首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
The allele-specific epigenetic markings of endogenously imprinted genes in placental mammals occur during gametogenesis. The identification of the molecular nature of gametic imprints is the first step towards understanding the mechanistic basis of epigenesis in embryonic and adult somatic tissues. The specific question addressed in this work is whether the closely positioned but oppositely imprinted insulin-like growth factor 2 (IGF 2) and H19 genes, which have similar temporal regulation during development, differ in chromatin structure in mammalian spermatozoa. During terminal differentiation of mammalian spermatozoa, about 3–15% of the haploid genome retains a quasisomatic-type chromatin structure, whereas the remaining genomes interact with protamines that are further cross-linked by -S-S- bridges. Micrococcal nuclease (MNase) and DNase I digestions of human (HSN) and porcine sperm nuclei (PSN) showed that the IGF 2 gene in both types of nuclei retained somatic-type nucleosomes that were close-packed with a periodicity of 150 bp. However, the H19 gene in both species was predominantly organised by unique structural repeats, which were 650–674 bp in PSN and 438–522 bp in HSN, condensing at least 20 kb of chromatin. These results, together with previous studies, suggest that epigenetic chromatin modification leading to preferential condensation of the paternal H19 allele in embryonic tissues is already present in the germ cells. Mol. Reprod. Dev. 50:474–484, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

4.
5.
表观重编程异常是核移植胚胎发育异常的重要原因。为了研究克隆山羊胎儿不同组织中H19基因CpG岛甲基化水平和相对表达量,本实验运用亚硫酸盐法和荧光实时定量PCR法分别检测了死亡克隆山羊胎儿和同期普通山羊胎儿(对照组)肝脏、胎盘、肾脏、肺脏和心脏组织中H19基因CpG岛甲基化水平和mRNA的相对表达量。结果表明,克隆山羊胎儿胎盘组织中H19基因第5个CpG岛的甲基化水平显著高于对照组(70%vs49.41%,P0.05),H19基因相对表达量显著低于对照组(883.3vs1264.5,P0.05);肺脏组织甲基化水平显著低于对照组(63.53%vs88.24%,P0.05),相对表达量显著高于对照组(1003.4vs515.5,P0.05);其他各组差异不显著(P0.05)。结果说明,H19基因在克隆山羊胎儿部分组织中DNA甲基化重编程异常,而且这种异常影响H19基因的正常表达,这也可能是导致克隆动物死亡的重要因素之一。  相似文献   

6.
Allele specific timing of replication is believed to be a hallmark of imprinted genes, however recent evidence suggests that this might not be the case for the insulin-like growth factor 2 (Igf2) and H19 locus. In this report, we assayed the timing of replication of Igf2 and H19 in two mouse embryonic cell lines expressing both H19 and Igf2, and one cell line maternally disomic for the Igf2/H19 mouse locus which expresses H19 but not Igf2. In all cell lines, Igf2 and H19 were replicated early in the S phase of the cell cycle, and both alleles replicated at the same time. This indicates that any differences in the timing of replication at the Igf2/H19 locus are of a lesser magnitude than those found in other imprinted regions. Dev Genet 20:29–35, 1997. © 1997 Wiley-Liss, Inc.  相似文献   

7.
8.
Insulin-like growth factor 2 (Igf 2) and H19 genes are oppositely imprinted and as such have been most extensively studied imprinted genes both genetically and at the molecular level. Imprints of the H19 gene, being established during spermatogenesis, are epigenetically transmitted to the somatic cells of the embryo. Current hypotheses attempting to explain the allele-specific silence of the H19 gene include DNA methylation and chromatin condensation. In order to understand the molecular basis of H19 epigenesis, it is crucial to identify the markings in the chromatin organising the imprinted domain in spermatozoa. Using Micrococcal nuclease (MNase), DNase I and Methidiumpropyl-EDTA. iron II (MPE·Fe(II)) as chromatin probes, we demonstrate that in mouse epididymal spermatozoa, at least 4 kb DNA upstream of the H19 ‘cap’ site, containing the imprinted and differentially methylated domain (DMD), is heterochromatic. The cleavage sites in this domain (−2 to −4 kb) exhibit ~425 bp periodicity. This structure is maintained in the paternal allele of normal embryos and is disrupted at −2.2, −2.65 and at −3.5 kb in embryos maternally disomic for the distal end of chromosome 7 (MatDp 7). The hypersensitive sites in chromatin precisely register the MPE·Fe(II) cleavage sites in chromosomal DNA. Therefore, the DNA sequences in the imprinted domain constrain the chromatin structure in a way similar to that of 1.688 g/cm3 Drosophila satellite chromatin. In addition, we find that condensation of the paternal allele correlates with methylation-dependent alteration in the structure of DNA sequences in DMD. These results suggest that CpG-methylation induces localised changes in DNA conformation and these facilitate consequent remodelling of chromatin thereby allowing the paternal and maternal H19 alleles to be distinguished.  相似文献   

9.
Expression of coregulated imprinted genes, H19 and Igf2, is monoallelic and parent-of-origin-dependent. Like most imprinted genes, H19 and Igf2 are regulated by a differentially methylated imprinting control region (ICR). CTCF binding sites and DNA methylation at the ICR have previously been identified as key cis-acting elements required for proper H19/Igf2 imprinting. Here, we use mouse models to elucidate further the mechanism of ICR-mediated gene regulation. We specifically address the question of whether sequences outside of CTCF sites at the ICR are required for paternal H19 repression. To this end, we generated two types of mutant ICRs in the mouse: (i) deletion of intervening sequence between CTCF sites (H19ICR?IVS), which changes size and CpG content at the ICR; and (ii) CpG depletion outside of CTCF sites (H19ICR-8nrCG), which only changes CpG content at the ICR. Individually, both mutant alleles (H19ICR?IVS and H19ICR-8nrCG) show loss of imprinted repression of paternal H19. Interestingly, this loss of repression does not coincide with a detectable change in methylation at the H19 ICR or promoter. Thus, neither intact CTCF sites nor hypermethylation at the ICR is sufficient for maintaining the fully repressed state of the paternal H19 allele. Our findings demonstrate, for the first time in vivo, that sequence outside of CTCF sites at the ICR is required in cis for ICR-mediated imprinted repression at the H19/Igf2 locus. In addition, these results strongly implicate a novel role of ICR size and CpG density in paternal H19 repression.  相似文献   

10.
We have used Dnmtc/c ES cells that are homozygous for disruption of the DNA methyltransferase gene to address how de novo methylation is propagated and whether it is directed to specific sites in the early embryo. We examined the imprinted H19 gene and the specific-sequence region implicated as an “imprinting mark” to determine whether de novo methylation was occurring at a restricted set of sites. Since the “imprinting mark” was found to be methylated differentially at all stages of development, we reasoned that the sequence may still be a target for the de novo methylation activity found in the Dnmtc/c cells, even though the loss of maintenance methylase activity renders the H19 promoter active. We used bisulfite genomic sequencing to determine the methylation state of the imprinted region of the H19 gene and found a low level of DNA methylation at specific single CpG sites in the upstream region of the imprinted H19 sequence in the Dnmtc/c mutant ES cells. Moreover, these CpG sites appeared to be favoured targets for further de novo methylation of neighbouring CpG sites in rescued ES cells, which possess apparently normal maintenance activity. Our data provide further evidence for a separate methylating activity in ES cells and indicate that this activity displays sequence specificity. Dev. Genet. 22:111–121, 1998. © 1998 Wiley-Liss, Inc.  相似文献   

11.
12.
13.
14.
15.
16.
17.
Cellular de-differentiation can induce anticancer activity that makes cells resistant to carcinogenesis, but the molecular mechanism of this phenomenon has not been defined. To determine whether stable molecular changes develop in association with the process of de-differentiation, DNA microarray analyses were performed. These analyses compared control undifferentiated cells with three carcinogenesis-resistant clones of de-differentiated cells that were derived from mature adipocytes. The results of analysis of 6,000 genes and 6,000 ESTs establish that relative to control cells, all three de-differentiation-derived cell clones demonstrate that only one gene shows a consistent difference in expression. The expression of the H19 bioregulatory RNA is repressed an average of >fourfold in all de-differentiated cell clones. Real-time PCR analyses confirm these findings. This suggests that decreased H19 expression may account, at least in part, for the anticancer activity observed in de-differentiated cell clones.  相似文献   

18.
The nature of imprinting is just differential methylation of imprinted genes. Unlike the non-imprinted genes, the methylation pattern of imprinted genes established during the period of gametogenesis remains unchangeable after fertilization and during embryo development. It implies that gametogenesis is the key stage for methylation pattern of imprinted genes. The imprinting interfered by exogenous factors during this stage could be inherited to offspring and cause genetic effect. Now many studies have proved that ionizing irradiation could disturb DNA methylation. Here we choose BALB/c mice as a research model and X-ray as interfering source to further clarify it. We discovered that the whole-body irradiation of X-ray to male BALB/c mice could influence the methylation pattern of H19 gene in sperms, which resulted in some cytosines of partial CpG islands in the imprinting control region could not transform to methylated cytosines. Furthermore, by copulating the interfered male mice with normal female, we analyzed the promoter methylation pattern of H19 in offspring fetal liver and compared the same to the pattern of male parent in sperms. We found that the majority of methylation changes in offspring liver were related to the ones in their parent sperms. Our data proved that the changes of the H19 gene methylation pattern interfered by X-ray irradiation could be transmitted and maintained in the first-generation offspring.  相似文献   

19.
20.
目前已经证实,肺癌细胞有多种癌基因异常。这些异常在肺癌的发生和发展过程中可起着重要的作用,P53基因是一种与细胞生长密切相关的基因〔1〕。探讨逆转录病毒载体介导外源性P53基因对肺癌细胞生长的影响,为肺癌的基因治疗提供实验依据。我们以NCI H358细胞为模型,观察研究了P53基因对NCI H358细胞的形态、生长速度、DNA合成、细胞克隆及动物体内癌细胞治疗的影响,作如下总结。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号