首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
中华绒螯蟹一龄早熟和二龄成熟家系生长规律的比较研究   总被引:2,自引:0,他引:2  
中华绒螯蟹(Eridcheir sinensis)1龄性早熟是扣蟹养殖过程中的一个重要问题,尚不清楚1龄性早熟和2龄正常性成熟后代的生长发育规律是否存在差异,本研究通过构建1龄性早熟和正常性成熟中华绒螯蟹家系,综合比较了单养条件下两种家系子一代(以下简称早熟F1和正常F1)在扣蟹和成蟹阶段的生长蜕壳规律、雌蟹腹脐覆盖腹甲宽度比例、成熟后的性腺指数(GSI)和肝胰腺指数(HSI)。结果显示:(1)早熟F1雄体在第1、2次和第7、8次蜕壳后的体重显著大于正常F1雄体(P0.05);而早熟F1雌体在第1~5次和第7次蜕壳后的体重显著大于正常F1雌体(P0.05);(2)第1和2次蜕壳后早熟F1的增重率较高,正常F1在第3~8次蜕壳后的增重率略高于早熟F1,两群体在扣蟹阶段的特定生长率均呈下降趋势,且正常F1高于早熟F1,其中雌雄个体在第3~4次蜕壳后的特定生长率均存在显著差异(P0.05);(3)早熟F1在第1~5次蜕壳间隔较长,而第6~8次蜕壳间隔较短;两种家系在扣蟹养殖阶段蜕壳4~6次,成蟹养殖阶段蜕壳2~4次,其中早熟F1在扣蟹阶段的平均蜕壳次数低于正常F1,而在成蟹阶段的平均蜕壳次数高于正常F1;(4)早熟F1腹脐覆盖腹甲宽度比例一直高于正常F1,但二者无显著差异(P0.05);(5)无论雌体还是雄体,早熟F1和正常F1的性腺指数和肝胰腺指数均无显著差异,单养条件下性腺均可发育成熟(P0.05)。综上,单养条件下,中华绒螯蟹早熟F1和正常F1的生长模式存在显著差异,两者都可以完成生殖蜕壳和性腺发育成熟,这为今后深入研究中华绒螯蟹个体生物学提供了理论依据和参考资料。  相似文献   

2.
The caterpillars of Sesamia nonagrioides developing under long-day (LD) photoperiod pupate in the 5th or 6th instar whereas under short day (SD) conditions they enter diapause and undergo several extra larval molts. The diapause is terminated within 1-3 instars upon transfer of SD larvae to the LD conditions. Brain removal from the 6th instar larvae promotes pupation followed by imaginal development; however, one third of the SD larvae and 12% of the LD larvae debrained at the start of the instar first undergo 1-2 larval molts. The incidence of larval molts is enhanced by the brain implants. Exclusively pupal molts occur in the LD larvae debrained late in the 6th instar. Decapitation elicits pupation in both LD and SD larvae, except for some of the 4th and 5th and rarely 6th instar that are induced to a fast larval molt. The pupation of decapitated larvae is reverted to a larval molt by application of a juvenile hormone (JH) agonist. No molts occur in abdomens isolated from the head and thorax prior to the wandering stage. Abdomens isolated later undergo a larval (SD insects) or a pupal (LD insects) molt. Taken together the data reveal that in S. nonagrioides (1) several larval molts followed by a pupal and imaginal molt can occur without brain; (2) an unknown head factor outside the brain is needed for the pupal-adult molt; (3) brain exerts both stimulatory and inhibitory effect on the corpora allata (CA); (4) larval molts induced in CA absence suggest considerable JH persistence.  相似文献   

3.
三种华枝断肢再生的研究   总被引:4,自引:1,他引:3  
目(竹节虫目)的昆虫具有很强的断肢再生能力。该文通过对华枝属(Sinophasma spp)三种昆虫的实验,表明其再生能力与断肢发生的时间及数量有关。断肢1只或2只的1~4龄虫体发育至成虫期或至若虫末龄时,其再生足的长度与相应的正常足长度相近。若在5龄初时断肢1~2只,也具有再生能力,但至成虫期其再生足的长度则短于相对应的正常足。若在6龄及成虫时断肢,则无再生能力(若6龄时出现断肢再生,则若虫期多为7龄)。实验结果还表明,若断肢为3只或3只以上,则虫体不能存活,且多在断肢后2~3 d内死亡。观察中尚发现,再生足生长速度明显高于正常足。而且,断肢的龄期越高,再生足生长速度越快。再生足的伸长生长与正常足一样,均出现于虫体蜕皮时。  相似文献   

4.
Molting and limb regeneration are tightly coupled processes, both of which are regulated by ecdysteroid hormone synthesized and secreted by the Y-organs. Regeneration of lost appendages can affect the timing and duration of the proecdysial, or premolt, stage of the molt cycle. Autotomy of all eight walking legs induces precocious molts in various decapod crustacean species. In the land crab Gecarcinus lateralis, autotomy of a partially regenerated limb bud before a critical period during proecdysis (regeneration index <17) delays molting so that a secondary limb bud (2 degrees LB) forms and the animal molts with a complete set of walking legs. It is hypothesized that 2 degrees LBs secrete a factor, termed limb autotomy factor-proecdysis (LAF(pro)), that inhibits molting by suppressing the Y-organs from secreting ecdysone. Molting was induced by autotomy of eight walking legs; autotomy of primary (1 degrees ) LBs reduced the level of ecdysteroid hormone in the hemolymph 73% by one week after limb bud autotomy (LBA). Injection of extracts from 2 degrees LBs, but not 1 degrees LBs, inhibited 1 degrees LB growth in proecdysial animals, thus having the same effect on molting as LBA. The inhibitory activity in 2 degrees LB extracts was stable after boiling in water for 15 min, but was destroyed by boiling 15 min in 0.1 N acetic acid or incubation with proteinase K. These results support the hypothesis that LAF(pro) is a peptide that resembles a molt-inhibiting hormone.  相似文献   

5.
The larvae of Sesamia nonagrioides (Lepidoptera: Noctuidae) grown at 25 degrees C and long photoperiod (16:8h light:dark) pupate in the 5th or 6th (mostly) larval instar, while the larvae reared under a short photoperiod (12:12h) enter diapause during which they consume some food and undergo up to 12 (usually 3-4) stationary larval molts. Diapause programming includes an increase of juvenile hormone (JH) titer in the hemolymph from about 20 to 50 nM in the 4th and 5th instar larvae (titer in earlier instars was not measured). JH I, II, and III are present in approximate ratio 1-2:10:1. The JH titer drops to zero before pupation but remains around 20 nM during diapause. Perfect extra larval molts associated with a body weight increase can be induced in the non-diapausing larvae with a JH analogue (JHA). The weight rise is due to accumulation of reserves and not to a general body growth. The timing of extra molts is similar to the molting pattern of the diapausing larvae only when JHA is present since early larval instars. In the diapausing larvae, JHA application affects neither molting periodicity nor the body weight. It is concluded that (1) Increased JH titer in early larval instars is a part of diapause programming; (2) The extension of larval stage in the diapausing larvae, but not the timing pattern of extra molts, is due to continuously high JH titer; (3) The diapause program includes low food intake, maintenance of a certain body weight, and periodic larval molts.  相似文献   

6.
A study of Haller's organ regeneration in nymphs and adults of Haemaphysalis turturis and parthenogenetic females of H. longicornis, from which the forelegs had been amputated during the previous instar, revealed structural changes in regenerated organs. The adult regenerates reestablished atavistic structural features, while the nymphal regenerates retained larval features, which is typical of regenerates of two other genera examined previously (Ixodes and Hyalomma). Data on regeneration of Haller's sensory organ testify to an ancient character of the genus, standing closely to the base of the phylogenetic tree of hard ticks.  相似文献   

7.
Hermit crabs are decapod crustaceans that have adapted to life in gastropod shells. Among their adaptations are modifications to their thoracic appendages or pereopods. The 4th and 5th pairs are adapted for shell support; walking is performed with the 2nd and 3rd pereopods, with an alternation of diagonal pairs. During stance, the walking legs are rotated backwards in the pitch plane. Two patterns of walking were studied to compare them with walking patterns described for other decapods, a lateral gait, similar to that in many brachyurans, and a forward gait resembling macruran walking.Video sequences of free walking and restrained animals were used to obtain leg segment positions from which joint angles were calculated. Leading legs in a lateral walk generated a power stroke by flexion of MC and PD joints; CB angles often did not change during slow walks. Trailing legs exhibited extension of MC and PD with a slight levation of CB. The two joints, B/IM and CP, are aligned at 90° angles to CB, MC and PD, moving dorso-anteriorly during swing and ventro-posteriorly during stance. A forward step was more complex; during swing the leg was rotated forward (yaw) and vertically (pitch), due to the action of TC. At the beginning of stance, TC started to rotate posteriorly and laterally, CB was depressed, and MC flexed. As stance progressed and the leg was directed laterally, PD and MC extended, so that at the end of stance the dactyl tip was quite posterior. During walks of the animal out of its shell, the legs were extended more anterior-laterally and the animal often toppled over, indicating that during walking in a shell its weight stabilized the animal.An open chain kinematic model in which each segment was approximated as a rectangular solid, the dimensions of which were derived from measurements on animals, was developed to estimate the CM of the animal under different load conditions. CM was normally quite anterior; removal of the chelipeds shifted it caudally. Application of forces simulating the weight of the shell on the 5th pereopods moved CM just anterior to the thoracic-abdominal junction. However, lateral and vertical coordinates were not altered under these different load conditions. The interaction of the shell aperture with proximal leg joints and with the CM indicates that the oblique angles of the legs, due primarily to the rotation of the TC joints, is an adaptation that confers stability during walking.  相似文献   

8.
The blue crab Callinectes sapidus settles and metamorphoses in areas of aquatic vegetation in estuaries. Crabs in the first-fifth instar stages (J1-5) then emigrate from these areas by walking on the bottom or pelagic dispersal throughout estuaries. The present study was designed to characterize the timing of this migration pattern relative to the light-dark and tidal cycles. Field sampling in Pamlico Sound, NC, USA indicated that J4-5 juveniles were most abundant in the water column during the night. J4-5 juveniles were collected from Pamlico Sound in an area near Oregon Inlet that has semi-diurnal tides, a Mid-Sound area where tides are weak, and on the West side where regular tides do not occur. Crabs from all three sites had a circadian rhythm in which they swam up in the water column during the time of darkness in the field. Peak swimming consistently occurred at about 0300 h, but was not related to the timing of the tidal cycle. Similar results were obtained for juvenile crabs from an adjacent estuary having semi-diurnal tides. Dispersal at night reduces predation by visual predators, and allows early juvenile blue crabs to disperse planktonically from initial settlement sites.  相似文献   

9.
Larvae of Sesamia nonagrioides developing under long day (LD) conditions pupate in the 5th or 6th instar, whereas under the short day (SD) conditions, they undergo several supernumerary larval molts and are regarded as diapausing. The development in early larval instars occurs in the LD larvae at a moderate and in the SD larvae at a high juvenile hormone (JH) titer; ecdysteroid titer cycles similarly under both conditions. The transformation to pupa is initiated by a burst of ecdysteroids at undetectable JH levels, whereas extra larval molts in the diapausing larvae are associated with moderate JH titer and irregular rises of ecdysteroids. Application of 0.2 ppm RH-2485 to the diet of the 6th instar larvae promotes hormonal changes supporting metamorphosis in the LD larvae and slightly accelerates larval molts in the diapausing SD larvae. The 0.5- and 1-ppm doses revert these patterns of endocrine regulations to a mode typical for early larval instars. Particularly dramatic is a JH titer increase provoked within 24 h in the LD larvae. After the treatment, both the LD and SD larvae undergo a series of larval molts, suggesting that hormonal programming of the larval development has been stabilized. A few insects receiving 1 ppm RH-2485, and a high proportion of those fed with 5 ppm RH-2485, deposit two cuticles within a single apolysis and die.  相似文献   

10.
A study of regeneration in nymphs and adults of the South African tick Ixodes (Afrixodes) rubicundus, from which the forelegs had been amputated during the previous instar, revealed that the structural changes in regenerated Haller's sensory organs resemble those observed in other ixodid ticks, in particular in another prostriate tick, Ixodes (Ixodes) ricinus. The adult regenerates re-establish their atavistic features in terms of the increased number of different sensilla on the distal knoll, in the anterior pit and the capsule. The nymphal regenerates, in contrast, re-establish the features of the previous instar through a reduction in the number of some sensilla on the distal knoll and in the post-capsular area. The structural changes in different compartments of the organ appear independent. The phenomenon of regenerative induction through the appearance of specific changes in Haller's organ of the contralateral non-treated foreleg is probably characteristic only of prostriate ticks. A unique modification in the regenerated Haller's organ as revealed by duplication of the Haller's organ capsule was discovered in both I. rubicundus nymphs and adult ticks.  相似文献   

11.
The role of the stemmata in photoperiodism has been examined in holometabolic insects, but the only reliable results in Coleoptera have been obtained in Leptocarabus kumagaii (Carabidae), the larvae of which do not respond to photoperiod without stemmata. In the present study, photoperiodism was examined in another coleopteran, Psacothea hilaris (Pascoe) (Cerambycidae), after surgical removal of the stemmata. Larvae reared under short-day conditions and transferred to long-day conditions on day 2 of the 5th instar pupated without further larval molts, whereas those continuously reared under short-day conditions underwent supernumerary molts and did not pupate. When the stemmata were removed on day 2 of the 5th instar, the larvae pupated under long-day conditions but did not do so under short-day conditions. However, under long-day conditions some underwent supernumerary molts before pupation. Larvae from which the sensilla trichodeum were removed showed a similar response to that of stemmata-deficient larvae, and larvae from which stemmata were removed at a younger stage (day 2 of the 4th instar) responded to photoperiod similarly to intact larvae. Thus, supernumerary molts under long-day conditions after removal of the stemmata were attributed to injury due to surgery, rather than a change in photoperiodic photoreception. Therefore, we conclude that larvae of P. hilaris show a photoperiodic response after removal of stemmata, in contrast to larvae of L. kumagaii.  相似文献   

12.
After injury many arthropods are able to regenerate lost body parts and their innervation. Here, regeneration was studied in the desert locust Schistocerca gregaria after amputation of the midleg tibia and tarsus in the first larval instar. A regenerate was formed first in the third larval instar and it increased in size with each larval moult. The regenerate was always unsegmented and remained much shorter than the intact leg parts. The growth rate was initially rather high and decreased thereafter to that of intact parts. The amputation also influenced the growth rate of proximal leg parts (femur and trochanter) resulting in shortened leg segments. The regenerate carried many sense organs like trichoid sensilla and canal sensilla. The primary mechanosensory neurons of the trichoid sensilla projected somatotopically into the mesothoracic ganglion. A comparison of these projections from intact leg segments and regenerates showed a regrow into the target neuropil areas and a restoration of the somatotopy. Intact sensilla on the injured leg and regenerated sensilla expanded their central projections lateral-medially.  相似文献   

13.
In the land crab, Gecarcinus lateralis, autotomy of partially regenerated limbs before a critical stage in the premolt period results in (1) a very rapid decrease in the serum ecdysone titer, (2) a delay in the growth of partial regenerates remaining on the animal, (3) a delay in the deposition of gastroliths, and (4) a delay in cytological changes in the epidermis. Serum ecdysone titers remain low while new limb regenerates form at the sites of those removed. Ecdysone titers rise when these secondary regenerates complete basal regeneration. Premolt events, which had ceased at the time of autotomy of the partial regenerates, resume their normal patterns of development when ecdysone titers reach the level present in the serum at the time of this interruption. We propose that the effect of autotomy before a critical period is to reinitiate a normal proecdysis. The same pattern of events occurs following autotomy of partial regenerates of crabs without eyestalks, suggesting that the decrease of serum ecdysones is brought about by some mechanism other than changes in the titer of the molt inhibitory hormone.  相似文献   

14.
An analysis was made of the regeneration of legs and antennae of Oncopeltus. Amputations were performed on first instar larvae within 24 hr after hatching, and on later instars within 24 hr after ecdysis. The resulting regenerates were then measured at each instar. When amputations were performed soon after hatching, there was no significant effect on the duration of any instar. The regenerate was usually visible after the second post-operative ecdysis, and was smaller than a normal appendage (hypomorphic). Removal of the three distal segments of the antenna usually resulted in regeneration of only one segment which was abnormally long and showed a combination of the bristle patterns characteristic of the two most distal segments of the control. In a few such cases a partial intersegmental membrane was present in the regenerated segment. Removal of the tarsus resulted in a structurally complete regenerate which was smaller than the control tarsus. The largest leg regenerates were obtained when amputation was performed through the tibia. With amputation through the femur, a decrease in length of the remainder of this segment was observed after the first ecdysis. This type of amputation and amputation through the trochanter in some cases resulted in the formation of a globular stump containing tarsal claws. The results indicate that amputation of part of an appendage in Oncopeltus does not stimulate an increased growth rate in the stump, but merely causes reorganization of the stump material which subsequently grows at the normal rate. Since even the most hypomorphic regenerates contained well-formed claws, even though proximal parts were missing, it appears that the reorganization process must begin at the most distal point and proceed proximally.  相似文献   

15.
Blue crab, Callinectes sapidus Rathbun, megalopae settle in seagrass or other complex submerged aquatic habitats in estuaries, where they metamorphose to the first juvenile (J1) crab stage. Within tidal areas, early juveniles (J1-2) leave such nursery areas by undergoing secondary dispersal during nocturnal flood tides. The present study determined whether J1-2 blue crabs have a biological rhythm in vertical swimming activity that contributes to secondary dispersal. Endogenous rhythms in vertical swimming were determined for (1) J1-2 crabs collected from two estuaries with semi-diurnal tides, (2) J1 crabs that metamorphosed from the megalopal stage in the laboratory the day after collection, and (3) premolt megalopae that metamorphosed to J1 crabs under constant conditions during the experiment. In all cases, a circadian rhythm was present in which crabs swam vertically during the time of night in the field. The time of peak vertical swimming did not correspond to the time of flood tide at the collection sites, but did consistently occur at night, with a mean around midnight. While responses to environmental factors probably control the onset and end of vertical swimming by early juvenile blue crabs during flood tides in tidal areas, a circadian rhythm underlies secondary dispersal at night.  相似文献   

16.
The development of the Mediterranean corn borer, Sesamia nonagrioides, under long-day (LD) photoperiod is associated with juvenile hormone (JH) decline and pupation in the 5th or 6th larval instar. The larvae grown under short-day (SD) conditions maintain a moderate JH titer and enter diapause during which they undergo several extra larval molts. Both types of larvae exhibit similar levels of juvenile hormone esterase (JHE) activity that increases in each instar during the period of low ecdysteroid titer and drops when the titer rises to a molt-inducing peak. A suppression of JHE activity within 24h after application of an ecdysteroid agonist suggests that the drop of activity is a rapid and possibly direct response to ecdysteroids or their agonist. Esterase inhibitor 3-octylthio-1,1,1-trifluoro-2-propanone (OTFP) suppressed more than 98% of the JHE activity without affecting pupation timing and adult development. The data indicate that JHE is not crucial for the switch between larval development, diapause, and metamorphosis in S. nonagrioides.  相似文献   

17.
The postembryonic development of the female reproductive system in the pycnogonid Propallene longiceps is examined. The germ cells can be detected first in the later stage of the 3rd instar and become a paired gonad covered with gonadal epithelium in the next instar. The larval gonad changes its shape: paired at the 4th instar, reversed U-shaped at the fifth, unpaired at the sixth, and paired again at the seventh. Oocytes can be distinguished, and the extension of the ovary into the walking legs begins at the 7th instar. Growing oocytes protrude outward from the ovary on cellular stalks in the pedal part. The trunk ovary becomes U-shaped, and the oviducts and genital pores start forming at the 8th instar. The disappearance of trunk ovary begins at the 9th instar, and is complete at the next adult stage. The connection between the pedal ovarian lumen and the genital pores via the oviducts is complete in the adult, and the female reproductive system becomes segmentally arranged. This study confirms that the segmental arrangement of adult female reproductive system in P. longiceps, which is unique among recently described arthropods, is a secondary state in pycnogonids attained by reducing the trunk part of ovary.  相似文献   

18.
ABSTRACT. The receptor apodemes of the femoral chordotonal organs of hind legs of locust larvae were crossed. This reverses the sign of the chordotonal organ afferences. Animals were operated during the second, third and fourth instars and some could be reared to adults with the receptor apodeme remaining crossed. During walking, the animals did not habituate to the incorrect afference, but those operated at the beginning of the third instar altered their walking programme to some extent. The results from animals operated during the second instar and the first 2 days of the third instar were ambiguous. The jumping generator is not affected by the incorrect afference.  相似文献   

19.
At 25 degrees C and under a long-day photoperiod, all 5th instar Psacothea hilaris larvae pupate at the next molt. Under a short-day photoperiod, in contrast, they undergo one or two additional larval molts and enter diapause; the 7th instar larvae enter diapause without further molt. The changes in hemolymph juvenile hormone (JH III) titers, JH esterase activity, and ecdysteroid titers in pupation-destined, pre-diapause, and diapause-destined larvae were examined. JH titers of the 5th instar pupation-destined larvae decreased continuously from 1.3 ng/ml and became virtually undetectable on day 13, when JH esterase activity peaked. Ecdysteroids exhibited a small peak on day 8, 1 day before gut purge, and a large peak on day 11, 2 days before the larvae became pre-pupae. The two ecdysteroid peaks are suggested to be associated with pupal commitment and pupation, respectively. JH titers of the 5th instar pre-diapause larvae were maintained at approximately 1.5 ng/ml for 5 days and then increased to form a peak (3.3 ng/ml) on day 11. JH esterase activity remained at a low level throughout. Ecdysteroid levels exhibited a large peak of 40 ng/ml on day 18, coincident with the larval molt to the 6th instar. JH titers of the 7th instar diapause-destined larvae peaked at 1.9 ng/ml on day 3, and a level of approximately 1.1 ng/ml was maintained even 30-60 days into the instar, when they were in diapause. Ecdysteroid titers remained approximately 0.02 ng/ml. Diapause induction in this species was suggested to be a consequence of high JH and low ecdysteroid titers.  相似文献   

20.
Termites are social cockroaches and this sociality is founded on a high plasticity during development. Three molting types (progressive, stationary and regressive molts) are fundamental to achieve plasticity during alate/sexual development, and they make termites a major challenge to any model on endocrine regulation in insect development. As the endocrine signatures underpinning this plasticity are barely understood, we studied the developmental dynamics and their underlying juvenile hormone (JH) titers in a wood-dwelling termite, Cryptotermes secundus, which is characterized by an ancestral life style of living in dead wood and individuals being totipotent in development. The following general pattern elements could be identified during winged sexual development (i) regressive molts were accompanied by longer intermolt periods than other molting types, (ii) JH titers decreased gradually during the developmental transition from larva (immatures without wing buds), to nymph (immatures with wing buds), to winged adult, (iii) in all nymphal stages, the JH titer rose before the next molt and dropped thereafter within the first week, (iv) considerable variation in JH titers occurred in the midphase of the molting cycle of the 2nd and 3rd nymphal instar, inferring that this variation may reflect the underlying endocrine signature of each of the three molting types, (v) the 4th nymphal instar, the shortest of all, seems to be a switch point in development, as nymphs in this stage mainly developed progressively. When comparing these patterns with endocrine signatures seen in cockroaches, the developmental program of Cryptotermes can be interpreted as a co-option and repetitive use of hormonal dynamics of the post dorsal-closure phase of cockroach embryonic development.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号