenetic protein-4) protein in fusing posterior frontal rat sutures, and they compared them with patent coronal (control) sutures. Ten Sprague-Dawley rats were studied at the following time points: 16, 18, and 20 days of gestation and 2, 5, 10, 15, 20, 30, 50, and 80 days after birth (n = 110). Posterior frontal and coronal (patent, control) sutures were analyzed for IGF-I and IGF-II mRNA expression by in situ hybridization by using 35S-labeled IGF-I and IGF-II antisense riboprobes. Levels of IGF-I and IGF-II mRNA were quantified by counting the number of autoradiograph signals per cell. IGF-I and osteocalcin immunoreactivity were identified by avidin-biotin peroxidase immunohistochemistry. IGF-I and IGF-II mRNA were expressed in dural cells beneath fusing sutures, and the relative mRNA abundance increased between 2 and 10 days before initiation of fusion. Subsequently, IGF-I and IGF-II mRNA were detected in the suture connective tissue cells at 15 and 20 days during the time of active fusion. In contrast, within large osteoblasts of the osteogenic front, the expression of IGF-I and IGF-II mRNA was minimal. However, IGF-I peptide and osteocalcin protein were intensely immunoreactive within these osteoblasts at 15 days (during the period of suture fusion). These data suggest that the dura-suture interaction may be signaled in a paracrine fashion by dura-derived growth factors, such as IGF-I and IGF-II. These peptides, in turn, stimulate nearby osteoblasts to produce bone-promoting growth factors, such as osteocalcin.  相似文献   

6.
7.
8.
9.
The GH dependence of somatomedin-C/insulin-like growth factor I (Sm-C/IGF-I) and insulin like growth factor II (IGF-II) mRNAs was investigated by Northern blot hybridizations of polyadenylated RNAs from liver, pancreas, and brain of normal rats, untreated hypophysectomized rats, and hypophysectomized rats 4 h or 8 h after an ip injection of human GH (hGH). Using a 32P-labeled human Sm-C/IGF-I cDNA as probe, four Sm-C/IGF-I mRNAs of 7.5, 4.7, 1.7, and 1.2 kilobases (kb) were detected in rat liver and pancreas but were not detectable in brain. In both liver and pancreas, the abundance of these Sm-C/IGF-I mRNAs was 8- to 10-fold lower in hypophysectomized rats than in normal rats. Within 4 h after injection of hGH into hypophysectomized animals, the abundance of liver and pancreatic Sm-C/IGF-I mRNAs was restored to normal. A human IGF-II cDNA was used as a probe for rat IGF-II mRNAs which were found to be very low in abundance in rat liver and showed no evidence of regulation by GH status. In pancreas, IGF-II mRNA abundance was below the detection limit of the hybridization procedures. The brain contained two IGF-II mRNAs of 4.7 and 3.9 kb that were 5-fold lower in abundance in hypophysectomized rats than in normal rats. These brain IGF-II mRNAs were not, however, restored to normal abundance at 4 or 8 h after ip hGH injection into hypophysectomized animals. To investigate further, the effect of GH status on abundance of Sm-C/IGF-I and IGF-II mRNAs in rat brain, a second experiment was performed that differed from the first in that hypophysectomized rats were given an injection of hGH into the lateral ventricle (intracerebroventricular injection) and a rat Sm-C/IGF-I genomic probe was used to analyze Sm-C/IGF-I mRNAs. In this experiment, a 7.5 kb Sm-C/IGF-I mRNA was detected in brain polyadenylated RNAs. The abundance of the 7.5 kb mRNA was 4-fold lower in hypophysectomized rats than in normal rats and was increased to 80% of normal within 4 h after icv administration of hGH to hypophysectomized animals. As in the first experiment, the abundance of the 4.7 and 3.9 kb brain IGF-II mRNAs was lower than normal in hypophysectomized rats. Brain IGF-II mRNAs were increased to 50% of normal in hypophysectomized rats given an icv injection of hGH but within 8 h after the injection rather than at 4 h as with Sm-C/IGF-I mRNAs.  相似文献   

10.
11.
Insulin-like growth factors (IGFs) I and II are two single-chain polypeptide hormones that are structurally related to each other and to proinsulin. Among the large number of growth factors involved in ovarian physiology, IGF-I and IGF-II are considered to be important progression factors for ovarian follicular development. To explore the ovarian expression of IGF-I, IGF-II and their receptor genes, a solution hybridization/RNase protection assay, was used. IGF-I mRNA was seen in the granulosa cells, and IGF-II mRNA in the theca-interstitial compartment. To study the hormonal regulation of the IGF-I and IGF-II gene, immature (21-day-old) hypohysectomized rats were treated with FSH (10 μg/day),GH (150 μg/day) and diethylstilbestrol (DES subcutaneous implant/5 days). Estrogen differentially regulated ovarian IGF-I and IGF-II gene expression. In concert with GH, estrogen up-regulated ovarian IGF-I mRNA, but significantly decreased hepatic IGF-I gene expression. Both IGF receptors (type I and type II) as well as the insulin receptor gene, were expressed in both ovarian cells. The expression of the type IIGF receptor gene (but not the type II IGF gene) was up-regulated by FSH and estrogen in vivo. In conclusion, these studies may serve to better understand the auto paracrine role of IGF, and their receptors in the pathophysiology of follicle recruitment, oocyte maturation and potentially embryo development.  相似文献   

12.
13.
14.
We have studied the simultaneous expression of insulin-like growth factor I (IGF-I) and insulin-like growth factor II (IGF-II) in the uterine epithelium and extracellular matrix during the time of trophoblast attachment and implantation. These studies reveal that IGF-I and IGF-II display different spatial and temporal patterns of expression during early pregnancy, and suggest a role for them in the process of attachment and implantation. Specifically, IGF-I is strongly expressed in the basal lamina which is the site of trophoblast invasion into the maternal stroma, and also in the apical epithelium, the site of initial trophoblast attachment. IGF-II is expressed to a lesser extent in the basal lamina, lateral plasma membranes and apical epithelium on day 3 but is only prominent apically at the time of implantation, suggesting a role in attachment.  相似文献   

15.
16.
17.
Binding proteins for the insulin-like growth factors (IGF-BPs) are important modulators of the biological actions of IGF-I and IGF-II. The generation of IGFBPs within developing organs, and their spatial arrangement, may similarly determine IGF action at specific microanatomical sites. In situ hybridization studies with late gestation (days 16, 18 and 20) fetal rat lung using a cDNA probe for IGFBP-2 showed strong gene expression in the fetal lung epithelial structures (alveoli and airways). The sites of IGFBP-2 gene expression were associated with immunoreactive IGF-II at the apical surface of the epithelium. By day 20, there was also some IGFBP-2 gene expression and immunoreactive IGF-II at discrete sites in the mesenchyme. In contrast, immunoreactive IGF-I was found predominantly distributed in a punctate pattern, consistent with its presence in the lumen or walls of small vessels or capillaries, and in a granular, intracellular form in both epithelial and mesenchymal cells. These studies suggest that endogenously generated IGFBP-2 may determine the distribution of IGF-II, principally at the apical surface of lung epithelia. IGF-I does not colocalise with IGF-II peptide or the sites of IGFBP-2 gene expression. We conclude that the spatial distributions of these two related growth factors are separately controlled, to some extent by endogenously generated binding proteins.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号