首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We report for the first time a hydrolysis mechanism of the cyclic dimeric guanosine monophosphate (c‐di‐GMP) by the EAL domain phosphodiesterases as revealed by molecular simulations. A model system for the enzyme‐substrate complex was prepared on the base of the crystal structure of the EAL domain from the BlrP1 protein complexed with c‐di‐GMP. The nucleophilic hydroxide generated from the bridging water molecule appeared in a favorable position for attack on the phosphorus atom of c‐di‐GMP. The most difficult task was to find a pathway for a proton transfer to the O3' atom of c‐di‐GMP to promote the O3'? P bond cleavage. We show that the hydrogen bond network extended over the chain of water molecules in the enzyme active site and the Glu359 and Asp303 side chains provides the relevant proton wires. The suggested mechanism is consistent with the structural, mutagenesis, and kinetic experimental studies on the EAL domain phosphodiesterases. Proteins 2016; 84:1670–1680. © 2016 Wiley Periodicals, Inc.  相似文献   

2.
The hydrogen-bond network in various stages of the enzymatic reaction catalyzed by HIV-1 protease was studied through quantum-classical molecular dynamics simulations. The approximate valence bond method was applied to the active site atoms participating directly in the rearrangement of chemical bonds. The rest of the protein with explicit solvent was treated with a classical molecular mechanics model. Two possible mechanisms were studied, general-acid/general-base (GA/GB) with Asp 25 protonated at the inner oxygen, and a direct nucleophilic attack by Asp 25. Strong hydrogen bonds leading to spontaneous proton transfers were observed in both reaction paths. A single-well hydrogen bond was formed between the peptide nitrogen and outer oxygen of Asp 125. The proton was diffusely distributed with an average central position and transferred back and forth on a picosecond scale. In both mechanisms, this interaction helped change the peptide-bond hybridization, increased the partial charge on peptidyl carbon, and in the GA/GB mechanism, helped deprotonate the water molecule. The inner oxygens of the aspartic dyad formed a low-barrier, but asymmetric hydrogen bond; the proton was not positioned midway and made a slightly elongated covalent bond, transferring from one to the other aspartate. In the GA/GB mechanism both aspartates may help deprotonate the water molecule. We observed the breakage of the peptide bond and found that the protonation of the peptidyl amine group was essential for the peptide-bond cleavage. In studies of the direct nucleophilic mechanism, the peptide carbon of the substrate and oxygen of Asp 25 approached as close as 2.3 A.  相似文献   

3.
The reaction mechanism of the dinuclear zinc enzyme human renal dipeptidase is investigated using hybrid density functional theory. This enzyme catalyzes the hydrolysis of dipeptides and β-lactam antibiotics. Two different protonation states in which the important active site residue Asp288 is either neutral or ionized were considered. In both cases, the bridging hydroxide is shown to be capable of performing the nucleophilic attack on the substrate carbonyl carbon from its bridging position, resulting in the formation of a tetrahedral intermediate. This step is followed by protonation of the dipeptide nitrogen, coupled with C-N bond cleavage. The calculations establish that both cases have quite feasible energy barriers. When the Asp288 is neutral, the hydrolytic reaction occurs with a large exothermicity. However, the reaction becomes very close to thermoneutral with an ionized Asp288. The two zinc ions are shown to play different roles in the reaction. Zn1 binds the amino group of the substrate, and Zn2 interacts with the carboxylate group of the substrate, helping in orienting it for the nucleophilic attack. In addition, Zn2 stabilizes the oxyanion of the tetrahedral intermediate, thereby facilitating the nucleophilic attack.  相似文献   

4.
The mechanism of the first steps of the reaction catalyzed by HIV-1 protease was studied through molecular dynamics simulations. The potential energy surface in the active site was generated using the approximate valence bond method. The approximate valence bond (AVB) method was parameterized based on density functional calculations. The surrounding protein and explicit water environment was modeled with conventional, classical force field. The calculations were performed based on HIV-1 protease complexed with the MVT-101 inhibitor that was modified to a model substrate. The protonation state of the catalytic aspartates was determined theoretically. Possible reaction mechanisms involving the lytic water molecule are accounted for in this study. The modeled steps include the dissociation of the lytic water molecule and proton transfer onto Asp-125, the nucleophilic attack followed by a proton transfer onto peptide nitrogen. The simulations show that in the active site most preferable energetically are structures consisting of ionized or polarized molecular fragments that are not accounted for in conventional molecular dynamics. The mobility of the lytic water molecule, the dynamics of the hydrogen bond network, and the conformation of the aspartates in the active center were analyzed.  相似文献   

5.
Lie MA  Celik L  Jørgensen KA  Schiøtt B 《Biochemistry》2005,44(45):14792-14806
We have performed long-term molecular dynamics simulations of pyruvate decarboxylase from Zymomonas mobilis. Nine structures were modeled to investigate mechanistic questions related to binding of the cofactor, thiamin diphosphate (ThDP), and the substrate in the active site. The simulations reveal that the proposed three ThDP-tautomers all can bind in the active site and indicate that the equilibrium is shifted toward 4'-aminopyrimidine ThDP in the absence of substrate. 4'-Aminopyrimidinium ThDP is found to be a likely intermediate in the equilibrium. Mutations of important active site residues, Glu473Ala and Glu50Ala, were modeled to further elucidate their catalytic role. Formation of the catalytic important ylide by deprotonation of ThDP(C2) is investigated. Only the less favored tautomer, 1',4'-iminopyrimidine ThDP (imino-ThDP), could be deprotonated. The two other tautomers of ThDP could not be activated at the C2-position, thus, explaining the mechanistic importance of the less stable imino-ThDP. Finally, binding of pyruvate in the active site with the cofactor modeled as the nucleophilic ylide (ylide-ThDP) is studied. The carbonyl group of the substrate forms a hydrogen bond to Tyr290(OH). No hydrogen bond could be identified between ThDP(N4') and the substrate. The geometry of the substrate binding is well-suited for a nucleophilic attack by ylide-ThDP(C2). We propose that a proton relay from His113 via Asp27 and Tyr290 to the carbonyl oxygen atom of the substrate may be involved in the mechanism.  相似文献   

6.
The structure of the thermolysin inhibitor phosphoramidon (N-(α-l-rhamnopyranosyl-oxyhydroxyphosphinyl)-l-leucyl-l-tryptophan bound to the crystalline enzyme has been determined to a resolution of 2.3 Å by X-ray crystallography. The study shows that the complex of phosphoramidon with thermolysin resembles that of the presumed catalytic transition state inferred from the geometry of binding of dipeptide inhibitors. Also, the study reveals the mode of binding of thermolysin substrates extended on the imino side of the scissile peptide bond.The crystallographic results are consistent with a variety of other studies on the catalytic activity of thermolysin, and suggest a mechanism of action which is analogous to one of the two alternative mechanisms proposed by Lipscomb and co-workers (1968) for carboxypeptidase A. Key features of the proposed mechanism are that the substrate is initially bound to the enzyme with the carbonyl oxygen of the scissile peptide liganded to the zinc; that Glu143 promotes the nucleophilic attack of a buried water molecule on the carbonyl carbon, forming a tetrahedral intermediate; and that His231 acts as a proton donor. The observed binding of phosphoramidon to thermolysin provides further evidence supporting the mechanism in which Glu143 acts as a general base, promoting the attack of water on the carbonyl carbon, rather than the alternative mechanism in which Glu143 attacks the carbonyl carbon directly, forming an anhydride intermediate.  相似文献   

7.
Citrate synthase forms citrate by deprotonation of acetyl-CoA followed by nucleophilic attack of this substrate on oxaloacetate, and subsequent hydrolysis. The rapid reaction rate is puzzling because of the instability of the postulated nucleophilic intermediate, the enolate of acetyl-CoA. As alternatives, the enol of acetyl-CoA, or an enolic intermediate sharing a proton with His-274 in a “low-barrier” hydrogen bond have been suggested. Similar problems of intermediate instability have been noted in other enzymic carbon acid deprotonation reactions. Quantum mechanical/molecular mechanical calculations of the pathway of acetyl-CoA enolization within citrate synthase support the identification of Asp-375 as the catalytic base. His-274, the proposed general acid, is found to be neutral. The acetyl-CoA enolate is more stable at the active site than the enol, and is stabilized by hydrogen bonds from His-274 and a water molecule. The conditions for formation of a low-barrier hydrogen bond do not appear to be met, and the calculated hydrogen bond stabilization in the reaction is less than the gas-phase energy, due to interactions with Asp-375 at the active site. The enolate character of the intermediate is apparently necessary for the condensation reaction to proceed efficiently. Proteins 27:9–25 © 1997 Wiley-Liss, Inc.  相似文献   

8.
Based on available three-dimensional structures of enzyme-inhibitor complexes, the mechanism of the reaction catalysed by HIV protease is studied using molecular dynamics simulations with molecular mechanics and combined quantum-mechanics/molecular-mechanics potential energy functions. The results support the general acid/general base catalysis mechanism, with Asp25′ protonated in the enzyme-substrate complex. In the enzyme-substrate complex, the lytic water molecule binds at a position different from the positions of the hydroxyl groups in various aspartic protease-inhibitor complexes. The carboxyl groups at the active site also adopt a different orientation. However, when the lytic water molecule approaches the scissile peptide, the reaction centre changes gradually to a conformation close to that derived from X-ray diffraction studies of various enzyme-inhibitor complexes. The proton transfer processes can take place only after the lytic water molecule has approached the scissile peptide bond to a certain degree. Qualitatively, the free-energy barrier associated with the nucleophilic attack step, which takes place at physiological pH, is comparable with the acid or base-catalysed reactions of model systems. The structure of the tetrahedral intermediate resulting from the nucleophilic attack step also indicates a straightforward pathway of the next reaction step, i.e. the breaking of the C-N bond.  相似文献   

9.

Background

It is known that HIV-1 protease is an important target for design of antiviral compounds in the treatment of Acquired Immuno Deficiency Syndrome (AIDS). In this context, understanding the catalytic mechanism of the enzyme is of crucial importance as transition state structure directs inhibitor design. Most mechanistic proposals invoke nucleophilic attack on the scissile peptide bond by a water molecule. But such a water molecule coexisting with any ligand in the active site has not been found so far in the crystal structures.

Principal Findings

We report here the first observation of the coexistence in the active site, of a water molecule WAT1, along with the carboxyl terminal product (Q product) peptide. The product peptide has been generated in situ through cleavage of the full-length substrate. The N-terminal product (P product) has diffused out and is replaced by a set of water molecules while the Q product is still held in the active site through hydrogen bonds. The position of WAT1, which hydrogen bonds to both the catalytic aspartates, is different from when there is no substrate bound in the active site. We propose WAT1 to be the position from where catalytic water attacks the scissile peptide bond. Comparison of structures of HIV-1 protease complexed with the same oligopeptide substrate, but at pH 2.0 and at pH 7.0 shows interesting changes in the conformation and hydrogen bonding interactions from the catalytic aspartates.

Conclusions/Significance

The structure is suggestive of the repositioning, during substrate binding, of the catalytic water for activation and subsequent nucleophilic attack. The structure could be a snap shot of the enzyme active site primed for the next round of catalysis. This structure further suggests that to achieve the goal of designing inhibitors mimicking the transition-state, the hydrogen-bonding pattern between WAT1 and the enzyme should be replicated.  相似文献   

10.
Thymidine phosphorylase (TP) is a dual substrate enzyme with two domains. Each domain binds a substrate. In the crystal structure of Escherichia coli TP, the two domains are arranged so that the two substrate binding sites are too far away for the two substrates to directly react. Molecular dynamics simulations reveal a different structure of the enzyme in which the two domains have moved to place the two substrates in close contact. This structure has a root-mean-square deviation from the crystal structure of 4.1 A. Quantum mechanical calculations using this structure find that the reaction can proceed by a direct nucleophilic attack with a low barrier. This mechanism is not feasible in the crystal structure environment and is consistent with the mechanism observed for other N-glycosidic enzymes. Important catalytic roles are found for the three highly conserved residues His 85, Arg 171, and Lys 190.  相似文献   

11.
The dissociation mechanism of the thioredoxin (Trx) mixed disulfide complexes is unknown and has been debated for more than twenty years. Specifically, opposing arguments for the activation of the nucleophilic cysteine as a thiolate during the dissociation of the complex have been put forward. As a key model, the complex between Trx and its endogenous substrate, arsenate reductase (ArsC), was used. In this structure, a Cys29Trx-Cys89ArsC intermediate disulfide is formed by the nucleophilic attack of Cys29Trx on the exposed Cys82ArsC-Cys89ArsC in oxidized ArsC. With theoretical reactivity analysis, molecular dynamics simulations, and biochemical complex formation experiments with Cys-mutants, Trx mixed disulfide dissociation was studied. We observed that the conformational changes around the intermediate disulfide bring Cys32Trx in contact with Cys29Trx. Cys32Trx is activated for its nucleophilic attack by hydrogen bonds, and Cys32Trx is found to be more reactive than Cys82ArsC. Additionally, Cys32Trx directs its nucleophilic attack on the more susceptible Cys29Trx and not on Cys89ArsC. This multidisciplinary approach provides fresh insights into a universal thiol/disulfide exchange reaction mechanism that results in reduced substrate and oxidized Trx.  相似文献   

12.
The effect of aryl substituents on the rate at which epoxide hydrase catalyzes the addition of water to styrene and cis-stilbene oxides has been examined. Plots of log Vm for each substrate versus the Hammett σ constants for the substituent suggest that a nucleophilic attack occurs and that a free carbonium ion form of the substrate is not involved at the rate-determining step in the mechanism. For the stilbene oxides, high selectivity for attack by water at the carbon atom with [S] absolute stereochemistry was observed.  相似文献   

13.
The mechanism of all elementary steps involved in the catalytic cycle of benzoylformate decarboxylase (BFD, E.C. 4.1.1.7) to generate the acyloin linkage is investigated by extensive molecular dynamics simulations. Models involving different charge states of amino acids and/or mutants of critical residues were constructed to understand the involvement of the catalytically active residues and the reactivity differences between different substrates in this reaction. Our calculations confirm that H70, S26, and H281 are catalytically active amino acids. H281 functions as a base to accept Hdonor in the first nucleophilic attack and as an acid in the second, to donate the proton back to Oacceptor. S26 assists H281 in deprotonation of the donor aldehyde and protonation of the acceptor aldehyde. In both the first and second nucleophilic attacks, H70 interacts with Oaldehyde and aligns it toward the nucleophilic center. H70 has been found to have an electrostatic effect on the approaching aldehyde whose absence would block the initiation of the reaction. The reactivity difference between benzaldehyde (BA) and acetaldehyde (AA) is mainly explained by the steric interactions of the acceptor aldehyde with the surrounding amino acids in the active center of the enzyme. © 2009 Wiley Periodicals, Inc. Biopolymers 93: 32–46, 2010. This article was originally published online as an accepted preprint. The “Published Online” date corresponds to the preprint version. You can request a copy of the preprint by emailing the Biopolymers editorial office at biopolymers@wiley.com  相似文献   

14.
Allan Beveridge 《Proteins》1996,24(3):322-334
We have performed ab initio Hartree-Fock self-consistent field calculations on the active site of endothiapepsin. The active site was modeled as a formic acid/formate anion moiety (representing the catalytic aspartates, Asp-32 and -215) and a bound water molecule. Residues Gly-34, Ser-35, Gly-217, and Thr-218, which all form hydrogen bonds to the active site, were modeled using formamide and methanol molecules. The water molecule, which is generally believed to function as the attacking nucleophile in catalysis, was allowed to bind to the active site in four distinct configurations. The geometry of each configuration was optimized using two basis sets (4-31G and 4-31G*). The results indicate that in the native enzyme the nucleophilic water is bound in a catalytically inert configuration. However, by rotating the carboxyl group of Asp-32 by about 90° the water molecule can be reorientated to attack the scissile bond of the substrate. A model of the bound enzyme-substrate complex was constructed from the crystal structure of a difluorostatone inhibitor complexed with endothiapepsin. This model suggests that the substrate itself initiates the reorientation of the nucleophilic water immediately prior to catalysis by forcing the carboxyl group of Asp-32 to rotate. The theoretical results predict that the active site of endothiapepsin undergoes a large distortion during substrate binding and this observation has been used to explain some of the kinetics results which have been reported for mutant aspartic proteinases.  相似文献   

15.
In the photosystem II (PSII) of oxygenic photosynthetic organisms, the reaction center (RC) core mediates the light-induced electron transfer leading to water splitting and production of reduced plastoquinone molecules. The reduction of plastoquinone to plastoquinol lowers PSII affinity for the latter and leads to its release. However, little is known about the role of protein dynamics in this process. Here, molecular dynamics simulations of the complete PSII complex embedded in a lipid bilayer have been used to investigate the plastoquinol release mechanism. A distinct dynamic behavior of PSII in the presence of plastoquinol is observed which, coupled to changes in charge distribution and electrostatic interactions, causes disruption of the interactions seen in the PSII–plastoquinone complex and leads to the “squeezing out” of plastoquinol from the binding pocket. Displacement of plastoquinol closes the second water channel, recently described in a 2.9 Å resolution PSII structure (Guskov et al. in Nat Struct Mol Biol 16:334–342, 2009), allowing to rule out the proposed “alternating” mechanism of plastoquinol–plastoquinone exchange, while giving support to the “single-channel” one. The performed simulations indicated a pivotal role of D1-Ser264 in modulating the dynamics of the plastoquinone binding pocket and plastoquinol–plastoquinone exchange via its interaction with D1-His252 residue. The effects of the disruption of this hydrogen bond network on the PSII redox reactions were experimentally assessed in the D1 site-directed mutant Ser264Lys.  相似文献   

16.
The catalytic mechanism of aspartic proteinases   总被引:3,自引:0,他引:3  
L H Pearl 《FEBS letters》1987,214(1):8-12
The highly symmetric active site of an aspartic proteinase, endothiapepsin, binds a water molecule ideally situated for nucleophilic attack on a substrate peptide bond whose distortion from planarity is stabilised by interactions of the substrate with the extended binding cleft. The apparent electrophilicity of the catalysis results from this distortion. The scissile peptide bond is orientated with the carbonyl oxygen hydrogen bonding to the tip of the beta-hairpin 'flap' which lies over the cleft. Nucleophilic attack by the bound water leads to a tetrahedral intermediate similar to observed complexes with hydroxyl inhibitors and stabilised by hydrogen bonds with the flap.  相似文献   

17.
Wong KY  Gao J 《The FEBS journal》2011,278(14):2579-2595
Molecular dynamics simulations employing a combined quantum mechanical and molecular mechanical potential have been carried out to elucidate the reaction mechanism of the hydrolysis of a cyclic nucleotide cAMP substrate by phosphodiesterase 4B (PDE4B). PDE4B is a member of the PDE superfamily of enzymes that play crucial roles in cellular signal transduction. We have determined a two-dimensional potential of mean force (PMF) for the coupled phosphoryl bond cleavage and proton transfer through a general acid catalysis mechanism in PDE4B. The results indicate that the ring-opening process takes place through an S(N)2 reaction mechanism, followed by a proton transfer to stabilize the leaving group. The computed free energy of activation for the PDE4B-catalyzed cAMP hydrolysis is about 13 kcal·mol(-1) and an overall reaction free energy is about -17 kcal·mol(-1), both in accord with experimental results. In comparison with the uncatalyzed reaction in water, the enzyme PDE4B provides a strong stabilization of the transition state, lowering the free energy barrier by 14 kcal·mol(-1). We found that the proton transfer from the general acid residue His234 to the O3' oxyanion of the ribosyl leaving group lags behind the nucleophilic attack, resulting in a shallow minimum on the free energy surface. A key contributing factor to transition state stabilization is the elongation of the distance between the divalent metal ions Zn(2+) and Mg(2+) in the active site as the reaction proceeds from the Michaelis complex to the transition state.  相似文献   

18.
We report the X-ray analysis at 2.0 A resolution for crystals of the aspartic proteinase endothiapepsin (EC 3.4.23.6) complexed with a potent difluorostatone-containing tripeptide renin inhibitor (CP-81,282). The scissile bond surrogate, an electrophilic ketone, is hydrated in the complex. The pro-(R) (statine-like) hydroxyl of the tetrahedral carbonyl hydrate is hydrogen-bonded to both active-site aspartates 32 and 215 in the position occupied by a water in the native enzyme. The second hydroxyl oxygen of the hydrate is hydrogen-bonded only to the outer oxygen of Asp 32. These experimental data provide a basis for a model of the tetrahedral intermediate in aspartic proteinase-mediated cleavage of the amide bond. This indicates a mechanism in which Asp 32 is the proton donor and Asp 215 carboxylate polarizes a bound water for nucleophilic attack. The mechanism involves a carboxylate (Asp 32) that is stabilized by extensive hydrogen bonding, rather than an oxyanion derivative of the peptide as in serine proteinase catalysis.  相似文献   

19.
For the first time a consistent catalytic mechanism of phospholipase C from Bacillus cereus is reported based on molecular mechanics calculations. We have identified the position of the nucleophilic water molecule, which is directly involved in the hydrolysis of the natural substrate, phosphatidylcholine, in phospholipase C. This catalytically essential water molecule, after being activated by an acidic residue (Asp55), performs the nucleophilic attack on the phosphorus atom in the substrate, leading to a trigonal bipyramidal pentacoordinated intermediate (and structurally similar transition state). The subsequent collapse of the intermediate, regeneration of the enzyme, and release of the products has to involve a not yet identified second water molecule. The catalytic mechanism reported here is based on a series of molecular mechanics calculations. First, the x-ray structure of phospholipase C from B. cereus including a docked substrate molecule was subjected to a stepwise molecular mechanics energy minimization. Second, the location of the nucleophilic water molecule in the active site of the fully relaxed enzyme–substrate complex was determined by evaluation of nonbonded interaction energies between the complex and a water molecule. The nucleophilic water molecule is positioned at a distance (3.8 Å) from the phosphorus atom in the substrate, which is in good agreement with experimentally observed distances. Finally, the stability of the complex between phospholipase C, the substrate, and the nucleophilic water molecule was verified during a 100 ps molecular dynamics simulation. During the simulation the substrate undergoes a conformational change, but retains its localization in the active site. The contacts between the enzyme, the substrate, and the nucleophilic water molecule display some fluctuations, but remain within reasonable limits, thereby confirming the stability of the enzyme–substrate–water complex. The protocol developed for energy minimization of phospholipase C containing three zinc ions located closely together at the bottom of the active site cleft is reported in detail. In order to handle the strong electrostatic interactions in the active site realistically during energy minimization, delocalization of the charges from the three zinc ions was considered. Therefore, quantum mechanics calculations on the zinc ions and the zinc-coordinating residues were carried out prior to the molecular mechanics calculations, and two different sets of partial atomic charges (MNDO-Mulliken and AM1-ESP) were applied. After careful assignment of partial atomic charges, a complete energy minimization of the protein was carried out by a stepwise procedure without explicit solvent molecules. Energy minimization with either set of charges yielded structures, which were very similar both to the x-ray structure and to each other, although using AM1-ESP partial atomic charges and a dielectric constant of 4, yielded the best protein structure. © 1997 John Wiley and Sons, Inc. Biopoly 42: 319–336, 1997  相似文献   

20.
The approach of CO2 to a series of active site model complexes of human carbonic anhydrase II (HCAII) and its catalytic hydration to bicarbonate anion have been investigated using semiempirical MO theory (AM1). The results show that direct nucleophilic attack of zinc-bound hydroxide to the substrate carbon occurs in each model system. Further rearrangement of the bicarbonate complex thus formed via a rotation-like movement of the bicarbonate ligand can only be found in active site model systems that include at least one additional water molecule. Further refinement of the model complex by adding a methanol molecule to mimic Thr-199 makes this process almost activationless. The formation of the final bicarbonate complex by an internal (intramolecular) proton transfer is only possible in the simplest of all model systems, namely {[Im3Zn(OH)]+·CO2}. The energy of activation for this process, however, is 36.8 kcal·mol–1 and thus too high for enzymatic catalysis. Therefore, we conclude that within the limitations of the model systems presented and the level of theory employed, the overall mechanism for the formation of the bicarbonate complex comprises an initial direct nucleophilic attack of zinc-bound hydroxide to carbon dioxide followed by a rotation-like rearrangement of the bicarbonate ligand via a penta-coordinate Zn2+ transition state structure, including the participation of an extra active site water molecule.Electronic Supplementary Material available.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号