首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The 3-dimensional optimization of the electrostatic interactions between the charged amino acid residues was studied by Monte Carlo simulations on an extended representative set of 141 protein structures with known atomic coordinates. The proteins were classified by different functional and structural criteria, and the optimization of the electrostatic interactions was analyzed. The optimization parameters were obtained by comparison of the contribution of charge-charge interactions to the free energy of the native protein structures and for a large number of randomly distributed charge constellations obtained by the Monte Carlo technique. On the basis of the results obtained, one can conclude that the charge-charge interactions are better optimized in the enzymes than in the proteins without enzymatic functions. Proteins that belong to the mixed αβ folding type are electrostatically better optimized than pure α-helical or β-strand structures. Proteins that are stabilized by disulfide bonds show a lower degree of electrostatic optimization. The electrostatic interactions in a native protein are effectively optimized by rejection of the conformers that lead to repulsive charge-charge interactions. Particularly, the rejection of the repulsive contacts seems to be a major goal in the protein folding process. The dependence of the optimization parameters on the choice of the potential function was tested. The majority of the potential functions gave practically identical results.  相似文献   

2.
The electrostatic free energy contribution of an ion pair in a protein depends on two factors, geometrical orientation of the side-chain charged groups with respect to each other and the structural context of the ion pair in the protein. Conformers in NMR ensembles enable studies of the relationship between geometry and electrostatic strengths of ion pairs, because the protein structural contexts are highly similar across different conformers. We have studied this relationship using a dataset of 22 unique ion pairs in 14 NMR conformer ensembles for 11 nonhomologous proteins. In different NMR conformers, the ion pairs are classified as salt bridges, nitrogen-oxygen (N-O) bridges and longer-range ion pairs on the basis of geometrical criteria. In salt bridges, centroids of the side-chain charged groups and at least a pair of side-chain nitrogen and oxygen atoms of the ion-pairing residues are within a 4 A distance. In N-O bridges, at least a pair of the side-chain nitrogen and oxygen atoms of the ion-pairing residues are within 4 A distance, but the distance between the side-chain charged group centroids is greater than 4 A. In the longer-range ion pairs, the side-chain charged group centroids as well as the side-chain nitrogen and oxygen atoms are more than 4 A apart. Continuum electrostatic calculations indicate that most of the ion pairs have stabilizing electrostatic contributions when their side-chain charged group centroids are within 5 A distance. Hence, most (approximately 92%) of the salt bridges and a majority (68%) of the N-O bridges are stabilizing. Most (approximately 89%) of the destabilizing ion pairs are the longer-range ion pairs. In the NMR conformer ensembles, the electrostatic interaction between side-chain charged groups of the ion-pairing residues is the strongest for salt bridges, considerably weaker for N-O bridges, and the weakest for longer-range ion pairs. These results suggest empirical rules for stabilizing electrostatic interactions in proteins.  相似文献   

3.
Electrostatic contributions to the folding free energy of several hyperthermophilic proteins and their mesophilic homologs are calculated. In all the cases studied, electrostatic interactions are more favorable in the hyperthermophilic proteins. The electrostatic free energy is found not to be correlated with the number of ionizable amino acid residues, ion pairs or ion pair networks in a protein, but rather depends on the location of these groups within the protein structure. Moreover, due to the large free energy cost associated with burying charged groups, buried ion pairs are found to be destabilizing unless they undergo favorable interactions with additional polar groups, including other ion pairs. The latter case involves the formation of stabilizing ion pair networks as is observed in a number of proteins. Ion pairs located on the protein surface also provide stabilizing interactions in a number of cases. Taken together, our results suggest that many hyperthermophilic proteins enhance electrostatic interactions through the optimum placement of charged amino acid residues within the protein structure, although different design strategies are used in different cases. Other physical mechanisms are also likely to contribute, however optimizing electrostatic interactions offers a simple means of enhancing stability without disrupting the core residues characteristic of different protein families.  相似文献   

4.
Kieseritzky G  Knapp EW 《Proteins》2008,71(3):1335-1348
pK(A) in proteins are determined by electrostatic energy computations using a small number of optimized protein conformations derived from crystal structures. In these protein conformations hydrogen positions and geometries of salt bridges on the protein surface were determined self-consistently with the protonation pattern at three pHs (low, ambient, and high). Considering salt bridges at protein surfaces is most relevant, since they open at low and high pH. In the absence of these conformational changes, computed pK(A)(comp) of acidic (basic) groups in salt bridges underestimate (overestimate) experimental pK(A)(exp), dramatically. The pK(A)(comp) for 15 different proteins with 185 known pK(A)(exp) yield an RMSD of 1.12, comparable with two other methods. One of these methods is fully empirical with many adjustable parameters. The other is also based on electrostatic energy computations using many non-optimized side chain conformers but employs larger dielectric constants at short distances of charge pairs that diminish their electrostatic interactions. These empirical corrections that account implicitly for additional conformational flexibility were needed to describe the energetics of salt bridges appropriately. This is not needed in the present approach. The RMSD of the present approach improves if one considers only strongly shifted pK(A)(exp) in contrast to the other methods under these conditions. Our method allows interpreting pK(A)(comp) in terms of pH dependent hydrogen bonding pattern and salt bridge geometries. A web service is provided to perform pK(A) computations.  相似文献   

5.
Interest centers here on whether the use of a fixed charge distribution of a protein solute, or a treatment that considers proton-binding equilibria by solving the Poisson equation, is a better approach to discriminate native from non-native conformations of proteins. In this analysis of the charge distribution of 7 proteins, we estimate the solvation free energy contribution to the total free energy by exploring the 2(zeta) possible ionization states of the whole molecule, with zeta being the number of ionizable groups in the amino acid sequence, for every conformation in the ensembles of 7 proteins. As an additional consideration of the role of electrostatic interactions in determining the charge distribution of native folds, we carried out a comparison of alternative charge assignment models for the ionizable residues in a set of 21 native-like proteins. The results of this work indicate that (1) for 6 out of 7 proteins, estimation of solvent polarization based on the Generalized Born model with a fixed charge distribution provides the optimal trade-off between accuracy, with respect to the Poisson equation, and speed when compared to the accessible surface area model; for the seventh protein, consideration of all possible ionization states of the whole molecule appears to be crucial to discriminate the native from non-native conformations; (2) significant differences in the degree of ionization and hence the charge distribution for native folds are found between the different charge models examined; (3) the stability of the native state is determined by a delicate balance of all the energy components, and (4) conformational entropy, and hence the dynamics of folding, may play a crucial role for a successful ab initio protein folding prediction.  相似文献   

6.
Among the interactions that stabilize the native state of proteins, the role of electrostatic interactions has been difficult to quantify precisely. Surface salt bridges or ion pairs between acidic and basic side chains have only a modest stabilizing effect on the stability of helical peptides or proteins: estimates are roughly 0.5 kcal/mol or less. On the other hand, theoretical arguments and the occurrence of salt bridge networks in thermophilic proteins suggest that multiple salt bridges may exert a stronger stabilizing effect. We show here that triads of charged side chains, Arg(+)-Glu(-)-Arg(+) spaced at i,i+4 or i,i+3 intervals in a helical peptide stabilize alpha helix by more than the additive contribution of two single salt bridges. The free energy of the triad is more than 1 kcal/mol in excess of the sum of the individual pairs, measured in low salt concentration (10 mM). The effect of spacing the three groups is severe; placing the charges at i,i+4 or i,i+3 sites has a strong effect on stability relative to single bridges; other combinations are weaker. A conservative calculation suggests that interactions of this kind between salt bridges can account for much of the stabilization of certain thermophilic proteins.  相似文献   

7.
Kumar S  Nussinov R 《Proteins》2001,43(4):433-454
This report investigates the effect of systemic protein conformational flexibility on the contribution of ion pairs to protein stability. Toward this goal, we use all NMR conformer ensembles in the Protein Data Bank (1) that contain at least 40 conformers, (2) whose functional form is monomeric, (3) that are nonredundant, and (4) that are large enough. We find 11 proteins adhering to these criteria. Within these proteins, we identify 22 ion pairs that are close enough to be classified as salt bridges. These are identified in the high-resolution crystal structures of the respective proteins or in the minimized average structures (if the crystal structures are unavailable) or, if both are unavailable, in the "most representative" conformer of each of the ensembles. We next calculate the electrostatic contribution of each such ion pair in each of the conformers in the ensembles. This results in a comprehensive study of 1,201 ion pairs, which allows us to look for consistent trends in their electrostatic contributions to protein stability in large sets of conformers. We find that the contributions of ion pairs vary considerably among the conformers of each protein. The vast majority of the ion pairs interconvert between being stabilizing and destabilizing to the structure at least once in the ensembles. These fluctuations reflect the variabilities in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other, and with respect to other charged groups in the remainder of the protein. The higher crystallographic B-factors for the respective side-chains are consistent with these fluctuations. The major conclusion from this study is that salt bridges observed in crystal structure may break, and new salt bridges may be formed. Hence, the overall stabilizing (or, destabilizing) contribution of an ion pair is conformer population dependent.  相似文献   

8.
Contribution of electrostatic interactions to stability of BPTI orthorhombic, pig-insulin cubic crystals, and horse L ferritin crystals was evaluated with numerical calculation of Poisson-Boltzmann equation based on a dielectric model. The stability of a ferritin molecule (24-mer) composed of 24 subunits was also evaluated. It was found that the surface charge-charge interactions at separation distances (< 5 Å) were insensitive to variations in the ionic strength, and thus stabilized assembled states of the proteins (i.e., crystalline state and oligomeric state). It was also revealed that the charge density and the packing of the protein crystals were largely responsible for the ionic strength dependence of the crystal stability. The stability of the 5PTI crystalline state with a high charge density drastically increased as the concentration of the solvent ions increased. In contrast, that of the insulin crystal with a low charge density and large solvent region was insensitive to changes in the ionic concentration. The electrostatic interaction between ferritin 24-mers was attributed to two salt bridges mediated by Cd ion. For the stability of the ferritin 24-mer, which is evolutionally designed, the electrostatic stabilization between the subunits was attributed to polar bonds such as buried salt bridges or hydrogen bonds, which occasionally yielded more than 5 kcal/mol and were numerous and very strong compared with the bonds between molecules in the 5PTI and 9INS crystals.By analyzing the atomic charge-charge interactions in detail, it was found that charge pairs separated by less than 3 Å, such as hydrogen bonds, dominantly stabilize the assembled states, and that pairs 3 to 5 Å apart were also important. The stability of the assembled states evaluated by the total EET was determined by the fine balance between the two competing contributions arising from the stabilizing atoms and the destabilizing atoms.Changes of the ASA and hydration free energy were also evaluated in accordance with the process of the subunit assembly. The change of hydration free energy, which was very large (i.e., ~+ 100 kcal/mol/subunit) and unfavorable for the assembly, was proportional to the electrostatic hydration energy (i.e., Born energy change in the hydration process). Hydrophobic groups were likely to appear more frequently than hydrophilic groups at the interfaces.This study offers a method which can improve the stability of protein crystals by introducing polar or charged residues that are properly designed to form specific hydrogen bonds or salt bridges between neighboring protein molecules. This method is also applicable to crystallography, because it improves refinement of protein structures in crystals by taking the inter-protein interactions into account.  相似文献   

9.
Over the last few years we have developed an empirical potential function that solves the protein structure recognition problem: given the sequence for an n-residue globular protein and a collection of plausible protein conformations, including the native conformation for that sequence, identify the correct, native conformation. Having determined this potential on the basis of only some 6500 native/nonnative pairs of structures for 58 proteins, we find it recognizes the native conformation for essentially all compact, soluble, globular proteins having known native conformations in comparisons with 104 to 106 reasonable alternative conformations apiece. In this sense, the potential encodes nearly all the essential features of globular protein conformational preference. In addition it “knows” about many additional factors in protein folding, such as the stabilization of multimeric proteins, quaternary structure, the role of disulfide bridges and ligands, proproteins vs. processed proteins, and minimal strand lengths in globular proteins. Comparisons are made with other sorts of protein folding problems, and applications in protein conformational determination and prediction are discussed. © 1994 Wiley-Liss, Inc.  相似文献   

10.
In order to infer the energetic determinants of thermophilic proteins, molecular mechanics calculations were applied to five proteins from thermophilic eubacteria and their mesophilic homologs. The energy function includes a hydration term as well as the electrostatic contribution from the solvent in addition to the usual conformational energy terms. We calculated energy values for three different states of each protein: the native, near-native, and unfolded structures. The energy difference and its components between pairs of these states were compared. The hypothetical near-native structures have almost the same backbone conformation as the native structure but with largely distorted side-chain packing, thus enabling us to extract the energy components important for stabilizing the native backbone topology itself, irrespective of structural details. It was found that the sum of the electrostatic and hydration energies, although of large positive values, were consistently lower for the thermophilic proteins than for their mesophilic counterparts. This trend was observed in the energy difference not only between the native and unfolded structures, but also between the near-native and unfolded structures. In contrast, the energy components regarding side-chain packing did not show any clear tendency. These results suggest that the thermophilic proteins are stabilized so that the precise packing of the native structure does not significantly affect the stability. Implications of this conclusion are also discussed.  相似文献   

11.
We develop a protocol for estimating the free energy difference between different conformations of the same polypeptide chain. The conformational free energy evaluation combines the CHARMM force field with a continuum treatment of the solvent. In almost all cases studied, experimentally determined structures are predicted to be more stable than misfolded "decoys." This is due in part to the fact that the Coulomb energy of the native protein is consistently lower than that of the decoys. The solvation free energy generally favors the decoys, although the total electrostatic free energy (sum of Coulomb and solvation terms) favors the native structure. The behavior of the solvation free energy is somewhat counterintuitive and, surprisingly, is not correlated with differences in the burial of polar area between native structures and decoys. Rather. the effect is due to a more favorable charge distribution in the native protein, which, as is discussed, will tend to decrease its interaction with the solvent. Our results thus suggest, in keeping with a number of recent studies, that electrostatic interactions may play an important role in determining the native topology of a folded protein. On this basis, a simplified scoring function is derived that combines a Coulomb term with a hydrophobic contact term. This function performs as well as the more complete free energy evaluation in distinguishing the native structure from misfolded decoys. Its computational efficiency suggests that it can be used in protein structure prediction applications, and that it provides a physically well-defined alternative to statistically derived scoring functions.  相似文献   

12.
Ion pairs are ubiquitous in X-ray structures of coiled coils, and mutagenesis of charged residues can result in large stability losses. By contrast, pKa values determined by NMR in solution often predict only small contributions to stability from charge interactions. To help reconcile these results we used triple-resonance NMR to determine pKa values for all groups that ionize between pH 1 and 13 in the 33 residue leucine zipper fragment, GCN4p. In addition to the native state we also determined comprehensive pKa values for two models of the GCN4p denatured state: the protein in 6 M urea, and unfolded peptide fragments of the protein in water. Only residues that form ion pairs in multiple X-ray structures of GCN4p gave large pKa differences between the native and denatured states. Moreover, electrostatic contributions to stability were not equivalent for oppositely charged partners in ion pairs, suggesting that the interactions between a charge and its environment are as important as those within the ion pair. The pH dependence of protein stability calculated from NMR-derived pKa values agreed with the stability profile measured from equilibrium urea-unfolding experiments as a function of pH. The stability profile was also reproduced with structure-based continuum electrostatic calculations, although contributions to stability were overestimated at the extremes of pH. We consider potential sources of errors in the calculations, and how pKa predictions could be improved. Our results show that although hydrophobic packing and hydrogen bonding have dominant roles, electrostatic interactions also make significant contributions to the stability of the coiled coil.  相似文献   

13.
A statistical analysis of a representative data set of 169 known protein structures was used to analyze the specificity of residue interactions between spatial neighboring strands in beta-sheets. Pairwise potentials were derived from the frequency of residue pairs in nearest contact, second nearest and third nearest contacts across neighboring beta-strands compared to the expected frequency of residue pairs in a random model. A pseudo-energy function based on these statistical pairwise potentials recognized native beta-sheets among possible alternative pairings. The native pairing was found within the three lowest energies in 73% of the cases in the training data set and in 63% of beta-sheets in a test data set of 67 proteins, which were not part of the training set. The energy function was also used to detect tripeptides, which occur frequently in beta-sheets of native proteins. The majority of native partners of tripeptides were distributed in a low energy range. Self-correcting distance geometry (SECODG) calculations using distance constraints sets derived from possible low energy pairing of beta-strands uniquely identified the native pairing of the beta-sheet in pancreatic trypsin inhibitor (BPTI). These results will be useful for predicting the structure of proteins from their amino acid sequence as well as for the design of proteins containing beta-sheets.  相似文献   

14.
  • 1.i) It is pointed out that various energy terms contributing to stabilize the native state of globular proteins are consistent in the first approximation with each other in the native state. This means that each energy term is individually minimized at the minimum point of the total energy. I proposed (1) to call this fact “the consistency principle in protein structure.”
  • 2.ii) The fair success of various methods of prediction of the secondary structures in globular proteins from their amino acid sequence is often interpreted as indicating the dominance of the short-range interactions in determining the local structures of the polypeptide chains. Partly from such a point of view, the hierarchic condensation model has been popular for the process of protein folding. However the consistency principle indicates that the short-range interactions are just one type of intramolecular interaction which contributes to stabilization of the native structure together with other mutually consistent types of intramolecular interactions. Therefore the hierarchic condensation model is not necessarily a unique model of protein folding.
  • 3.iii) Roles of a possible nonspecific globular state, stabilized by nonspecific long-range intramolecular interactions, in the folding process are discussed. It is expected that this nonspecific globular state is observed either as an equilibrium or a kinetic intermediate state between the unfolded and the folded native states. Observation as a kinetic intermediate state is expected to occur in experiments done under strongly refolding conditions. In this case the polypeptide chain in the unfolded state collapses into a nonspecific globule by the action of nonspecific long-range intramolecular interactions. Two possible mechanisms of the transition from the nonspecific globular state to the specific native folded state are discussed.
  • 4.iv) In an experiment done under weakly refolding conditions, folding is expected to occur according to the embryo-nucleus model. This model is a refined version of the hierarchic condensation model. Refinement is done by taking into account the fact that the intermediate structures assumed in the hierarchic condensation model are unstable against both the native folded state and the unfolded state. A nucleus is an ordered structure of a certain size. Ordered structures of a size larger than a nucleus tend to fold further to become the native specific globule. Ordered structures of a size smaller than a nucleus tend to unfold. Embryos are intrinsically unstable ordered structures smaller than a nucleus. Folding occurs when embryos grow in size to become a nucleus. The intrinsic instability of embryos is the built-in mechanism to overcome the low resolving power of the short-range interactions in determining local conformations of the polypeptide chain.
  相似文献   

15.
We present an approach that is able to detect native folds amongst a large number of non-native conformations. The method is based on the compilation of potentials of mean force of the interactions of the C beta atoms of all amino acid pairs from a database of known three-dimensional protein structures. These potentials are used to calculate the conformational energy of amino acid sequences in a number of different folds. For a substantial number of proteins we find that the conformational energy of the native state is lowest amongst the alternatives. Exceptions are proteins containing large prosthetic groups, Fe-S clusters or polypeptide chains that do not adopt globular folds. We discuss briefly potential applications in various fields of protein structural research.  相似文献   

16.
Kumar S  Nussinov R 《Proteins》2000,41(4):485-497
In solution proteins often exhibit backbone and side-chain flexibility. Yet electrostatic interactions in proteins are sensitive to motions. Hence, here we study the contribution of ion pairs toward protein stability in a range of conformers which sample the conformational space in solution. Specifically, we focus on the electrostatic contributions of ion pairs to the stability of each of the conformers in the NMR ensemble of the c-Myc-Max leucine zipper and to their average energy minimized structure. We compute the electrostatic contributions of inter- and intra-helical ion pairs and of an ion pair network. We find that the electrostatic contributions vary considerably among the 40 NMR conformers. Each ion pair, and the network, fluctuates between being stabilizing and being destabilizing. This fluctation reflects the variability in the location of the ion pairing residues and in the geometric orientation of these residues, both with respect to each other and with respect to other charged groups in the rest of the protein. Ion pair interactions in the c-Myc-Max leucine zipper in solution depend on the protein conformer which is analyzed. Hence, the overall stabilizing (or destabilizing) contribution of an ion pair is conformer population-dependent. This study indicates that free energy calculations performed using the continuum electrostatics methodology are sensitive to protein conformational details.  相似文献   

17.
Optimization of surface exposed charge-charge interactions in the native state has emerged as an effective means to enhance protein stability; but the effect of electrostatic interactions on the kinetics of protein folding is not well understood. To investigate the kinetic consequences of surface charge optimization, we characterized the folding kinetics of a Fyn SH3 domain variant containing five amino acid substitutions that was computationally designed to optimize surface charge-charge interactions. Our results demonstrate that this optimized Fyn SH3 domain is stabilized primarily through an eight-fold acceleration in the folding rate. Analyses of the constituent single amino acid substitutions indicate that the effects of optimization of charge-charge interactions on folding rate are additive. This is in contrast to the trend seen in folded state stability, and suggests that electrostatic interactions are less specific in the transition state compared to the folded state. Simulations of the transition state using a coarse-grained chain model show that native electrostatic contacts are weakly formed, thereby making the transition state conducive to nonspecific, or even nonnative, electrostatic interactions. Because folding from the unfolded state to the folding transition state for small proteins is accompanied by an increase in charge density, nonspecific electrostatic interactions, that is, generic charge density effects can have a significant contribution to the kinetics of protein folding. Thus, the interpretation of the effects of amino acid substitutions at surface charged positions may be complicated and consideration of only native-state interactions may fail to provide an adequate picture.  相似文献   

18.
Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order M?ller-Plesset perturbation method at the 6-31G(d) and 6-31G(d,p) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs; while HF and DFT methods predict perfect planar or almost planar geometry of the base pairs. Supposedly the nonplanarity of the pairs is caused by pyramidalization of the amino nitrogen atoms, which is underestimated by the HF and DFT methods. This justifies the importance of geometry optimization at the MP2 level for obtaining reliable prediction of the charge distribution, molecular dipole moments and geometrical structure of the base pairs. The Morokuma-Kitaura and the Reduced Variational Space methods of the decomposition for molecular HF interaction energies were used for investigation of the hydrogen bonding in the Watson-Crick base pairs. It is shown that the HF stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time, the calculated magnitude of the second order intramolecular correlation correction to the Coulomb energy showed that electron correlation reduces the contribution of the electrostatic term to the attractive interaction for the A-T and G-C base pairs. Polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.  相似文献   

19.
During evolution, the effective interactions between residues in a protein can be adjusted through mutations to allow the protein to fold to its native structure on an adequate time scale. We seek to address the question: Are there some structures that can be better optimized than others? Using exhaustive enumeration of the compact conformations of short proteins confined to simple lattices, we find that the best structures are those that contain contacts rare in random structures, indicating the importance of nonlocal contacts for assisting the folding process. Certain structural motifs such as long β-hairpins, Greek-key motifs, and jelly rolls, commonly found in proteins of known structure, have a high degree of optimizability. Contrary to what might be expected, positive correlations between the various interactions reduce optimizability. The optimization procedure produces a correlated energy landscape, which might assist folding. © 1995 John Wiley & Sons, Inc.  相似文献   

20.
Abstract

Gas-phase gradient optimization was carried out on the canonical Watson-Crick DNA base pairs using the second-order Møller-Plesset perturbation method at the 6–31G(d) and 6- 31G(d,p) basis sets. It is detected that full geometry optimization at the MP2 level leads to an intrinsically nonplanar propeller-twisted and buckled geometry of G-C and A-T base pairs; while HF and DFT methods predict perfect planar or almost planar geometry of the base pairs. Supposedly the nonplanarity of the pairs is caused by pyramidalization of the amino nitrogen atoms, which is underestimated by the HF and DFT methods. This justifies the importance of geometry optimization at the MP2 level for obtaining reliable prediction of the charge distribution, molecular dipole moments and geometrical structure of the base pairs. The Morokuma-Kitaura and the Reduced Variational Space methods of the decomposition for molecular HF interaction energies were used for investigation of the hydrogen bonding in the Watson-Crick base pairs. It is shown that the HF stability of the hydrogen-bonded DNA base pairs originates mainly from electrostatic interactions. At the same time, the calculated magnitude of the second order intramolecular correlation correction to the Coulomb energy showed that electron correlation reduces the contribution of the electrostatic term to the attractive interaction for the A-T and G-C base pairs. Polarization, charge transfer and dispersion interactions also make considerable contribution to the attraction energy of bases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号