首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 187 毫秒
1.
The axolotl, Ambystoma mexicanum, is a useful system for studying embryogenesis and cardiogenesis. To understand the role of protein tyrosine phosphorylation during heart development in normal and cardiac mutant axolotl embryonic hearts, we have investigated the state of protein tyrosine residues (phosphotyrosine, P-Tyr) and the relationship between P-Tyr and the development of organized sarcomeric myofibrils by using confocal microscopy, two-dimensional isoelectric focusing (IEF)/SDS-polyacrylamide gel electrophoresis (PAGE) and immunoblotting analyses. Western blot analyses of normal embryonic hearts indicate that several proteins were significantly tyrosine phosphorylated after the initial heartbeat stage (stage 35). Mutant hearts at stages 40-41 showed less tyrosine phosphorylated staining as compared to the normal group. Two-dimensional gel electrophoresis revealed that most of the proteins from mutant hearts had a lower content of phosphorylated amino acids. Confocal microscopy of stage 35 normal hearts using phosphotyrosine monoclonal antibodies demonstrated that P-Tyr staining gradually increased being localized primarily at cell-cell boundaries and cell-extracellular matrix boundaries. In contrast, mutant embryonic hearts showed a marked decrease in the level of P-Tyr staining, especially at sites of cell-cell and cell-matrix junctions. We also delivered an anti-phosphotyrosine antibody (PY 20) into normal hearts by using a liposome-mediated delivery method, which resulted in a disruption of the existing cardiac myofibrils and reduced heartbeat rates. Our results suggest that protein tyrosine phosphorylation is critical during myofibrillogenesis and embryonic heart development in axolotls.  相似文献   

2.
Recessive mutant gene c for "cardiac nonfunction" in axolotls results in an absence of normal heart contractions in affected embryos due to a failure of myofibril formation. In the present study, the intermediate filament protein, desmin, is compared in developing normal and mutant hearts by means of two-dimensional gel electrophoresis, immunofluorescent microscopy, and immunoelectron microscopy. Tissues were fixed in periodate-lysine-paraformaldehyde or paraformaldehyde-glutaraldehyde solutions and rapidly frozen or embedded in Lowicryl resin. Frozen sections stained with FITC-conjugated antibodies by an indirect approach revealed that desmin is localized in the I-band regions of adult cardiac myofibrils. In normal embryonic hearts at stage 32 (preheartbeat) desmin is localized as "spots" or amorphous collections in the cells. As development progresses to stage 35, staining for desmin in normal hearts becomes more intense with localization being most pronounced at the cell peripheries. By stage 41 most of the desmin in normal hearts is localized in the I band areas of the organized myofibrils and the staining of amorphous areas is much less prominent. During early development, the distribution of desmin in mutant hearts is similar to normal. However, while most of the desmin in normal organs at stage 41 is associated with myofibrils, the staining remains diffuse in mutants. Two-dimensional gel electrophoresis reveals comparable patterns for desmin from normal and mutant hearts. Immunogold staining shows desmin localization to be between the myofibrils and around the I-band regions in adult cardiac muscle and in stage 41 normal embryonic hearts. Immunogold staining confirms a diffuse distribution of desmin in mutant hearts.  相似文献   

3.
In the Mexican axolotl Ambystoma mexicanum recessive mutant gene c, by way of abnormal inductive processes from surrounding tissues, results in an absence of embryonic heart function. The lack of contractions in mutant heart cells apparently results from their inability to form normally organized myofibrils, even though a few actin-like (60-A) and myosin-like (150-A) filaments are present. Amorphous "proteinaceous" collections are often visible. In the present study, heavy meromyosin (HMM) treatment of mutant heart tissue greatly increases the number of thin filaments and decorates them in the usual fashion, confirming that they are actin. The amorphous collections disappear with the addition of HMM. In addition, an analysis of the constituent proteins of normal and mutant embryonic hearts and other tissues is made by sodium dodecyl sulfate (SDS) gel electrophoresis. These experiments are in full agreement with the morphological and HMM binding studies. The gels show distinct 42,000-dalton bands for both normal and mutant hearts, supporting the presence of normal actin. During early developmental stages (Harrison's stage 34) the cardiac tissues in normal and mutant siblings have indistinguishable banding patterns, but with increasing development several differences appear. Myosin heavy chain (200,000 daltons) increases substantially in normal hearts during development but very little in mutants. Even so the quantity of 200,000-dalton protein in mutant hearts is significantly more than in any of the nonmuscle tissues studied (i.e. gut, liver, brain). Unlike normal hearts, the mutant hearts lack a prominent 34,000-dalton band, indicating that if mutants contain muscle tropomyosin at all, it is present in drastically reduced amounts. Also, mutant hearts retain large amounts of yolk proteins at stages when the platelets have virtually disappeared from normal hearts. The morphologies and electrophoresis patterns of skeletal muscle from normal and mutant siblings are identical, confirming that gene c affects only heart muscle differentiation and not skeletal muscle. The results of the study suggest that the precardiac mesoderm in cardiac lethal mutant axolotl embryos initiates but then fails to complete its differentiation into functional muscle tissue. It appears that this single gene mutation, by way of abnormal inductive processes, affects the accumulation and organization of several different muscle proteins, including actin, myosin, and tropomyosin.  相似文献   

4.
How proteins assemble into sarcomeric arrays to form myofibrils is controversial. Immunostaining and transfections of cultures of cardiomyocytes from 10-day avian embryos led us to propose that assembly proceeded in three stages beginning with the formation of premyofibrils followed by nascent myofibrils and culminating in mature myofibrils. However, premyofibril and nascent myofibril arrays have not been detected in early cardiomyocytes examined in situ in the forming avian heart suggesting that the mechanism for myofibrillogenesis differs in cultured and uncultured cells. To address this question of in situ myofibrillogenesis, we applied non-enzymatic procedures and deconvolution imaging techniques to examine early heart forming regions in situ at 2- to 13-somite stages (beating begins at the 9-somite stage), a time span of about 23 h. These approaches enabled us to detect the three myofibril stages in developing hearts supporting a three-step model of myofibrillogenesis in cardiomyocytes, whether they are present in situ, in organ cultures or in tissue culture. We have also discovered that before titin is organized the first muscle myosin filaments are about half the length of the 1.6 μm filaments present in mature A-bands. This supports the proposal that titin may play a role in length determination of myosin filaments.  相似文献   

5.
A strain of axolotl, Ambystoma mexicanum, that carries the cardiac lethal or c gene presents an excellent model system in which to study inductive interactions during heart development. Embryos homozygous for gene c contain hearts that fail to beat and do not form sarcomeric myofibrils even though muscle proteins are present. Although they can survive for approximately three weeks, mutant embryos inevitably die due to lack of circulation. Embryonic axolotl hearts can be maintained easily in organ culture using only Holtfreter's solution as a culture medium. Mutant hearts can be induced to differentiate in vitro into functional cardiac muscle containing sarcomeric myofibrils by coculturing the mutant heart tube with anterior endoderm from a normal embryo. The induction of muscle differentiation can also be mediated through organ culture of mutant heart tubes in medium 'conditioned' by normal anterior endoderm. Ribonuclease was shown to abolish the ability of endoderm-conditioned medium to induce cardiac muscle differentiation. The addition of RNA extracted from normal early embryonic anterior endoderm to organ cultures of mutant hearts stimulated the differentiation of these tissues into contractile cardiac muscle containing well-organized sarcomeric myofibrils, while RNA extracted from early embryonic liver or neural tube did not induce either muscular contraction or myofibrillogenesis. Thus, RNA from anterior endoderm of normal embryos induces myofibrillogenesis and the development of contractile activity in mutant hearts, thereby correcting the genetic defect.  相似文献   

6.
Hearts from cardiac mutant Mexican axolotl, Ambystoma mexicanum, do not form organized myofibrils and fail to beat. Though previous biochemical and immunohistochemical experiments showed a possible reduction of cardiac tropomyosin it was not clear that this caused the lack of organized myofibrils in mutant hearts. We used cationic liposomes to introduce both rabbit and chicken tropomyosin protein into whole hearts of embryonic axolotls in whole heart organ cultures. The mutant hearts had a striking increase in the number of well-organized sarcomeric myofibrils when treated with rabbit or chicken tropomyosin. FITC-labeled rabbit tropomyosin was used to examine the kinetics of incorporation of the exogenous protein into mutant hearts and confirmed the uptake of exogenous protein by the cells of live hearts in culture. By 4 h of transfection, both normal and mutant hearts were found to incorporate FITC-labeled tropomyosin into myofibrils. We also delivered an anti-tropomyosin antibody (CH 1) into normal hearts to disrupt the existing cardiac myofibrils which also resulted in reduced heartbeat rates. CH1 antibody was detected within the hearts and disorganization of the myofibrils was apparent when compared to normal controls. Introduction of a C-protein monoclonal antibody (ALD 66) did not result in a disruption of organized myofibrils. The results show clearly that chicken or rabbit tropomyosin could be incorporated by the mutant hearts and that it was sufficient to overcome the factors causing a lack of myofibril formation in the mutant. This finding also suggests that a lack of organized myofibrils is caused primarily by either inadequate levels of tropomyosin or endogenous tropomyosin in mutant hearts is unsuitable for myofibril formation, which we were able to duplicate with the introduction of tropomyosin antibody. Furthermore, incorporation of a specific exogenous protein or antibody into normal and mutant hearts of the Mexican axolotl in whole heart organ culture offers an unique model to evaluate functionalroles of contractile proteins necessary for cardiac development and differentiation.  相似文献   

7.
In the Mexican axolotl (salamander), Ambystoma mexicanum, a recessive cardiac lethal mutation causes an incomplete differentiation of the myocardium. Mutant hearts lack organized sarcomeric myofibrils and do not contract throughout their lengths. We have previously shown that RNA purified from normal anterior endoderm or from juvenile heart tissue is able to rescue mutant embryonic hearts in an in vitro organ culture system. Under these conditions as many as 55% of formerly quiescent mutant hearts initiate regular contractions within 48 hours. After earlier reports that transforming growth factor-1 and, to a lesser extent, platelet-derived growth factor-BB could substitute for anterior endoderm as a promoter of cardiac mesodermal differentiation in normal axolotl embryos, we decided to examine the effect of growth factors in the cardiac mutant axolotl system. In one type of experiment, stage 35 mutant hearts were incubated in activin A, transforming growth factors-1 or 2, platelet-derived growth factor, or epidermal growth factor, but no rescue of mutant hearts was achieved. Considering the possibility that growth factors would only be effective at earlier stages of development, we tested transforming growth factors-1 and 5, and activin A on normal and mutant precardiac mesoderm explanted in the absence of endoderm at neurula stage 14. We found that, although these growth factors stimulated heart tube formation in both normal and mutant mesodermal explants, only normal explants contained contractile myocardial tissue. We hypothesize that transforming growth factor- superfamily peptides initiate a cascade of responses in mesoderm that result in both changes in cell shape (the basis for heart morphogenesis) and terminal myocardial cytodifferentiation. The cardiac lethal mutation appears to be deficient only in the latter process.This work was supported by NIH grants HL-32184 and HL-37702 and a grant-in-aid from the American Heart Association to L.F.L.F.J. Mangiacapra and M.E. Fransen contributed equally to this work  相似文献   

8.
The Mexican axolotl, Ambystoma mexicanum, carries the naturally-occurring recessive mutant gene 'c' that results in a failure of homozygous (c/c) embryos to form hearts that beat because of an absence of organized myofibrils. Our previous studies have shown that a noncoding RNA, Myofibril-Inducing RNA (MIR), is capable of promoting myofibrillogenesis and heart beating in the mutant (c/c) axolotls. The present study demonstrates that the MIR gene is essential for tropomyosin (TM) expression in axolotl hearts during development. Gene expression studies show that mRNA expression of various tropomyosin isoforms in untreated mutant hearts and in normal hearts knocked down with double-stranded MIR (dsMIR) are similar to untreated normal. However, at the protein level, selected tropomyosin isoforms are significantly reduced in mutant and dsMIR treated normal hearts. These results suggest that MIR is involved in controlling the translation or post-translation of various TM isoforms and subsequently of regulating cardiac contractility.  相似文献   

9.
The Mexican axolotl, Ambystoma mexicanum, is an excellent animal model for studying heart development because it carries a naturally occurring recessive genetic mutation, designated gene c, for cardiac nonfunction. The double recessive mutants (c/c) fail to form organized myofibrils in the cardiac myoblasts resulting in hearts that fail to beat. Tropomyosin expression patterns have been studied in detail and show dramatically decreased expression in the hearts of homozygous mutant embryos. Because of the direct interaction between tropomyosin and troponin T (TnT), and the crucial functions of TnT in the regulation of striated muscle contraction, we have expanded our studies on this animal model to characterize the expression of the TnT gene in cardiac muscle throughout normal axolotl development as well as in mutant axolotls. In addition, we have succeeded in cloning the full-length cardiac troponin T (cTnT) cDNA from axolotl hearts. Confocal microscopy has shown a substantial, but reduced, expression of TnT protein in the mutant hearts when compared to normal during embryonic development.  相似文献   

10.
INTRODUCTIONTheaxolotlprovidesavaluablemodelsystemforstudyingmuscledevelopmentandfunction.Electronmicroscopyrevealsthataxolot...  相似文献   

11.
Sarcomere formation has been shown to be deficient in the myocardium of axolotl embryos homozygous for the recessive cardiac lethal gene c. We examined the developing hearts of normal and cardiac mutant embryos from tailbud stage 33 to posthatching stage 43 by scanning electron microscopy in order to determine whether that deficiency has any effect on heart morphogenesis. Specifically, we investigated the relationships of myocardial cells during the formation of the heart tube (stage 33), the initiation of dextral looping (stages 34-36), and the subsequent flexure of the elongating heart (stages 38-43). In addition, we compared the morphogenetic events in the axolotl to the published accounts of comparable stages in the chick embryo. In the axolotl (stage 33), changes in cell shape and orientation accompany the closure of the myocardial trough to form the tubular heart. The ventral mesocardium persists longer in the axolotl embryo than in the chick and appears to contribute to the asymmetry of dextral looping (stages 34-36) in two ways. First, as a persisting structure it places constraints on the simple elongation of the heart tube and the ability of the heart to bend. Second, after it is resorbed, the ventral myocardial cells that contributed to it are identifiable by their orientation, which is orthogonal to adjacent cells: a potential source of shearing effects. Cardiac lethal mutant embryos behave identically during these events, indicating that functional sarcomeres are not necessary to these processes. The absence of dynamic apical myocardial membrane changes, characteristic of the chick embryo (Hamburger and Hamilton stages 9-11), suggests that sudden hydration of the cardiac jelly is less likely to be a major factor in axolotl cardiac morphogenesis. Subsequent flexure (stages 38-43) of the axolotl heart is the same in normal and cardiac lethal mutant embryos as the myocardial tube lengthens within the confines of a pericardial cavity of fixed length. However, the cardiac mutant begins to exhibit abnormalities at this time. The lack of trabeculation (normally beginning at stage 37) in the mutant ventricle is evident at the same time as an increase in myocardial surface area, manifest in extra bends of the heart tube at stage 39. Nonbeating mutant hearts (stage 41) have an abnormally large diameter in the atrioventricular region, possibly the result of the accumulation of ascites fluid. In addition, mutant myocardial cells have a larger apical surface area compared to normals.  相似文献   

12.
SYNOPSIS. A naturally-occurring genetic mutation, designatedc for "cardiac lethal" in axolotls, Ambystoma mexicanum, isproving to be a useful model for studying myofibrillogenesisin differentiating heart cells. In this paper I describe morphological,biochemical and immunofluorescence studies which compare thecontractile proteins in normal and mutant hearts. In addition,morphological studies on anterior endoderm, an important heartinductor tissue in salamanders, are reviewed. Detailed electronmicroscopic studies show that normal heart myocytes containnumerous well-organized myofibrils. Although mutant heart cellscontain a few myosin and actin filaments, there are no organizedmyofibrils. Instead, amorphous proteinaceous collections areprominent in the peripheral cytoplasm of the cell where myofibrilswould be expected to first form. SDS-polyacrylamide gel electrophoresisshows that actin is present in almost normal amounts in mutanthearts, myosin heavy chain is reduced and tropomyosin is virtuallyabsent. Immunofluorescence studies reveal that myosin, -actininand tropomyosin are located prominently in theorganized myofibrilsof normal heart cells. In mutant hearts myosin is localizedalmost exclusively in the amorphous collections at the cellperipheries, -actinin also is distributed mainly in the peripheralcell cytoplasm. There is almost no staining for tropomyosin.Heavy meromyosin (HMM) binding experiments demonstrate thatthe actin in mutant heart cells is contained within the amorphouscollections in a non-filamentous state and the addition of HMMcauses its polymerization into filaments. In view of these findings,we undertook studies to determine whether there might be a causalrelationship between theabsence of tropomyosin in mutants andthe failure of actin to form into filaments. Our results indeedshow that addition of tropomyosin to glycerinated mutant heartsor homogenates of mutant hearts causes the amorphous actin toform into filaments. Thus, this single gene mutation resultsin mutant heart cells having reduced, but significant, amountsof myosin and actin, even though non-filamentous, and substantialamounts of -actinin. There is almost no tropomyosin. It is impliedthat the drastic reduction of tropomyosin in mutant cells issomehow related to the failure of normal myofilament formation,which in turn would seem to be an essential step in the normalorganization of myofibrils.  相似文献   

13.
《The Journal of cell biology》1987,105(6):2795-2801
In whole mount preparations of the 9 somite stage chick embryonic hearts that were immunofluorescently double labeled for titin and alpha- actinin, presumptive myofibrils were recognized as rows of several periodically aligned titin spots. Within these titin spots, smaller alpha-actinin dots were observed. These periodical arrangements of titin spots and alpha-actinin dots were not found in the 7 somite stage hearts. In wide myofibrils in the 10 somite stage hearts, the alpha- actinin dots and titin spots simultaneously became 'lines.' To study the ultrastructural features of the titin-positive regions in the 6-9 somite stage hearts, the thoracic portions of the embryos were immunofluorescently labeled for titin and embedded in resin. Ultrathin sections were mounted on electron microscopic grids and examined in immunofluorescence optics. The titin-positive regions thus identified were then examined in the electron microscope. No readily discernable specific ultrastructural features were found in titin-positive regions of the 6 somite stage cardiac primodia. Examination of the sections of the 9 somite stage hearts, on the other hand, revealed the occasional presence of small dense bodies, Z bodies, in the titin-positive regions. These observations strongly suggest that these Z bodies are the ultrastructural counterparts of the alpha-actinin dots seen by immunofluorescence optics and that they are formed nearly at the time of the formation of the first myofibrils. In some of the nascent myofibrils the Z bodies were found to be considerably narrower than the myofibrils, implying that the Z bodies are required not for the assembly of myofibrils per se but for their stabilization. Immunofluorescent labeling for titin and alpha-actinin revealed that the length of the shortest sarcomeres in the first myofibrils is approximately 1.5 micron, approximately the width of the A bands of mature myofibrils. The possibility that the A bands might define the initial length of nascent sarcomeres was indicated.  相似文献   

14.
When homozygous, recessive mutant gene c in Ambystoma mexicanum results in a failure of embryonic heart function. This failure is apparently due to abnormal inductive influences from the anterior endoderm resulting in an absence of normal sarcomeric myofibril formation. Biochemical and immunofluorescent studies were undertaken to evaluate the contractile proteins actin and tropomyosin in normal and mutant hearts. For the immunofluorescent studies, cardiac tissues were fixed in periodate-lysine-paraformaldehyde, frozen sectioned, and immunostained by an indirect method with monospecific polyclonal antibodies produced against highly purified chicken heart actin and tropomyosin. In normal hearts, both antiactin and antitropomyosin stained the myofibrillar I-bands intensely. In mutant hearts, intensity of staining with antiactin antibody was similar to normal, although sarcomeric patterns were not observed. Staining intensity for tropomyosin with antitropomyosin antibody was significantly reduced in mutant hearts when compared to normal. Biochemical studies were used to evaluate antibody specificity, antigenic variability, and relative protein concentrations of actin and tropomyosin in normal and mutant cardiac tissues. Tissue homogenates were electrophoresed in two dimensions, and second-dimension slab gels were either Coomassie Blue silver-stained or transblotted onto nitrocellulose and the proteins stained with antibodies. Stained gels and immunoblots of cardiac proteins reveal that the amounts of actin isoforms are identical in normal and mutant hearts. However, these methods demonstrate a significantly reduced amount of tropomyosin in mutant tissue. This confirms earlier studies suggesting reduced amounts of tropomyosin in mutant hearts based upon immunological assays. Thus, failure of normal myofibrillogenesis in gene c mutant hearts does not appear to result from a change in actin isoform composition but may be related to a deficiency in tropomyosin.  相似文献   

15.
Primary cultures of cardiac myocytes from newborn normal and genetically cardiomyopathic (strain UM-X7.1) hamsters were analyzed by electron microscopy and immunofluorescent staining for myosin, actin, tropomyosin, and alpha-actinin. Antibody staining of these contractile proteins demonstrates that both normal and cardiomyopathic (CM) myocytes contain prominent myofibrils after 3 days in culture, although the CM myofibrils are disarrayed and not aligned as those in normal cells. The disarray becomes even more pronounced in CM cells after 5 days in culture. The immunofluorescent staining patterns of individual myofibrils in normal and CM cells were similar for myosin, actin, and tropomyosin. However, alpha-actinin staining reveals that the CM myofibrils have abnormally wide and irregularly shaped Z bands. Electron microscopy confirms the irregular Z-band appearance as well as the myofibril disarray. Thus, CM cardiomyocytes clearly show an aberrant pattern of myofibril structure and organization in culture.  相似文献   

16.
Recessive mutant gene c in the axolotl results in a failure of affected embryos to develop contracting hearts. This abnormality can be corrected by treating the mutant heart with RNA isolated from normal anterior endoderm or from endoderm conditioned medium. A cDNA library was constructed from the total conditioned medium RNA using a random priming technique in a pcDNAII vector. We have previously identified a clone (designated as N1) from the constructed axolotl cDNA library, which has a unique nucleotide sequence. We have also discovered that the N1 gene product is related to heart development in the Mexican axolotl [Cell Mol. Biol. Res. 41 (1995) 117]. In the present studies, we further investigate the role of N1 on heartbeating and heart development in axolotls. N1 mRNA expression has been determined by using semi-quantitative RT-PCR with specifically designed primers. Normal embryonic hearts (at stages 30-31) have been transfected with anti-sense oligonucleotides against N1 to determine if downregulation of N1 gene expression has any effect on normal heart development. Our results show that cardiac N1 mRNA expression is partially blocked in the hearts transfected with anti-sense nucleotides and the downregulation of N1 gene expression results in a decrease of heartbeating in normal embryos, although the hearts remain alive as indicated by calcium spike movement throughout the hearts. Confocal microscopy data indicate some myofibril disorganization in the hearts transfected with the anti-sense N1 oligonucleotides. Interestingly, we also find that N1 gene expression is significantly decreased in the mutant axolotl hearts. Our results suggest that N1 is a novel gene in Mexican axolotls and it probably plays an important role in myofibrillogenesis and in the initiation of heartbeating during heart development.  相似文献   

17.
《The Journal of cell biology》1987,105(6):2781-2793
Our initial attempts to immunolabel intact myocardial walls of 4-12 somite stage chick embryos were hindered by the presence of the cardiac jelly that covers the inner myocardial wall surface and prevents the access of antibodies to that surface. We overcame this difficulty by treating the specimens with hyaluronidase, which made the cardiac jelly permeable to the antibodies. An additional nonionic detergent treatment made the two or more cell layers of the myocardial wall accessible to the antibodies from both surfaces of the wall. Specimens treated in this manner were fluorescently labeled with antibodies to titin, myosin, or actin or with NBD-phallacidin for F-actin and examined as whole mount preparations or cut into semithin sections after resin embedding. These preparations and sections revealed that titin, a putative scaffolding protein of sarcomeres, is present in a punctate state and also in a diffuse form throughout the cytoplasm of cardiac myocytes in the premyofibril stages (4-7 somite stages) as well as in the early stages of myofibril formation. We interpreted the punctate and diffuse states to represent an aggregated state of several titin molecules and a dispersed state of individual titin molecules, respectively. In the 4-7 somite cardiac primodia, myosin and actin show only a uniform labeling throughout the cytoplasm of the myocytes. These observations are in contrast to a previous report that titin and myosin are tightly linked during in vitro skeletal myofibrillogenesis (Hill, C. S., S. Duran, Z. Ling, K. Weber, and H. Holtzer, 1986, J. Cell Biol., 103:2185-2196). In the 8-11 somite stage hearts, the number of individual titin spots rapidly reduces, while the number of myofibrils with periodically aligned titin spots increases, which strongly suggests that the titin spots are incorporated into the newly arising myofibrils. Titin spots were seen as doublets only after titin spots were incorporated into the first myofibrils. However, the fact that the distance between the components of the narrowest doublet was close to the resolution limit of the light microscope left open the possibility that undiscernible doublets of submicroscopic separations might exist in the premyofibril stages. The myosin labeling revealed the sarcomeric periodicity in an earlier stage of myofibril development than the F- actin labeling. In addition, we made two morphogenic observations.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

18.
The organization of myosin heavy chains (mhc) A and B and paramyosin (pm) which are the major proteins of thick filaments in adult wild-type Caenorhabditis elegans were studied during embryonic development. As a probe of myosin-paramyosin interaction, the unc-15 mutation e73 which produces a glu342lys charge change in pm and leads to the formation of large paracrystalline multi-filament assemblages was compared to wild type. These three proteins colocalized in wild-type embryos from 300 to 550 min of development after first cleavage at 20 degrees C on the basis of immunofluorescence microscopy using specific monoclonal antibodies. Linear structures which were diversely oriented around the muscle cell peripheries appeared at 360 min and became progressively more aligned parallel to the embryonic long axis until distinct myofibrils were formed at 550 min. In the mutant, mhc A and pm were colocalized in the linear structures, but became progressively separated until they showed no spatial overlap at the myofibril stage. These results indicate that the linear structures represent nascent assemblies containing myosin and pm in which the proteins interact differently than in wild-type thick filaments of myofibrils. In e73, these nascent structures were distinct from the multi-filament assemblages. The overlapping of actin and mhc A in the nascent linear structures suggests their possible structural and functional relationship to the "stress fiber-like structures" of cultured vertebrate muscle cells.  相似文献   

19.
Embryos of the axolotl affected with the cardiac-lethal mutation form hearts that never begin to beat. A number of other traits characteristic of the mutant phenotype, including edema, underdeveloped gills, shorter stature, and aphagia (the inability to feed), were believed to be secondary effects of the absence of circulation. We have recently demonstrated that the pre-cardiac mesoderm is directly affected by the c gene, making it unresponsive to normal inductive signals. In this study, we replaced part or all of the mutant pre-cardiac mesoderm with wild-type tissue, to produce embryos with normally beating hearts and circulation. As expected, most of the other mutant characteristics were also corrected. However, otherwise normal individuals remained aphagic. All embryos with beating hearts containing mutant tissue also suffered from an unexpected circulatory arrest some time after the onset of circulation. This apparently indicates that there are at least two tissues other than the myocardium which appear to be directly affected by the c gene. These previously unsuspected pleiotropic effects of the mutation may involve poorly-characterized mesodermal-neural crest inductive interactions and may also lead to a greater understanding of the link between congenital heart defects and feeding difficulties in humans. © 1993Wiley-Liss, Inc.  相似文献   

20.
Murine monoclonal antibodies specific for titin have been elicited using a chicken heart muscle residue as antigen. The three antibodies T1, T3, and T4 recognize both bands of the titin doublet in immunoblot analysis on polypeptides from chicken breast muscle. In contrast, on chicken cardiac myofibrils two of the antibodies (T1, T4) react only with the upper band of the doublet indicating immunological differences between heart and skeletal muscle titin. This difference is even more pronounced for rat and mouse. Although all three antibodies react with skeletal muscle titin, T1 and T4 did not detect heart titin, whereas T3 reacts with this titin both in immunofluorescence microscopy and in immunoblots. Immunofluorescence microscopy of myofibrils and frozen tissues from a variety of vertebrates extends these results and shows that the three antibodies recognize different epitopes. All three titin antibodies decorate at the A-I junction of the myofibrils freshly prepared from chicken skeletal muscle and immunoelectron microscopy using native myosin filaments demonstrates that titin is present at the ends of the thick filaments. In chicken heart, however, antibodies T1 and T4 stain within the I-band rather than at the A-I junction. The three antibodies did not react with any of the nonmuscle tissues or permanent cell lines tested and do not decorate smooth muscle. In primary cultures of embryonic chicken skeletal muscle cells titin first appears as longitudinal striations in mononucleated myoblasts and later at the myofibrillar A-I junction of the myotubes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号