首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The hormone bombesin(BBS) and its mammalian equivalent gastrin-releasing peptide (GRP) actthrough specific GRP receptors (GRP-R) to affect multiple cellularfunctions in the gastrointestinal tract; the intracellular signalingpathways leading to these effects are not clearly defined. Previously,we demonstrated that the human gastric cancer SIIA possesses GRP-R andthat BBS stimulates activator protein-1 (AP-1) gene expression. Thepurpose of our present study was to determine the signaling pathwaysleading to AP-1 induction in SIIA cells. A rapid induction ofc-jun and jun-B gene expression was noted afterBBS treatment; this effect was blocked by specific GRP-R antagonists,indicating that BBS is acting through the GRP-R. The signaling pathwaysleading to increased AP-1 gene expression were delineated using phorbol12-myristate 13-acetate (PMA), which stimulates protein kinase C(PKC)-dependent pathways, by forskolin (FSK), which stimulates proteinkinase A (PKA)-dependent pathways, and by the use of various protein kinase inhibitors. Treatment with PMA stimulated AP-1 gene expression and DNA binding activity similar to the effects noted with BBS; FSKstimulated jun-B expression but produced only minimalincreases of c-jun mRNA and AP-1 binding activity.Pretreatment of SIIA cells with either H-7 or H-8 (primarily PKCinhibitors) inhibited the induction of c-jun andjun-B mRNAs in response to BBS, whereas H-89 (PKA inhibitor)exhibited only minimal effects. Pretreatment with tyrphostin-25, aprotein tyrosine kinase (PTK) inhibitor, attenuated the BBS-mediatedinduction of c-jun and jun-B, but the effect wasnot as pronounced as with H-7. Collectively, our results demonstratethat BBS acts through its receptor to produce a rapid induction of bothc-jun and jun-B mRNA and AP-1 DNA binding activity in the SIIA human gastric cancer. Moreover, this induction ofAP-1, in response to BBS, is mediated through both PKC- and PTK-dependent signal transduction pathways with only minimalinvolvement of PKA.

  相似文献   

2.
Bombesin stimulates growth of the stomach and pancreas in adult rats. Part of this effect is thought to be through the release of CCK following bombesin treatment. We studied the effect of long term administration of bombesin on the pancreas and stomach in suckling rats and examined the action of bombesin using specific CCK antagonist (CR-1409) and bombesin antagonists (GRP19-26, D-Phe19, Leu26CH2NHCOCH3 = cpd 17; L-686,095-001C002 = cpd 23). Rat pups (7-days-old) were given bombesin (20 micrograms/kg body wt. twice a day) or vehicle (1% gelatin) for 9 days. Bombesin stimulated pancreatic and gastric growth (tissue weight, total protein and DNA content all increased). Pancreatic trypsinogen concentration and content showed a 2-3-fold increase. CR-1409 at 6 mg/kg body wt., a dose that blocked the trophic action of CCK-33 when given to pups at similar ages, did not affect the bombesin-stimulated growth of the pancreas or the increase in trypsinogen level. At 2.4 mg/kg body wt., cpd 17 partially blocked and cpd 23 completely blocked the trophic effect of bombesin on the pancreas and stomach and the increase in trypsinogen level in the pancreas. RU-486, a type II glucocorticoid receptor antagonist, given at a dose sufficient to block the physiological action of glucocorticoid, had no effect on bombesin-stimulated growth of the pancreas. Thus, in vivo, bombesin acts directly on the neonatal pancreas and stomach.  相似文献   

3.
G F Jin  Y S Guo  E R Smith  C W Houston 《Peptides》1990,11(2):393-396
Bombesin (BBS) at doses of 0.1, 1.0, 10.0 and 100.0 nM stimulated chemiluminescence (CL) production by phagocytic cells (monocytes, macrophages and polymorphonuclear leucocytes) in mice in the presence of ZAP (opsonized zymosan particles containing luminol). These data suggest that BBS increased the phagocytic function of mouse phagocytes. BBS-related peptides, gastrin-releasing peptides (GRP)-27, GRP-14, GRP-10 and neuromedin B, also induced similar CL responses compared with BBS. The CL response elicited by BBS was depressed dramatically by various concentrations of EGTA (a Ca++ chelator), indicating that a Ca++ pathway may play a key role in the BBS-stimulated CL response.  相似文献   

4.
5.
Bombesin (BBS) stimulated prolactin (PRL) secretion from monolayer cultures of rat pituitary tumour cells (GH4C1) in a dose-dependent manner with half maximal and maximal effect at 2 nM and 100 nM, respectively. No additional stimulatory effect on PRL secretion was seen when BBS was combined with thyroliberin (TRH) used in concentrations known to give maximal effects, while the effects of BBS and vasoactive intestinal peptide (VIP) were additive. Using a parafusion system, BBS (1 microM) was found to increase PRL secretion within 4 s and the secretion profiles elicited by BBS and TRH (1 microM) were similar. Both BBS and TRH increased inositoltrisphosphate (IP3) as well as inositolbisphosphate (IP2) formation within 2 s. BBS also induced the same biphasic changes in the electrical membrane properties of GH4C1 cells as TRH, and both peptides caused a rapid and sustained increase in intracellular [Ca2+]. These results suggest that BBS stimulates PRL secretion from the GH4C1 cells via a mechanism involving the immediate formation of IP3 thus resembling the action of TRH.  相似文献   

6.
This study was designed to compare, on a molar basis, the effect of chronic bombesin, gastrin-releasing peptide (GRP) and caerulein on pancreatic growth in the rat. These 3 peptides were administered s.c. 3 times daily for 4 days at the following concentrations: 0.036, 0.36, 3.6 and 7.2 nmol/kg of body weight. Bombesin and GRP induced pancreatic growth in a dose-dependent manner from 3.6 nmol/kg. This growth was characterized by an increase in pancreatic weight, its protein and RNA contents but not in DNA content suggesting cellular hypertrophy. Caerulein exerted a biphasic effect on pancreatic growth, inducing cellular hypertrophy at low doses since 0.36 nmol/kg and atrophy with the highest dose (7.2 nmol/kg). Bombesin and caerulein (until 3.6 nmol/kg) increased the pancreatic content in chymotrypsin more than in amylase. The 7.2 nmol/kg caerulein treatment depressed all enzyme activities while the same dose of GRP increased pancreatic lipase content. It is concluded that (1) bombesin and GRP are equipotent trophic factors for the pancreas; (2) caerulein is the most potent factor and exerts a biphasic effect on pancreatic growth; (3) pancreatic growth and synthesis and/or secretion of enzymes are not regulated through the same mechanism.  相似文献   

7.
Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is an autocrine growth factor for neuroblastoma; its receptor is up-regulated in undifferentiated neuroblastomas. Phosphatidylinositol 3-kinase (PI3K) is a critical cell survival pathway; it is negatively regulated by the PTEN tumor suppressor gene. We have recently found that poorly differentiated neuroblastomas express decreased PTEN protein levels. Moreover, overexpression of the GRP receptor, a member of the G-protein coupled receptor family, down-regulates PTEN expression, resulting in increased neuroblastoma cell growth. Therefore, we sought to determine whether GRP or BBS activates PI3K in neuroblastoma cells (BE(2)-C, LAN-1, SK-N-SH). GRP or BBS treatment rapidly increased phosphorylation of Akt and GSK-3beta in neuroblastoma cells. Inhibition of GRP receptor, with antagonist GRP-H2756 or siRNA, attenuated BBS-induced phosphorylation of Akt. LY294002, a PI3K inhibitor, also abrogated BBS-stimulated phospho-Akt as well as its cell cycle targets. GRP increased G1/S phase progression in SK-N-SH cells. BBS-mediated BrdU incorporation was blocked by LY294002. Our findings identify PI3K as an important signaling pathway for GRP-mediated neuroblastoma cell growth. A novel therapy targeted at GRP/GRP receptor may prove to be an effective treatment option to inhibit PI3K in neuroblastomas.  相似文献   

8.
Antibodies are the most rapidly expanding class of human therapeutics, including their use in cancer therapy. Monoclonal antibodies (mAb) against epidermal growth factor (EGF) receptor (EGFR) generated for cancer therapy block the binding of ligand to various EGFR-expressing human cancer cell lines and abolish ligand-dependent cell proliferation. In this study, we show that our mAb against EGFRs, designated as B4G7, exhibited a growth-stimulatory effect on various human cancer cell lines including PC-14, a non-small cell lung cancer cell line; although EGF exerted no growth-stimulatory activity toward these cell lines. Tyrosine phosphorylation of EGFRs occurred after treatment of PC-14 cells with B4G7 mAb, and it was completely inhibited by AG1478, a specific inhibitor of EGFR tyrosine kinase. However, this inhibitor did not affect the B4G7-stimulated cell growth, indicating that the growth stimulation by B4G7 mAb seems to be independent of the activation of EGFR tyrosine kinase. Immunoprecipitation with anti-ErbB3 antibody revealed that B4G7, but not EGF, stimulated heterodimerization between ErbB2 and ErbB3. ErbB3 was tyrosine phosphorylated in the presence of B4G7 but not in the presence of EGF. Further, the phosphorylation and B4G7-induced increase in cell growth were inhibited by AG825, a specific inhibitor of ErbB2. These results show that the ErbB2/ErbB3 dimer functions to promote cell growth in B4G7-treated cells. Changes in receptor-receptor interactions between ErbB family members after inhibition of one of its members are of potential importance in optimizing current EGFR family-directed therapies for cancer.  相似文献   

9.
Several bombesin-receptor antagonists are available that inhibit secretory and growth effects of bombesin, in vitro. In the present study, we examined the effects of a new class of bombesin receptor antagonists (modified GRP(15-27) peptides, with D-Pro26 and D-Ala24 moieties), on bombesin mediated effects, in vivo and in vitro. Of the 10 different compounds tested, BW-10 or 2258U89 ([de-NH2)Phe19,D-Ala24,D-Pro26 psi(CH2NH)Phe27]-GRP(19-27)) was most potent towards inhibiting bombesin binding to rat pancreatic acinar cancer cells with an ID50 of 0.5 nM. BW-10 (1 and 10 nM) significantly inhibited the gastrin response to 1 nM bombesin, from isolated rat stomach, in vitro, in a dose-dependent fashion. BW-10 (10-100 nmol/kg) was equally effective at significantly inhibiting bombesin evoked gastrin release in anesthetized rats, in vivo. [D-Phe6]Bombesin(6-13)-propylamide (BIM), a member of another class of antagonists, reported previously to be the most potent antagonist, in vitro, on the other hand, enhanced bombesin provoked gastrin release in rats. The antagonistic effects of BIM, in vivo, may thus be more selective. Intravenous infusion of BW-10 (10 nmol/kg/h) partially depressed gastrin and pancreatic polypeptide and completely abolished insulin released in response to bombesin, in conscious dogs. These results suggest that BW-10 functions as one of the most potent bombesin receptor antagonists, in vitro and in vivo, which could potentially be used as a therapeutic compound in treatment of some human diseases.  相似文献   

10.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

11.
Bombesin (BBS)/gastrin-releasing peptide (GRP) binding sites were characterized and their distribution examined in the goldfish brain and pituitary by radioligand binding and autoradiography. Binding of 125I-[Tyr4]-BBS-14 to tissue sections was found to be saturable, reversible, time-dependent and displaceable by BBS/GRP-like peptides. Analysis of saturable equilibrium binding revealed a one-site model fit with a Kd of 0.665 ± 0.267 nM. This binding site displayed high affinity for members of the BBS subfamily of peptides, including GRP10 (Ki; 0.292 ± 0.038 nM) and GRP27 (Ki; 2.034 ± 1.597 nM), but showed no affinity for the BBS8–14 fragment. While an approximate 100-fold lower binding affinity was displayed by the binding site for neuromedin B (Ki; 61.5 ± 28.2 nM), litorin was highly effective in displacing radiolabeled BBS binding (Ki; 1.469 ± 0.427 nM). The localization of saturable and high affinity BBS/GRP binding sites in specific areas of the goldfish brain and pituitary generally revealed a similar anatomical distribution to BBS/GRP-like immunoreactive material reported previously by our laboratory. Quantitative densitometric analysis of radiolabeled BBS binding to brain nuclei and the pituitary revealed a moderate concentration of BBS/GRP binding sites in the hypothalamic feeding area, including the nucleus diffusus lobi inferioris, nucleus recessus lateralis, nucleus lateral tuberis, and nucleus anterior tuberis. Other brain nuclei known to influence the brain feeding center which contained a high density of BBS/GRP binding sites included nuclei of the dorsal and ventro-medial telencephalon, the preoptic hypothalamus, and the optic tectum. High densities of BBS/GRP binding sites were also localized in the dorsal cerebellum, and nucleus habenularis. In the pituitary, BBS/GRP binding sites were present in high concentration in the neurointermediate lobe, with a relatively lower density localized in the pars distalis. The present study further supports a role for BBS/GRP-like peptides in the regulation of feeding behavior and anterior pituitary hormone secretion in teleosts.  相似文献   

12.
13.
Established human lung cancer exhibits a complex pattern of genetic changes as well as several distinct autocrine growth factor loops for regulatory peptides. The best studied example is that of gastrin-releasing peptide (GRP), the mammalian homolog of the amphibian bombesin. It is produced by up to 70% of small cell lung cancers and 10–20% of non-small cell lung cancers. GRP stimulates the growth of normal bronchial epithelium as well as that of small cell lung cancer, and its blockade with the use of antibodies or synthetic antagonists inhibits the growth of these tumors. Study of its molecular biology has revealed a complex pattern of mRNA processing which has lead to the recent isolation of a novel family of peptides termed gastrin-releasing peptide gene-associated peptides (GGAPs), present in normal and malignant human tissues. Additional efforts have been directed at characterizing the GRP receptor as well as its intracellular signaling pathways which have been reported both as G protein phospholipase C coupled events as well as activation of a membrane associated tyrosine kinase. In view of its expression in normal bronchial epithelium and its mitogenic effects on this tissue, GRP appears to play a central role in the early events of pulmonary carcinogenesis.  相似文献   

14.
Forces such as strain modulate intestinal epithelial biology. Shear and pressure influence other cells. The effects of pressure on human colon cancer cells are poorly understood. Increasing ambient pressure for 30 min by 15 mm Hg over atmospheric stimulated adhesion to matrix proteins of four human colon cancer cell lines and primary cells from three human colon cancers, but not bovine aortic smooth-muscle cells. This effect was energy dependent and cation dependent (blocked by azide and chelation), accompanied by tyrosine phosphorylation of intracellular proteins including focal adhesion kinase, and blocked by tyrosine kinase inhibition (genistein, tyrphostin, and erbstatin) and a functional antibody to the beta1 integrin subunit. Although pressure stimulated adhesion even in a balanced salt solution, baseline and pressure-stimulated adhesion were each substantially diminished in the absence of serum. These data suggest that relatively low levels of increased pressure may stimulate malignant colonocyte adhesion by a cation-dependent beta1-integrin-mediated mechanism, perhaps via focal adhesion kinase-related tyrosine phosphorylation. In addition to elucidating another aspect of physical force regulation of colonocyte biology, these findings may be relevant to the effects of increased pressure engendered by colonic peristalsis, surgical manipulation, or laparoscopic surgery on colon cancer cell adhesion.  相似文献   

15.
16.
Xiao D  Qu X  Weber HC 《Cellular signalling》2003,15(10):945-953
Bombesin and its mammalian homologue gastrin-releasing peptide have been shown to be highly expressed and secreted by neuroendocrine cells in prostate cancer, and are thought to be related to the carcinogenesis and progression of this disease. We found, in this study, bombesin specifically induced mitogen-activated protein (MAP) kinase activation as shown by increased extracellular regulated kinase (ERK) phosphorylation and epidermal growth factor (EGF) receptor transactivation in prostate cancer cells, which express functional gastrin-releasing peptide receptor. The transactivation of EGF receptor was required for bombesin-induced ERK phosphorylation. Furthermore, non-receptor tyrosine kinase Src and cellular Ca2+ were shown to be involved in bombesin-induced EGF receptor transactivation and ERK phosphorylation. Inhibition of either EGF receptor transactivation or ERK activation blocked bombesin-induced DNA synthesis in these cells. Taken together, these data suggest bombesin may act as a mitogen in prostate cancer by activating MAP kinase pathway via EGFR transactivation.  相似文献   

17.
Bombesin and the related mammalian peptides, such as gastrin-releasing peptide (GRP), are potent mitogens for some fibroblast cell lines. Here we have examined the bombesin- and GRP-mediated changes in the phosphorylation of proteins in Swiss 3T3 cells and compared these to the events observed after platelet-derived growth factor (PDGF), epidermal growth factor (EGF) and tumor promoter treatment. In agreement with previous reports, bombesin, GRP and PDGF, but not EGF, increased the activity of protein kinase C. This was assayed by an inhibition of [125I]EGF binding, stimulation in phosphorylation of pp60c-src on serine 12 and stimulation in phosphorylation of a group of 80 kd proteins. The different phosphorylated forms of the 80 kd proteins were examined by tryptic peptide mapping and shown to contain multiple phosphorylation sites. An investigation of the tyrosine phosphorylation events following mitogen treatment revealed a significant difference between PDGF and the bombesin peptides. PDGF treatment caused a marked increase in total cellular phosphotyrosine levels, and tyrosine phosphorylation both of known substrates and its own receptor. In contrast, bombesin and GRP treatments resulted in only a weak or undetectable increase in tyrosine phosphorylation of total cellular protein or known substrates. In this respect bombesin and GRP were more similar to EGF. The fact that the bombesin peptides do not induce a phosphorylation response identical with either PDGF or EGF suggests that there is not a single common signal pathway which is activated by all these mitogens.  相似文献   

18.
Bombesin and the C-terminal portion of gastrin-releasing peptide (GRP14-27) each increase clonal growth rate and colony-forming efficiency of normal human bronchial epithelial cells. These effects occur in the presence or absence of an optimal concentration (5 ng/ml) of epidermal growth factor (EGF). In contrast to EGF bombesin and GRP14-27 do not stimulate cell migration. Thus, bombesin and the C-terminal fragment of gastrin-releasing peptide represent a new class of peptides mitogenic for normal human epithelial cells.  相似文献   

19.
The effects of gastrin, cholecystokinin (CCK) and bombesin on the DNA synthesis, as a biochemical indicator of trophic action in the gastroduodenal mucosa and the pancreas have been examined in rats fasted for 48 h and in rats refed for 16 h with or without administration of specific receptor antagonists for bombesin, gastrin and CCK. Bombesin and gastrin administered three times daily for 48 h in fasted rats significantly increased the rate of DNA synthesis as measured by the incorporation of [3H] thymidine into DNA in each tissue tested. CCK significantly increased DNA synthesis in the duodenal mucosa and pancreatic tissue, but not in the gastric mucosa. The stimulation of DNA synthesis induced by bombesin in the gastroduodenal mucosa and pancreas was abolished by bombesin/GRP receptor antagonist, RC-3095. RC-3095 did not affect DNA synthesis stimulated by gastrin and CCK in these tissues. L-365,260, a receptor antagonist for gastrin suppressed the DNA synthesis induced by gastrin but not by CCK or bombesin in the gastrointestinal mucosa and pancreas. L-364,718 a specific antagonist for CCK receptors was effective only against CCK stimulated duodenal mucosa and pancreatic growth. Refeeding of 48 h fasting rats strongly enhanced the DNA synthesis in all tissues tested, and this effect was significantly reduced in the gastroduodenal mucosa by blocking only gastrin receptors (with L-365,260) and that in the duodenal mucosa and the pancreas by antagonizing of CCK receptors (with L-364,718). Antagonism of bombesin receptors (with RC-3095) did not significantly affect the stimulation of DNA synthesis induced by refeeding in all tissues tested. This study indicates that the stimulation of DNA synthesis can be achieved by exogenous gastrin, CCK and bombesin acting through separate receptor but that only gastrin and CCK play the major role in the postprandial stimulation of the growth of gastroduodenal mucosa and pancreatic tissue.  相似文献   

20.
The two mammalian neuropeptides substance P (SP) and neurokinin A (NKA) have been demonstrated to stimulate DNA synthesis in connective tissue cells, suggesting that peripheral neurons may play a role in development and tissue regeneration. In this study we have tried to identify intracellular messengers required for SP- and NKA-induced DNA synthesis. SP and NKA, as well as platelet-derived growth factor (PDGF) stimulated formation of inositol phosphates in smooth muscle cells (SMC), whereas no effect on inositol phosphates formation occurred in response to nonmitogenic neuropeptides. Pretreatment of the cells with pertussis toxin markedly decreased DNA synthesis induced by NKA. This toxin inhibits formation of inositol phosphates by acting on a regulatory G-protein. Calcium and calmodulin antagonists also inhibited NKA-induced DNA synthesis. These results imply that the mitogenic signal(s) produced by activated neuropeptide receptors involves formation of inositol phosphate and activation of a calcium/calmodulin dependent process. We further report that other neuropeptides occurring in peripheral neurons, i.e., vasoactive intestinal polypeptide, calcitonin gene-related peptide, neuropeptide Y, somatostatin, or cholecystokinin, are without growth-stimulatory effect on cultured SMC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号