首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
1. In each right and left buccal ganglia of Aplysia kurodai, we identified 4 premotor neurons impinging on the ipsilateral jaw-closing and -opening motoneurons. Three of them (MA1 neurons) had features of multifunctional neurons. Current-induced spikes in the MA1 neurons produced excitatory junction potentials (EJPs) in the buccal muscle fibers. In addition, tactile stimulation of the buccal muscle surface produced a train of spikes in the MA1 neurons without synaptic input. The other neuron (MA2) had only a premotor function. 2. The MA1 and MA2 neurons had similar synaptic effects on the jaw-closing and -opening motoneurons. Current-induced spikes in the premotor neurons gave rise to monosynaptic inhibitory postsynaptic potentials (IPSPs) in the ipsilateral jaw-closing motoneurons. Simultaneously, spikes in one of the MA1 neurons and the MA2 also gave rise to monosynaptic excitatory postsynaptic potentials (EPSPs) in the ipsilateral jaw-opening motoneuron. 3. The IPSPs and the EPSPs induced by spikes in the premotor neurons were reversibly blocked by d-tubocurarine and hexamethonium, respectively, suggesting that the MA1 and MA2 neurons are cholinergic. 4. When depolarizing and hyperpolarizing current pulses were passed into one premotor neuron, attenuated but similar potential changes were produced in another randomly selected premotor neuron in the same ganglion, suggesting that they are electronically coupled.  相似文献   

2.
1.  Spikes in Aplysia MA1 neurons produced excitatory (EJPs), inhibitory (IJPs), and diphasic inhibitory-excitatory junction potentials in different fibers of the buccal muscles.
2.  The IJPs following the MA1 spikes were recorded in the muscle fibers innervated by the jaw-closing motoneurons. The depolarization of muscle fibers produced by the motoneurons was largely suppressed by simultaneous MA1 firing, suggesting that the MA1 neurons make a direct connection to a part of the muscle fibers innervated by these motoneurons and inhibit them.
3.  The excitatory and inhibitory components of the junction potentials produced by MA1 were reversibly blocked by hexamethonium and d-tubocurarine, respectively. In contrast, the EJPs produced by the jaw-closing motoneurons were blocked by an amino acid antagonist, suggesting that the MA1 neurons and the jaw-closing motoneurons use different transmitters in the nerve-muscle junctions.
4.  The jaw movement produced by the jaw-closing motoneurons was suppressed by simultaneous MA1 firing, and the suppression was released by d-tubocurarine, suggesting that the IJPs produced by MA1 may contribute to the suppression of jaw movement. The firing of MA1 produced the vertical movement of the buccal muscles, which was blocked by hexamethonium, suggesting that the EJPs produced by MA1 may contribute to the vertical movement.
  相似文献   

3.
In order to elucidate the neural basis for lung ventilation in the frog, we have investigated the efferent neural activity to oropharyngeal muscles in the decerebrate, paralyzed, unanesthetized bullfrog, Rana catesbeiana. Efferent motor output was recorded from the mandibular branch of the trigeminal (Vmd), the laryngeal branch of the vagus (Xl), and the main and sternohyoid branches of the hypoglossal nerve (Hm and Hsh, respectively). Two types of rhythmic bursting outputs were observed: (1) a high-frequency, low-amplitude, reciprocal oscillation between Vmd, a buccal levator nerve, and Hsh, a buccal depressor nerve; and (2) a low-frequency, high amplitude, synchronous bursting of Vmd, Hm, Hsh, and Xl. The first type is inferred to represent fictive oropharyngeal ventilation. The second type of burst was divided into four intervals: (a)augmenting acitivity of Hsh; (b) activation of Xl with continued activation of Hsh; (c) activation of Vmd and Hm (a buccal levator nerve), continued activation of Xl, and termination of Hsh activity; and (d) waning activity in Vmd and Hm associated with a prominent second wave in Xl. This coordinated activity is inferred to represent fictive pulmonary ventilation because the neurograms in these four intervals correspond closely EMGs and neurograms recorded in the intact frog during the four phases of pulmonary ventilation, namely, buccal depression, pulmonary expiration, pulmonary inspiration, and glottal closure. Hypercapnia, vagotomy, and cutaneus pinching enhanced the high-amplitude, low-frequency rhythm, but not the low-amplitude, high-frequency oscillation. Lung inflation generally inhibited the former and not the latter, but in some cases lung inflation stimulated pulmonary ventilation. We conclude that oropharyngeal and pulmonary ventilation of the frog are produced by one or, possibly, two intrinsically active generators. 1994 John Wiley & Sons, Inc.  相似文献   

4.
In the present study, motoneurons innervating the flexor tibiae muscle of the stick insect (Cuniculina impigra) middle leg were recorded intracellularly while the single leg performed walking-like movements on a treadwheel. Different levels of belt friction (equivalent to a change in load) were used to study the control of activity of flexor motoneurons. During slow leg movements no fast motoneurons were active, but a recruitment of these neurons could be observed during faster leg movements. The firing rate of slow and fast motoneurons increased with incremented belt friction. Also, the force applied to the treadwheel at different frictional levels was adapted closely to the friction of the treadwheel to be overcome. The motoneurons innervating the flexor tibiae were recruited progressively during the stance phase, with the slow motoneurons being active earlier than the fast (half-maximal spike frequency after 10-15% and 50-60% of the stance phase, respectively). The resting membrane potential was more hyperpolarized in fast motoneurons (64.6 +/- 6.5 mV) than in slow motoneurons (-52.9 +/- 5.4 mV). However, the threshold for the initiation of action potentials was not statistically significantly different in both types of flexor motoneurons. Therefore, action potentials were generated in fast motoneurons after a longer period of depolarization and thus later during the stance phase than in slow motoneurons. We show that motoneurons of the flexor tibiae receive substantial common excitatory inputs during the stance phase and that the difference in resting membrane potential between slow and fast motoneurons is likely to play a crucial role in their consecutive recruitment.  相似文献   

5.
Experiments were carried out on decerebrate cats to identify transsynaptic mediators of spontaneous postsynaptic inhibition of bulbar inspiratory and postinspiratory neurons. Somatic membrane potentials were recorded through the central micropipette of a coaxial multibarreled electrode. Blockers of type A gamma-aminobutyric acid (GABA-A) and glycine receptors were iontophoresed extracellularly from peripheral micropipettes surrounding the central pipette. Effective antagonism was demonstrated by iontophoresis of agonists with antagonists; application of strychnine antagonized the action of glycine but not GABA, and application of bicuculline antagonized the action of GABA but not glycine. In both types of neurons, iontophoresis of either antagonist depolarized the somatic membrane and increased input resistance throughout the respiratory cycle. Bicuculline preferentially depolarized the somatic membrane in both types of neurons during inactive phases. Strychnine increased the firing rate of inspiratory neurons during inspiration despite maintenance of somatic membrane potential at preiontophoresis levels. Tetrodotoxin reduced the effects of iontophoresed bicuculline and strychnine, suggesting that the action of the antagonists required presynaptic axonal conduction. The present results suggest that presynaptic release of both GABA and glycine contributes to tonic postsynaptic inhibition of bulbar respiratory neurons. GABA-A receptors appear to contribute to inhibition during inactive phases in inspiratory and postinspiratory neurons, whereas glycinergic mechanisms appear to contribute to inspiratory inhibition in inspiratory neurons.  相似文献   

6.
Mu-opioid receptor agonists depress tidal volume, decrease chest wall compliance, and increase upper airway resistance. In this study, potential neuronal sites and mechanisms responsible for the disturbances were investigated, dose-response relationships were established, and it was determined whether general anesthesia plays a role. Effects of micro-opioid agonists on membrane properties and discharges of respiratory bulbospinal, vagal, and propriobulbar neurons and phrenic nerve activity were measured in pentobarbital-anesthetized and unanesthetized decerebrate cats. In all types of respiratory neurons tested, threshold intravenous doses of the micro-opioid agonist fentanyl slowed discharge frequency and prolonged duration without altering peak discharge intensity. Larger doses postsynaptically depressed discharges of inspiratory bulbospinal and inspiratory propriobulbar neurons that might account for depression of tidal volume. Iontophoresis of the micro-opioid agonist DAMGO also depressed the intensity of inspiratory bulbospinal neuron discharges. Fentanyl given intravenously prolonged discharges leading to tonic firing of bulbospinal expiratory neurons in association with reduced hyperpolarizing synaptic drive potentials, perhaps explaining decreased inspiratory phase chest wall compliance. Lowest effective doses of fentanyl had similar effects on vagal postinspiratory (laryngeal adductor) motoneurons, whereas in vagal laryngeal abductor and pharyngeal constrictor motoneurons, depression of depolarizing synaptic drive potentials led to sparse, very-low-frequency discharges. Such effects on three types of vagal motoneurons might explain tonic vocal fold closure and pharyngeal obstruction of airflow. Measurements of membrane potential and input resistance suggest the effects on bulbospinal Aug-E neurons and vagal motoneurons are mediated presynaptically. Opioid effects on the respiratory neurons were similar in anesthetized and decerebrate preparations.  相似文献   

7.
Summary We used physiological recordings, intracellular dye injections and immunocytochemistry to further identify and characterize neurons in the buccal ganglia of Aplysia calif ornica expressing Small Cardioactive Peptide-like immunoreactivity (SCP-LI). Neurons were identified based upon soma size and position, input from premotor cells B4 and B5, axonal projections, muscle innervation patterns, and neuromuscular synaptic properties. SCP-LI was observed in several large ventral neurons including B6, B7, B9, B10, and B11, groups of s1 and s2 cluster cells, at least one cell located at a branch point of buccal nerve n2, and the previously characterized neurons B1, B2 and B15.B6, B7, B9, B10 and B11 are motoneurons to intrinsic muscles of the buccal mass, each displaying a unique innervation pattern and neuromuscular plasticity. Combined, these motoneurons innervate all major intrinsic buccal muscles (I1/I3, I2, I4, I5, I6). Correspondingly, SCP-LI processes were observed on all of these muscles. Innervation of multiple nonhomologous buccal muscles by individual motoneurons having extremely plastic neuromuscular synapses, represents a unique form of neuromuscular organization which is prevalent in this system. Our results show numerous SCPergic buccal motoneurons with widespread ganglionic processes and buccal muscle innervation, and support extensive use of SCPs in the control of feeding musculature.Abbreviations SCP-LI small cardioactive peptide-like immunoreactivity - PSC postsynaptic current - EPSP excitatory postsynaptic potential - IPSP inhibitory postsynaptic potential - FI facilitation index - TMR time to maximal response  相似文献   

8.
1. The first part of this study looks at spontaneously active neurons located in the rostral ventrolateral medulla (RVLM) with projections to the thoracic spinal cord. Sixteen neurons were intracellularly recorded in vivo. Four out of 16 neurons were antidromically activated from the thoracic spinal cord (axonal conduction velocities varied from 1.8 m/s to 9.5 m/s).2. The simultaneous averages of the neuronal membrane potential and arterial blood pressure triggered by the pulsatile arterial wave or the EKG-R wave demonstrated changes in membrane potential (hyperpolarization or depolarization) locked to the cardiac cycle in four neurons in this group. These neurons (three of them bulbospinal) were further tested for barosensitivity by characterizing the responses to electrical stimulation of the aortic depressor nerve. Four neurons responded with inhibitory hyperpolarizing responses characterized as inhibitory postsynaptic potentials (IPSP) to aortic nerve stimulation (onset latency: 32.3 ± 5.0 ms; mean ± SEM).3. In two neurons in the RVLM, one of them characterized as barosensitive, electrical stimulation of the opposite RVLM (0.5 Hz, 1.0 ms pulse duration, 25–100 A) elicited excitatory postsynaptic potentials (EPSPs) with latencies of 9.07 and 10.5 ms. At resting membrane potential, the onset latency of the evoked EPSPs did not change with increasing stimulus intensities. Some of the recorded neurons were intracellularly labelled with biocytin for visualization. They were found in the RVLM.4. These experiments in vivo would support the idea of a functional commissural pathway between the RVLM of both sides.5. Anatomical data have shown that some of those commissural bundle fibers originate in the C1 adrenergic neuronal group in the RVLM. In the second part of this study, we used an intracellular recording technique in vitro to investigate the effects of the indirect adrenergic agonist tyramine on neurons in the RVLM with electrophysiological properties similar to premotor sympathetic neurons in vivo.6. Tyramine (0.5–1 mM) produced a pronounced inhibitory effect with hyperpolarization and increase in membrane input resistance on two neurons characterized as regularly firing (R), and on one neuron characterized as irregularly firing (I). This effect was preceded by a transient depolarization with increases in firing rate.7. These results would indicate that neurons in the RVLM recorded in vitro and with properties similar to premotor sympathetic neurons can be modulated by catecholamines released from terminals probably making synaptic contacts.  相似文献   

9.
(1) Tentacle retraction in the land slug Ariolimax columbianus can be elicited by stimulation of all nerves and connectives of the ipsi- and contralateral cerebral ganglia. (2) Six neurons in the left cerebral ganglion were classified as tentacle retraction motoneurons because their action potentials are followed one-for-one with constant delay by action potentials in the left tentacle retractor nerve and their depolarization causes retraction of the ipsilateral tentacle. The motoneurons can be identified by size, pattern of pigmentation, position, and physiological characteristics. (3) Each retractor motoneuron discharges at a rather constant rate and has more than one source of excitatory input, but no IPSPs were observed. No synaptic connections between the six retractor motoneurons were found. The nerve action potentials that correspond to each motoneurons are distinguishable by waveform and size rank. (4) Each motoneuron elicits visible contractions in a particular region of the ipsilateral retractor muscle, but the motor fields of some motoneurons overlap. Some motoneurons mediate relatively rapid contractions while others cause slower responses. (5) There is one-for-one correspondence between action potentials of the largest unit recorded extracellularly in the retractor nerve and exciatory junction potentials recorded from the retractor muscle. No evidence of a peripheral neural plexus was found in serial sections of the retractor muscle.  相似文献   

10.
The nature and role of the depolarizing afterpotentials (DAPs) of buccal motoneurons of Tritonia diomedea were examined. Neuron B5 exhibits a DAP whose ionic dependence and modifiability by TEA and 4-AP suggest a similarity to the DAP previously described in pleural pacemaker neurons. Reduction of the DAP severely reduces the ability of these neurons to generate bursts of action potentials. Certain other motoneurons (B1 and B6) are reexcited by a slow DAP (SDAP) which appears to be of synaptic origin. It is concluded that DAPs, which are dependent upon motoneuron activity, contribute to the synthesis of motor output by the buccal ganglion.  相似文献   

11.
In the pond snail, Lymnaea stagnalis, the paired buccal ganglia contain 3 octopamine-immunoreactive neurons, which have previously been shown to be part of the feeding network. All 3 OC cells are electrically coupled together and interact with all the known buccal feeding motoneurons, as well as with all the modulatory and central pattern generating interneurons in the buccal ganglia. N1 (protraction) phase neurons: Motoneurons firing in this phase of the feeding cycle receive either single excitatory (depolarising) synaptic inputs (B1, B6 neurons) or a biphasic response (hyperpolarisation followed by depolarisation) (B5, B7 motoneurons). Protraction phase feeding interneurons (SO, N1L, NIM) also receive this biphasic synaptic input after OC stimulation. All of protraction phase interneurons inhibit the OC neurons. N2 (retraction) phase neurons: These motoneurons (B2, B3, B9, B10) and N2 interneurons are hyperpolarised by OC stimulation. N2 interneurons have a variable (probably polysynaptic) effect on the activity of the OC neurons. N3 (swallowing) phase: OC neurons are strongly electrically coupled to both N3 phase (B4, B4cluster, B8) motoneurons and to the N3p interneurons. In case of the interneuronal connection (OC<->N3) the electrical synapse is supplemented by reciprocal chemical inhibition. However, the synaptic connections formed by the OC neurons or N3p interneurons to the other members of the feeding network are not identical. CGC: The cerebral, serotonergic CGC neurons excite the OC cells, but the OC neurons have no effect on the CGC activity. In addition to direct synaptic effects, the OC neurons also evoke long-lasting changes in the activity of feeding neurons. In a silent preparation, OC stimulation may start the feeding pattern, but when fictive feeding is already occurring, OC stimulation decreases the rate of the fictive feeding. Our results suggest that the octopaminergic OC neurons form a sub-population of N3 phase feeding interneurons, different from the previously identified N3p and N3t interneurons. The long-lasting effects of OC neurons suggest that they straddle the boundary between central pattern generator and modulatory neurons.  相似文献   

12.
 The properties of membrane potential changes of skeletomotor neurons (S, FR, and FF) innervating triceps surae muscles during pseudorandom stretching of these muscles were studied in decerebrate cats. Peak amplitudes of pseudorandom muscle stretches ranged from 119 μm to 4.15 mm peak-to-peak. Sequences of ten identical stretching periods were applied for averaging. Shapes of membrane potential changes and probability density distribution of amplitudes of the input and output signals and power spectra suggest that the skeletomotor neuron membrane has nonlinear properties. First- and second-order Wiener kernels were determined by applying the cross-correlation (Lee-Schetzen) method. The results suggest that the transfer function between muscle stretches and subthreshold membrane potentials is a Wiener-type cascade. This cascade is consistent with a linear, second-order, underdamped transfer function followed by a simple quadratic nonlinearity [linear (L) system followed by nonlinear (N) system, or LN cascade]. Including the nonlinear component calculated from the second-order Wiener kernel improved the model significantly over its linear counterpart, especially in S-type motoneurons. Qualitatively similar results were obtained with all types of motoneurons studied. Received: 1 April 1993/Accepted in revised form: 24 March 1994  相似文献   

13.
Summary Connections between the four DMD neurons and metathoracic motoneurons in the locustSchistocerca were examined by recording extracellularly from the interneurons in the pro-mesothoracic connectives and intracellularly from seventeen motoneurons. A DIMD or DCMD spike causes an EPSP in the fast extensor tibiae motoneuron, which can be modified by changing the membrane potential. The EPSP always follows spikes at frequencies up to 200 Hz and with a latency of 0.9 ms, suggesting that the connections are monosynaptic and chemically mediated. EPSPs from the DIMD or DCMD arrive at the same time, their axons having the same conduction velocity, and appear simultaneously in the fast extensor tibiae motoneurons on both sides of the ganglion. There is spatial and temporal summation between the inputs but on no occasion did the motoneurons spike. Three inhibitory neurons are depolarized by DMD inputs and may on occasion spike, but it is not known whether these connections are direct. Similarly the slow excitatory motoneuron to the anterior coxal adductor muscle is hyperpolarized by DMD input. Other leg, flight or ventilatory motoneurons examined received no inputs from the DMD neurons. The connections shown are consistent with the hypothesis that the DMD neurons are in some way involved with initiation of a jump, but to achieve this must act synergistically with other inputs. This work was supported in part by USPHS grant No. NS 09404-03 to C.H.F.R. Dr. Rowell wishes to thank Dr. J. Phillipson for the use of facilities in the Oxford Department of Zoology during sabbatical leave.  相似文献   

14.
The pteropod mollusc Clione limacina is a highly specialized carnivore which feeds on shelled pteropods and uses, for their capture, three pairs of oral appendages, called buccal cones. Contact with the prey induces rapid eversion of buccal cones, which then become tentacle-like and grasp the shell of the prey. In the previous paper, a large group of electrically coupled, normally silent cells (A motoneurons) has been described in the cerebral ganglia of Clione. Activation of A neurons induces opening of oral skin folds and extrusion of the buccal cones. The present study continues the analysis of the electrical properties of A motoneurons.Brief intracellular stimulation of an A neuron can produce prolonged firing (afterdischarge), lasting up to 40 s, in the entire population of A neurons. Afterdischarge activity is based on an afterdepolarization evoked by an initial strong burst of A neuron spikes. The data suggest that this afterdepolarization represents excitatory synaptic input from unidentified neurons which in turn receive excitatory inputs from A neurons, thus organizing positive feedback. The main functional role of this positive feedback is the spread and synchronization of spike activity among all A neurons in the population. In addition, it serves to transform a brief excitatory input to A neurons into their prolonged and stable firing, which is required during certain phases of feeding behavior in Clione.  相似文献   

15.
In decerebrate, paralyzed, and ventilated cats, we recorded the activity of 100 spontaneously active phrenic motor axons during the increased phrenic discharges characteristic of fictive vomiting (FV) and coughing (FC). During control respiratory cycles, approximately one-half the neurons were recruited in the first decile of inspiration; recruitment continued throughout inspiration. During FV, the duration of phrenic discharge was halved; 20 of 26 motoneurons studied were recruited in the first decile of the burst. During FC, recruitment times did not change compared with control, although the duration of the phrenic burst doubled. Discharge frequencies increased and recruitment order of phrenic motoneurons was virtually unaffected during FC and FV. Limited recruitment of previously inactive neurons in the filaments from which we recorded was found during FV and FC. During FV, 1 previously inactive motoneuron was recruited in 16 filaments containing 25 spontaneously active motor axons. During FC, 3 new motoneurons were recruited in addition to the 64 already active in 35 filaments. Recruitment during FV and FC was absent even when recording from filaments known, on the basis of antidromic activation, to contain inactive motor axons. During FV, 10 of 26 motoneurons began their discharges with doublets (interspike interval < 10 ms); doublets occurred in only 4 of 67 motoneurons during FC. Already active phrenic motoneurons contributed to the intense phrenic activity associated with both respiratory (coughing) and nonrespiratory (vomiting) behavior by increases in discharge frequency, earlier recruitment, and doublets; the contribution of previously quiescent motoneurons remains uncertain.  相似文献   

16.
Membrane potentials of respiratory neurons in the ventral respiratory group were recorded using intracellular techniques in the medulla of newborn piglets. Three types of neurons were demonstrated: inspiratory neurons with an augmenting pattern of spike activity during inspiration; postinspiratory neurons with a short decrementing firing pattern that started immediately after inspiration ended; and stage II expiratory neurons with an augmenting spiking pattern that began shortly after inspiratory termination and ended before onset of the next inspiration. When not firing, the membrane potential trajectories of each cell type revealed two complementary patterns of relative inhibition. This latter finding suggests arrival of inhibitory synaptic potentials during these periods. These findings suggest that the respiratory control mechanisms of the newborn piglet are organized in a three-phased manner similar to that of adult cats.  相似文献   

17.
Determination of pulmonary ventilation in anuran amphibians is usually accomplished from recordings of buccal pressure or by pneumotachography. Considering the well described changes in ventilatory pattern during increased respiratory drive, it is pertinent to determine whether the two methods produce comparable ventilatory responses. To resolve this question, a toad was equipped with both a buccal cannula and a pneumotachograph enabling a direct comparison of the two methods. While the two methods result in similar determinations of the overall ventilatory response to hypoxia, there was a poor correlation between buccal pressure and exhaled volume for individual breaths.  相似文献   

18.
The role of octopamine (OA) in the feeding system of the pond snail, Lymnaea stagnalis, was studied by applying behavioural tests on intact animals, and a combination of electrophysiological analysis and morphological labelling in the isolated central nervous system. OA antagonists phentolamine, demethylchlordimeform (DCDM) and 2-chloro-4-methyl-2-(phenylimino)-imidazolidine (NC-7) were injected into intact snails and the sucrose-induced feeding response of animals was monitored. Snails that received 25 to 50 mg kg-1 phentolamine did not start feeding in sucrose, and the same dose of NC-7 reduced the number of feeding animals by 80 to 90% 1 to 3 hours after injection. DCDM treatment reduced feeding by 20 to 60%. In addition, both phentolamine and NC-7 significantly decreased the feeding rate of those animals that still accepted food after 1 to 6 hours of injection. In the central nervous system a pair of buccal neurons was identified by electrophysiological and morphological criteria. After double labelling (intracellular staining with Lucifer yellow followed by OA-immunocytochemistry) these neurons were shown to be OA immunoreactive, and electrophysiological experiments confirmed that they are members of the buccal feeding system. Therefore the newly identified buccal neurons were called OC neurons (putative octopamine containing neurons or octopaminergic cells). Synchronous intracellular recordings demonstrated that the OC neurons share a common rhythm with feeding neurons either appearing spontaneously or evoked by intracellularly stimulated feeding interneurons. OC neurons also have synaptic connections with identified members of the feeding network: electrical coupling was demonstrated between OC neurons and members of the B4 cluster motoneurons, furthermore, chemically transmitted synaptic responses were recorded both on feeding motoneurons (B1, B2 cells) and the SO modulatory interneuron after the stimulation of OC neurons. However, elementary synaptic potentials could not be recorded on the follower cells of OC neurons. Prolonged (20 to 30 s) intracellular stimulation of OC cells activated the buccal feeding neurons leading to rhythmic activity pattern (fictive feeding) in a way similar to OA applied by perfusion onto isolated central nervous system (CNS) preparations. Our results suggest that OA acts as a modulatory substance in the feeding system of Lymnaea stagnalis and the newly identified pair of OC neurons belongs to the buccal feeding network.  相似文献   

19.
Summary This study describes the neural basis of respiratory behavior in a pulmonate mollusc, Lymnaea stagnalis. We describe and identify muscles of the respiratory orifice (pneumostome) and mantle cavity as well as relevant motor neurons innervating these muscles. All of these identified motor neurons are active during spontaneously occurring respiratory behavior and a sporadically occurring synaptic input, termed Input 3, controls the activities of these motor neurons. This spontaneous input can also be recorded from isolated brain preparations, suggesting that the respiratory motor program is generated centrally. However, evidence is also presented that in semi-intact preparations the role of peripheral feedback is important for the initiation and termination of respiratory behavior in Lymnaea.  相似文献   

20.
Using decerebrate frogs (Rana catesbeiana), we investigated the role of vagal and laryngeal sensory feedback in controlling motor activation of the larynx. Vagal and laryngeal nerve afferents were activated by electrical stimulation of the intact vagal and laryngeal nerves. Pulmonary afferents were activated by lung inflation. Reflex responses were recorded by measuring efferent activity in the laryngeal branch of the vagus (Xℓ) and changes in glottal aperture. Two glottic closure reflexes were identified, one evoked by lung inflation or electrical stimulation of the main branch of the vagus (Xm), and the other by electrical stimulation of Xℓ. Lung inflation evoked a decrementing burst of Xℓ efferent activity and electrical stimulation of Xm resulted in a brief burst of Xℓ action potentials. Electrical stimulation of Xℓ evoked a triphasic mechanical response, an abrupt glottal constriction followed by glottal dilatation followed by a long-lasting glottal constriction. The first phase was inferred to be a direct (nonreflex) response to the stimulus, whereas the second and third represent reflex responses to the activation of laryngeal afferents. Intracellular recordings of membrane potential of vagal motoneurons of lung and nonlung types revealed EPSPs in both types of neurons evoked by stimulation of Xm or Xℓ, indicating activation of glottal dilator and constrictor motoneurons. In summary, we have identified two novel reflexes producing glottic closure, one stimulated by activation of pulmonary receptors and the other by laryngeal receptors. The former may be part of an inspiratory terminating reflex and the latter may represent an airway protective reflex. © 1997 John Wiley & Sons, Inc. J Neurobiol 33: 213–222, 1997  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号