首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The effects of hypotonic shock on cell volume, taurine influx and efflux were examined in the human erythroleukemic cell line K562. Cells exposed to hypotonic solutions exhibited a regulatory volume decrease (RVD) following rapid increases in cell volume. Cell swelling was associated with a increased taurine influx and efflux. The volume-activated taurine pathway was Na+-independent, and increased in parallel with increasing cell volume. The chloride channel blocker, 2,5-dichlorodiphenylamine-2-carboxylic acid (DCDPC), completely blocked the volume-activated taurine influx and efflux, while [dihydroin-denyl]oxy]alkanoic acids (DIOA) and 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB), an anion exchanger and anion channel blocker, respectively, also inhibited significantly. These results suggest that taurine transport is increased in response to hypotonic stress, which may be mediated via a volume-activated, DCDPC-sensitive anion channel. © 1996 Wiley-Liss, Inc.  相似文献   

2.
Single-channel patch-clamp experiments were performed on MDCK cells in order to characterize the ionic channels participating in regulatory volume decrease (RVD). Subconfluent layers of cultured cells were exposed to a hypotonic medium (150 mOsm), and the membrane currents at the single-channel level were measured in cell-attached experiments. The results indicate that MDCK cells respond to a hypotonic swelling by activating several different ionic conductances. In particular, a potassium and a chloride channel appeared in the recordings more frequently than other channels, and this allowed a more detailed study of their properties in the inside-out configuration of the patch-clamp technique. The potassium channel had a linear I/V curve with a unitary conductance of 24 +/- 4 pS in symmetrical K+ concentrations (145 mM). It was highly selective for K+ ions vs. Na+ ions: PNa/PK less than 0.04. The time course of its open probability (P0) showed that the cells responded to the hypotonic shock with a rapid activation of this channel. This state of high activity was maintained during the first minute of hypotonicity. The chloride channel participating in RVD was an outward-rectifying channel: outward slope conductance of 63.3 +/- 4.7 pS and inward slope conductance of 26.1 +/- 4.9 pS. It was permeable to both Cl- and NO3- and its maximal activation after the hypotonic shock was reached after several seconds (between 30 and 100 sec). The activity of this anionic channel did not depend on cytoplasmic calcium concentration. Quinine acted as a rapid blocker of both channels when applied to the cytoplasmic side of the membrane. In both cases, 1 mM quinine reversibly reduced single-channel current amplitudes by 20 to 30%. These results indicate that MDCK cells responded to a hypotonic swelling by an early activation of highly selective potassium conductances and a delayed activation of anionic conductances. These data are in good agreement with the changes of membrane potential measured during RVD.  相似文献   

3.
4.
Volume-sensitive K transport in human erythrocytes   总被引:13,自引:5,他引:8       下载免费PDF全文
Studies have been carried out on human erythrocytes to examine the alterations of K transport induced by swelling or shrinking the cells by osmotic and isosmotic methods. Hypotonic swelling of erythrocytes (relative cell volume, 1.20) resulted in a striking, four- to fivefold augmentation in the ouabain-resistant K influx over the value obtained at a normal cell volume. Shrinking the cells in hypertonic media resulted in a small but statistically significant reduction in K influx. Three different methods of varying cell volume gave similar results. These include the addition of sucrose and of NaCl to hypotonic media and the isosmotic (nystatin) method. The major fraction of the K influx in swollen cells is specific in its requirement for Cl or Br and is not supported by thiocyanate, iodide, nitrate, methylsulfate, or acetate. Bumetanide (0.1 mM), MK-196 (0.2 mM), and piretanide (1 mM) are poorly effective in suppressing K uptake in swollen cells, but at higher concentrations, bumetanide (1 mM) inhibits 80% of the Cl-dependent K influx in swollen cells. The bumetanide concentration required to inhibit 50% of the Cl-dependent K influx is 0.17 mM. The volume-sensitive K influx is independent of both extracellular and intracellular Na, so that the (Na + K + 2Cl) cotransport pathway is not a likely mediator of the volume-sensitive K transport. A variety of inhibitors of the Ca-activated K channel are ineffective in suppressing swelling-induced K influx. Like K uptake, the efflux of K is also enhanced by cell swelling. Swelling-activated K efflux is Cl dependent, is independent of extracellular and intracellular Na, and is observed with both hypotonic and isosmotic methods of cell swelling. The activation of K efflux by cell swelling is observed in K-free media, which suggests that the volume-sensitive K transport pathway is capable of net K efflux. The addition of external K to hypotonic media resulted in an increase in K efflux compared with the efflux in K-free media, and this increase was probably due to K/K exchange. Thus, hypotonic or isosmotic swelling of human erythrocytes results in the activation of a ouabain-resistant, Cl-dependent, Na-independent transport pathway that is capable of mediating both net K efflux and K/K exchange.  相似文献   

5.
Volume-induced increase of anion permeability in human lymphocytes   总被引:14,自引:7,他引:7       下载免费PDF全文
Peripheral blood mononuclear cells (PBM) readjust their volumes after swelling in hypotonic media. This regulatory volume decrease (RVD) is associated with a loss of cellular K+ and is thought to be promoted by an increased permeability to this ion. In contrast, no change in volume was observed when K+ permeability of PBM in isotonic media was increased to comparable or higher levels using valinomycin. Moreover, valinomycin-induced 86Rb+ loss in K+-free medium was considerably slower than in K+-rich medium. These results suggest that anion conductance limits net salt loss in isotonic media. Direct measurements of relative conductance confirmed that in volume-static cells, anion conductance is lower than that of K+. In volume-regulating cells depolarization occurred presumably as a result of increased anion conductance. Accordingly, the efflux of 36Cl from PBM was markedly increased by hypotonic stress. Since both membrane potential and intracellular 36Cl concentration are reduced in hypotonically swollen cells, the increased efflux is probably due to a change in Cl- permeability. Anions and cations seem to move independently through the volume-induced pathways: the initial rate of 86Rb uptake in swollen cells was not affected by replacement of external Cl- by SO=4; conversely, 36Cl fluxes were unaffected by substitution of K+ by Na+. The data indicate that anion conductance is rate-determining in salt and water loss from PBM. An increase in anion conductance is suggested to be the critical step of RVD of human PBM.  相似文献   

6.
Human peripheral blood lymphocytes regulate their volumes in hypotonic solutions. In hypotonic media in which Na+ is the predominant cation, an initial swelling phase is followed by a regulatory volume decrease (RVD) associated with a net loss of cellular K+. In media in which K+ is the predominant cation, the rapid initial swelling is followed by a slower second swelling phase. 86Rb+ fluxes increased during RVD and returned to normal when the original volume was approximately regained. Effects similar to those induced by hypotonic stress could also be produced by raising the intracellular Ca++ level. In isotonic, Ca++- containing media cells were found to shrink upon addition of the Ca++ ionophore A23187 in K+-free media, but to swell in K+-rich media. Exposure to Ca++ plus A23187 also increased 86Rb+ fluxes. Quinine (75 microM), an inhibitor of the Ca++-activated K+ pathway in other systems blocked RVD, the associated K+ loss, and the increase in 86Rb+ efflux. Quinine also inhibited the volume changes and the increased 86Rb fluxes induced by Ca++ plus ionophore. The calmodulin inhibitors trifluoperazine, pimozide and chlorpromazine blocked RVD as well as Ca++ plus A23187-induced volume changes. Trifluoperazine also prevented the increase in 86Rb+ fluxes and K+ loss induced by hypotonicity. Chlorpromazine sulfoxide, a relatively ineffective calmodulin antagonist, was considerably less potent as an inhibitor of RVD than chlorpromazine. It is suggested than an elevation in cytoplasmic [Ca++], triggered by cell swelling, increases the plasma membrane permeability to K+, the ensuing increased efflux of K+, associated anions, and osmotically obliged water, leading to cell shrinking (RVD).  相似文献   

7.
After osmotic swelling, cell volume is regulated by a process called regulatory volume decrease (RVD). Although actin cytoskeletons are known to play a regulatory role in RVD, it is not clear how actin‐binding proteins are involved in the RVD process. In the present study, an involvement of an actin‐binding protein, α‐actinin‐4 (ACTN4), in RVD was examined in human epithelial HEK293T cells. Overexpression of ACTN4 significantly facilitated RVD, whereas siRNA‐mediated downregulation of endogenous ACTN4 suppressed RVD. When the cells were subjected to hypotonic stress, the content of ACTN4 increased in a 100,000 × g pellet, which was sensitive to cytochalasin D pretreatment. Protein overlay assays revealed that ABCF2, a cytosolic member of the ABC transporter superfamily, is a binding partner of ACTN4. The ACTN4‐ABCF2 interaction was markedly enhanced by hypotonic stimulation and required the NH2‐terminal region of ABCF2. Overexpression of ABCF2 suppressed RVD, whereas downregulation of ABCF2 facilitated RVD. We then tested whether ABCF2 has a suppressive effect on the activity of volume‐sensitive outwardly rectifying anion channel (VSOR), which is known to mediate Cl? efflux involved in RVD, because another ABC transporter member, CFTR, was shown to suppress VSOR activity. Whole‐cell VSOR currents were largely reduced by overexpression of ABCF2 and markedly enhanced by siRNA‐mediated depletion of ABCF2. Thus, the present study indicates that ACTN4 acts as an enhancer of RVD, whereas ABCF2 acts as a suppressor of VSOR and RVD, and suggests that a swelling‐induced interaction between ACTN4 and ABCF2 prevents ABCF2 from suppressing VSOR activity in the human epithelial cells. J. Cell. Physiol. 227: 3498–3510, 2012. © 2012 Wiley Periodicals, Inc.  相似文献   

8.
The involvement of Ca2+ in the regulatory volume decrease (RVD) mechanism was studied in both isolated enterocytes and intestine of the eel, Anguilla anguilla. Videometric methods and electrophysiological techniques were respectively employed. The isolated enterocytes rapidly swelled following a change from isotonic (315 mOsm/kg) to hypotonic (180 mOsm/kg) saline solutions. Afterwards, they tended to recover their original size. This homeostatic response was inhibited both in the absence of extracellular Ca2+ and in the presence of TMB8, an inhibitor of Ca2+ release from intracellular stores. It is likely that Ca2+ entry through verapamil-sensitive Ca2+ channels is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. The observation that a 10-fold increase of K+ concentration as well as the presence of quinine in the hypotonic solution completely abolished RVD indicated the involvement of K+ in this response. Experiments performed with the isolated intestine suggested that the opening of basolateral K+ channels facilitates K+ loss (and hence water efflux) from the cell during RVD and that this opening is probably due to Ca2+ entry into the cell through both the mucosal and the serosal membranes.  相似文献   

9.
The response of isolated digestive cells of the digestive gland of Mytilus galloprovincialis to hypotonic shock was studied using videometric methods. The isolated cells exposed to a rapid change (from 1100 to 800 mosmol kg?1) of the bathing solution osmolality swelled but thereafter underwent a regulatory volume decrease (RVD), tending to recover the original size. When the hypotonic stress was applied in the presence of quinine and glibenclamide, known inhibitors of swelling activated ion channels, the cells did not exhibit an RVD response; in addition, they showed a larger increase in size in respect to control cells. These observations suggest that the digestive cells of the digestive gland have the machinery to cope with the hyposmotic shock allowing them to exhibit a small but significant RVD preventing an excessive increase in cell size. The pharmacological treatment of digestive cells during the RVD experiments suggests that cell volume is regulated by K+ and Cl? efflux followed by an obliged water efflux from the cell. The involvement of organic osmolytes such as taurine and betaine seems to be excluded by NMR measurement on digestive cells. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The metabolic coupling of insulin secretion by pancreatic beta cells is mediated by membrane depolarization due to increased glucose-driven ATP production and closure of K(ATP) channels. Alternative pathways may involve the activation of anion channels by cell swelling upon glucose uptake. In INS-1E insulinoma cells superfusion with an isotonic solution containing 20 mM glucose or a 30% hypotonic solution leads to the activation of a chloride conductance with biophysical and pharmacological properties of anion currents activated in many other cell types during regulatory volume decrease (RVD), i.e. outward rectification, inactivation at positive membrane potentials and block by anion channel inhibitors like NPPB, DIDS, 4-hydroxytamoxifen and extracellular ATP. The current is not inhibited by tolbutamide and remains activated for at least 10 min when reducing the extracellular glucose concentration from 20 mM to 5 mM, but inactivates back to control levels when cells are exposed to a 20% hypertonic extracellular solution containing 20 mM glucose. This chloride current can likewise be induced by 20 mM 3-Omethylglucose, which is taken up but not metabolized by the cells, suggesting that cellular sugar uptake is involved in current activation. Fluorescence resonance energy transfer (FRET) experiments show that chloride current activation by 20 mM glucose and glucose-induced cell swelling are accompanied by a significant, transient redistribution of the membrane associated fraction of ICln, a multifunctional 'connector hub' protein involved in cell volume regulation and generation of RVD currents.  相似文献   

11.
The technique for the simultaneous recording of cell volume changes and pHi in single cells was used to study the role of HCO3- in regulatory volume decrease (RVD) by the osteosarcoma cells UMR-106-01. In the presence of HCO3-, steady state pHi is regulated by Na+/H+ exchange, Na+ (HCO3-)3 cotransport and Na(+)-independent Cl-/HCO3- exchange. Following swelling in hypotonic medium, pHi was reduced from 7.16 +/- 0.02 to 6.48 +/- 0.02 within 3.4 +/- 0.28 min. During this period of time, the cells performed RVD until cell volume was decreased by 31 +/- 5% beyond that of control cells (RVD overshoot). Subsequently, while the cells were still in hypotonic medium, pHi slowly increased from 6.48 +/- 0.02 to 6.75 +/- 0.02. This increase in pHi coincided with an increase in cell volume back to normal (recovery from RVD overshoot or hypotonic regulatory volume increase (RVI)). The same profound changes in cell volume and pHi after cell swelling were observed in the complete absence of Cl- or Na+, providing HCO3- was present. On the other hand, depolarizing the cells by increasing external K+ or by inhibition of K+ channels with quinidine, Ba2+ or tetraethylammonium prevented the changes in pHi and RVD. These findings suggest that in the presence of HCO3-, RVD in UMR-106-01 cells is largely mediated by the conductive efflux of K+ and HCO3-. Removal of external Na+ but not Cl- prevented the hypotonic RVI that occurred after the overshoot in RVD. Amiloride had no effect, whereas pretreatment with 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS) strongly inhibited hypotonic RVI. Thus, hypotonic RVI is mediated by a Na+(out)-dependent, Cl(-)-independent and DIDS-inhibitable mechanism, which is indicative of a Na+(HCO3-)3 cotransporter. This is the first evidence for the involvement of this transporter in cell volume regulation. The present results also stress the power of the new technique used in delineating complicated cell volume regulatory mechanisms in attached single cells.  相似文献   

12.
The aim of this study was to characterize the erythrocyte cell membrane transport of trimethylamine oxide (TMAO) in the little skate, Raja erincea. Uptake of TMAO occurs by two processes, Na(+)-dependent and Na(+)-independent. 2,4 dinitrophenol (2,4 DNP), a known ATP synthesis inhibitor, inhibited TMAO uptake, suggesting the involvement of the Na(+)/K(+)-ATP pump in Na(+)-dependent TMAO transport. Na(+)-independent TMAO uptake was stimulated by cell swelling when erythrocytes were incubated in hypotonic elasmobranch incubation medium. Swelling-activated, Na(+)-independent TMAO uptake was inhibited by the anion transport inhibitors quinine and 4, 4'-diisthiocyanostilbene-2,2'-disulfonic acid (DIDS), two blockers of the swelling-activated osmolyte channel in skate erythrocytes. TMAO efflux was stimulated by hypotonic stress in the erythrocytes of the spiny dogfish, Squalus acanthias. DIDS also inhibited this efflux, indicating that TMAO is transported by the organic osmolyte channel in the erythrocytes of this elasmobranch as well. J. Exp. Zool. 284:605-609, 1999.  相似文献   

13.
We present a new technique for the simultaneous measurement of cell volume changes and intracellular ionic activities in single cells. The technique uses measurement of changes in the concentration of intracellularly trapped fluorescent dyes to report relative cell volume. By using pH- or Ca(2+)-sensitive dyes and recording at the ion-sensitive and -insensitive (isosbestic) wavelengths, the method can measure both cell volume changes and intracellular ionic activities. The technique was used to study the mechanisms of regulatory volume decrease (RVD) in the osteosarcoma cell line UMR-106-01 grown on cover slips. Swelling cells in 4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES)-buffered hypotonic medium was followed by stable cytosolic acidification and a decrease in cell volume back toward normal. The recovery of cell volume could be blocked by depolarization, treatment with ouabain, or depletion of cell Cl-. These suggest the conductive efflux of K+ and Cl- during RVD. The cytosolic acidification that accompanied cell swelling was not blocked by amiloride, bafilomycin A, or removal of Cl- and could not be reproduced by depletion of cellular ATP. These findings exclude Na+/H+ and Cl-/HCO-3 exchange, intracellularly generated acid, or increased metabolism, respectively, as the cause of the acidification. The cell swelling-induced acidification was inhibited by depolarization, suggesting the involvement of an electrogenic pathway. The acidification, as well as RVD, was inhibited by short incubation with deoxyglucose, and these effects could not be reversed by valinomycin. Thus, the anionic pathway(s) participating in RVD and the acidification are sensitive to the cellular level of ATP. Together, these studies indicate that RVD in UMR-106-01 cells in HEPES-buffered medium is mediated by the conductive efflux of K+, Cl-, and OH-.  相似文献   

14.
This study describes the correlation between cell swelling-induced K+ efflux and volume regulation efficiency evaluated with agents known to modulate ion channel activity and/or intracellular signaling processes in a human bronchial epithelial cell line, 16HBE14o(-1). Cells on permeable filter supports, differentiated into polarized monolayers, were monitored continuously at room temperature for changes in cell height (T(c)), as an index of cell volume, whereas (86)Rb efflux was assessed for K+ channel activity. The sudden reduction in osmolality of both the apical and basolateral perfusates (from 290 to 170 mosmol/kg H(2)O) evoked a rapid increase in cell volume by 35%. Subsequently, the regulatory volume decrease (RVD) restored cell volume almost completely (to 94% of the isosmotic value). The basolateral (86)Rb efflux markedly increased during the hyposmotic shock, from 0.50 +/- 0.03 min(-1) to a peak value of 6.32 +/- 0.07 min(-1), while apical (86)Rb efflux was negligible. Channel blockers, such as GdCl(3) (0.5 mM), quinine (0.5 mM) and 5-nitro-2-(3-phenyl-propylamino) benzoic acid (NPPB, 100 microM), abolished the RVD. The protein tyrosine kinase inhibitors tyrphostin 23 (100 microM) and genistein (150 microM) attenuated the RVD. All agents decreased variably the hyposmosis-induced elevation in (86)Rb efflux, whereas NPPB induced a complete block, suggesting a link between basolateral K(+) and Cl(-1) efflux. Forskolin-mediated activation of adenylyl cyclase stimulated the RVD with a concomitant increase in basolateral (86)Rb efflux. These data suggest that the basolateral extrusion of K+ and Cl(-1) from 16HBE14o(-1) cells in response to cell swelling determines RVD efficiency.  相似文献   

15.
The cell regulatory volume decrease (RVD) response triggered by hypotonic solutions is mainly achieved by the coordinated activity of Cl- and K+ channels. We now describe the molecular nature of the K(+) channels involved in the RVD response of the human bronchial epithelial (HBE) cell line 16HBE14o-. These cells, under isotonic conditions, present a K+ current consistent with the activity of maxi K+ channels, confirmed by RT-PCR and Western blot. Single-channel and whole cell maxi K+ currents were readily and reversibly activated following the exposure of HBE cells to a 28% hypotonic solution. Both maxi K+ current activation and RVD response showed calcium dependency, inhibition by TEA, Ba2+, iberiotoxin, and the cationic channel blocker Gd3+ but were insensitive to clofilium, clotrimazole, and apamin. The presence of the recently cloned swelling-activated, Gd3+-sensitive cation channels (TRPV4, also known as OTRPC4, TRP12, or VR-OAC) was detected by RT-PCR in HBE cells. This channel, TRPV4, which senses changes in volume, might provide the pathway for Ca2+ influx under hypotonic solutions and, consequently, for the activation of maxi K+ channels.  相似文献   

16.
Cell swelling and elevated intracellular Ca2+ increase K+ permeability in lymphocytes. Experiments were performed to test whether these effects can also be elicited in isolated plasma membrane vesicles. Rabbit thymocytes, used as a source of membrane vesicles, were found to regain their volume after swelling in hypotonic, low-K+ media. This regulatory volume decrease (RVD) was inhibited by quinine and trifluoperazine, but not affected by ouabain. Both efflux and uptake of K+ (86Rb) were stimulated by hypotonicity. Addition of A23187 plus Ca2+ also increased 86Rb fluxes. Ca2+- and volume-induced 86Rb fluxes were also studied in isolated membranes. A plasma membrane-rich vesicle fraction, enriched over 11-fold in 5'-nucleotidase, was isolated from thymocytes. The vesicles were about 35% inside-out and trapped 86Rb in an osmotically active compartment of approximately 1.3 microliter/mg protein. Equilibrium exchange fluxes of 86Rb in the vesicles were unaffected by Ca2+ with or without A23187. Calmodulin had no effect on 86Rb permeability but stimulated ATP-dependent Ca2+ accumulation. Hypotonic swelling increased both uptake and efflux of 86Rb from vesicles. However, this increase was not blocked by either quinine or trifluoperazine, was not specific for K+ (86Rb), and is probably unrelated to RVD. It is concluded that components essential for the volume- and Ca2+-induced changes in K+ permeability are lost or inactivated during membrane isolation. An intact cytoarchitecture may be required for RVD.  相似文献   

17.
The response of isolated hepatocytes of Sparus aurata to hypotonic shock was studied by the aid of videometric and light scattering methods. The isolated cells exposed to a rapid change (from 370 to 260 mOsm/kg) of the osmolarity of the bathing solution swelled but thereafter underwent a decrease of cell volume tending to recovery the original size. This homeostatic response RVD (regulatory volume decrease) was inhibited in the absence of extracellular Ca2+ and in the presence of TMB8, an inhibitor of Ca2+ release from intracellular stores. It is likely that Ca2+ entry through verapamil sensitive Ca2+-channels, probably leading to a release of Ca2+ from intracellular stores, is responsible for RVD since the blocker impaired the ability of the cell to recover its volume after the hypotonic shock. RVD tests performed in the presence of various inhibitors of different transport mechanisms, such as BaCl2, quinine, glybenclamide and bumetanide as well as in the presence of a KCl activator, NEM, led us to suggest that the recovery of cell volume in hypotonic solution is accomplished by an efflux of K+ and Cl? through conductive pathways paralleled by the operation of the KCl cotransport, followed by an obliged water efflux from the cells.  相似文献   

18.
A volume increase of trout erythrocytes can be induced either by beta-adrenergic stimulation of a Na+/H+ antiport in an isotonic medium (isotonic swelling) or by suspending red cells in an hypotonic medium (hypotonic swelling). In both cases cells regulate their volume by a loss of osmolytes via specific pathways. After hypotonic swelling several volume-dependent pathways were activated allowing K+, Na+, taurine and choline to diffuse. All these pathways were fully inhibited by furosemide and inhibitors of the anion exchanger (DIDS, niflumic acid), and the K+ loss was mediated essentially via a 'Cl(-)-independent' pathway. After isotonic swelling, the taurine, choline and Na+ pathways were practically not activated and the K+ loss was strictly 'Cl(-)-dependent'. Thus cellular swelling is a prerequisite for activation of these pathways but, for a given volume increase, the degree of activation and the degree of anion-dependence of the K+ pathway depend on the nature of the stimulus, whether hormonal or by reduction of osmolality. It appears that the pattern of the response induced by hormonal stimulation is not triggered by either cellular cAMP (since it can be reproduced in the absence of hormone by isotonic swelling in an ammonium-containing saline) or by the tonicity of the medium in which swelling occurs since after swelling in an isotonic medium containing urea, the cells adopt the regulatory pattern normally observed after hypotonic swelling. We demonstrated that the stimulus is the change in cellular ionic strength induced by swelling: when ionic strength drops, the cells adopt the hypotonic swelling pattern; when ionic strength increases, the isotonic swelling pattern is activated. To explain this modulating effect of ionic strength a speculative model is proposed, which also allows the integration of two further sets of experimental results: (i) all the volume-activated transport systems are blocked by inhibitors of the anion exchanger and (ii) a Cl(-)-dependent, DIDS-sensitive K+ pathway can be activated in static volume trout red cells (i.e., in the absence of volume increase) by the conformational change of hemoglobin induced by the binding of O2 or CO to the heme.  相似文献   

19.
Summary PGE2 and LTC4 syntheses in Ehrlich ascites cells were measured by radioimmunoassay. Hypotonic swelling results in stimulation of the leukotriene synthesis and a concomitant reduction in the prostaglandin synthesis. If the cells have access to sufficient arachidonic acid there is a parallel increase in the synthesis of both leukotrienes and prostaglandins following hypotonic exposure. PGE2 significantly inhibits regulatory volume decrease (RVD) following hypotonic swelling in Na-containing medium but not in Na-free media, supporting the hypothesis that the effect of PGE2 is on the Na permeability. PGE2 also had no effect on RVD in Na-free media in the presence of the cation ionophore gramicidin. Since the Cl permeability becomes rate limiting for RVD in the presence of gramicidin, whereas the K permeability is rate limiting in its absence, it is concluded that PGE2 neither affects Cl nor K permeability. Addition of LTD4 accelerates RVD and since the K permeability is rate limiting for RVD this shows that LTD4 stimulates the K permeability. Inhibition of the leukotriene synthesis by nordihydroguaiaretic acid inhibits RVD even when a high K conductance has been ensured by the presence of gramicidin. It is, therefore, proposed that an increase in leukotriene synthesis after hypotonic swelling is involved also in the activation of the Cl transport pathway.  相似文献   

20.
The exposure of human fibroblasts to hypotonic medium (200 mosmolal) evoked the activation of both 36Cl- influx and efflux, which were insensitive to inhibitors of the anion exchanger and of the anion/cation cotransport, and conversely were inhibited by the Cl(-)-channel blocker 5-nitro-2-(3-phenylpropylamino)benzoic acid (NPPB). 36Cl- efflux was linked to a parallel efflux of 86Rb+; thus conductive K+ and Cl- pathways are activated during volume regulation in human fibroblasts. This conclusion is supported by evidence that, in hypotonic medium, 36Cl- influx and 86Rb+ efflux were both enhanced by depolarization of the plasma membrane. Depletion of the intracellular K+ content, obtained by preincubation with the ionophore gramicidin in Na(+)-free medium, had no effect on Cl- efflux in hypotonic medium. This result has been interpreted as evidence for independent activation of K+ and Cl- pathways. It is also concluded that the anion permeability is the rate-limiting factor in the response of human fibroblasts to hypotonic stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号